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Cerebral stroke is a common disease across the world, and it is a promising method
to recognize the intention of stroke patients with the help of brain–computer interface
(BCI). In the field of motor imagery (MI) classification, appropriate filtering is vital for
feature extracting of electroencephalogram (EEG) signals and consequently influences
the accuracy of MI classification. In this case, a novel two-stage refine filtering method
was proposed, inspired by Gradient-weighted Class Activation Mapping (Grad-CAM),
which uses the gradients of any target concept flowing into the final convolutional
layer to highlight the important part of training data for predicting the concept. In
the first stage, MI classification was carried out and then the frequency band to be
filtered was calculated according to the Grad-CAM of the MI classification results. In the
second stage, EEG was filtered and classified for a higher classification accuracy. To
evaluate the filtering effect, this method was applied to the multi-branch neural network
proposed in our previous work. Experiment results revealed that the proposed method
reached state-of-the-art classification kappa value levels and acquired at least 3% higher
kappa values than other methods This study also proposed some promising application
scenarios with this filtering method.

Keywords: electroencephalogram, motor imagery, 3D representation, multi-branch structure, two-stage refine
filtering

INTRODUCTION

Cerebral stroke (Albers and Olivot, 2007; Menon and Demchuk, 2011) is one of the most common
diseases, and disorder in functions related to language and motor makes it hard for stroke
patients to live a normal life. It is possible to recognize the intention of stroke patients with the
development of brain–computer interface (BCI), which is based on the phenomenon of event-
related synchronization (ERS) or event-related desynchronization (ERD) (Neuper et al., 2006;
Wilson et al., 2019) in electroencephalogram (EEG) (Tanaka et al., 2005). In this case, the task of
motor imagery (MI) classification (Qin et al., 2004; Herman et al., 2008; Taran and Bajaj, 2019; Kato
et al., 2020) is carried out and a lot of achievements had been achieved. However, it is still a great
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FIGURE 1 | The whole architecture of the two stage refine filtering method. The convolutional neural network of the first stage was the same as the one of the
second stage.

FIGURE 2 | Visualizations of Grad-CAM for EEG signals. The bright regions mean EEG in this region contributes to correct classification results. The dark regions
mean EEG in this region contributes a negative weight to correct classification results.

challenge to classify the EEG signals accurately. To enhance
the accuracy of MI classification and consequently improve the
performance of BCI (Schalk et al., 2004; Ge et al., 2019), a large
amount of the methods had been proposed by researchers. All
the MI classification methods can be generally divided into two
categories: Common Spatial Pattern (CSP) (Kang et al., 2009;
Lu et al., 2010)-based methods, such as Filter Bank Common
Spatial Pattern (FBCSP) (Ang et al., 2012) and Common Spatio-
Spectral Pattern (CSSP) (Lemm et al., 2005); and Deep learning
based methods (Suwicha et al., 2014; Schirrmeister et al., 2017),
such as C2CM (Sakhavi et al., 2018), Compact convolutional
neural network (Lawhern et al., 2016), and shallow ConvNet
(Schirrmeister et al., 2017).

No matter with which method to carry out MI classification,
however, appropriate filtering, which suppresses high-amplitude
noise and channel saturation, is also needed (Benigno et al.,
2021). In FBCSP (Ang et al., 2012), nine band-pass filters covering
the range of 4–40 Hz were used and a spatial filtering using
the CSP method followed by each band-pass filter. Various

configurations proved to be as effective because these frequency
ranges yielded a stable frequency response. Based on FBCSP,
C2CM (Sakhavi et al., 2018) is a successful example that combines
conventional method and deep learning. This method convolutes
time features and spatial features separately, which achieved
good performance but increased more parameters. Similarly,
in shallow ConvNet (Schirrmeister et al., 2017), FBCSP was
also adopted for data processing. A bandpass filtering and the
CSP spatial filter are used in the network’s first two layers.
The classification results are then computed with the following
convolution layers and pooling layers. It is more reasonable
than FBCSP because the shallow ConvNet embedded all the
computation process in one network and the parameters can be
optimized together to acquire a better result. These methods have
acquired a high accuracy of MI classification but no further study
for the influence of filtering was carried out.

There are also several special filtering methods. In Schrödinger
filtering (Benigno et al., 2021), gradient artifact spikes were
removed and EEG signals were preserved and templates or
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FIGURE 3 | Frequency selecting process. The Fourier transformer results of a data segment, a useless part of the segment and a useful part of the segment was
presented. The frequency of peak point was the selected useful frequency or useless frequency.

references of the artifact or signal were used in this algorithm.
Meanwhile, evoked activity was not affected in the filtering
process, which proved the robustness of this method. However,

this method was based on the semi-classical signal analysis
(SCSA), which is young and needs to be studied actively to
acquire better performance. Bayesian filtering (Miran et al., 2018)
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was a different filtering method that decoded real-time auditory
attention from EEG and alleviated the need for large training
datasets compared with other existing methods. This method is
complicated in application to some extent. In clustering-based
feature (Yu et al., 2020), the underlying structure of EEG data
was explored and the data feature was optimized with a cluster-
based multi-task learning algorithm that enhances the accuracy
of classification. For the purpose of boosting the classification
accuracy, a multi-scale optimization (MSO) of spatial patterns
(Zhang et al., 2019; Jiao et al., 2020) was proposed, which
optimizes filter bands via multi-view learning within CSP. This
method also acquired good results in MI-related EEG datasets
with the filtering method.

All the methods mentioned above tried to filter the EEG
signals before MI classification, and these methods usually
divided the filtering process into several steps, which seems to
be complicated. In this study, a novel two-stage refine filtering
method was proposed, inspired by the discussion of Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju
et al., 2020) in our previous work (Xinqiao et al., 2019; Zhou
et al., 2019), which proposed a 3D representation of EEG and
constructed a multi-branch convolutional neural network for
MI classification. Gradient-weighted Class Activation Mapping
makes a good visual explanation by highlighting the important
regions of predicted images according to the last convolutional
layer of the network. In this case, we considered whether it
is possible to improve the performance of our network by
preserving the useful frequency (which means these frequencies
contribute a lot to correct classification results) and suppress
useless frequency (which means these frequencies contribute
nothing to correct results).

The two-stage refine filtering method can be divided into
two stages: In the first stage, raw EEG data were trained in the
network and the frequency bands to be filtered were selected
according to the Grad-CAM results of the last convolutional
layers. In the second stage, the EEG data were filtered with
the selected frequencies and put into the network again. This
method was applied to the dataset of BCI competition IV-2a
(Ang et al., 2012). The MI classification results of two stages were
recorded and the result of the second stage was better than that of
the first stage.

The remainder of this article is organized as follows.
Methods gives a description of the MI classification strategy.
The experiment and results are presented in Experiment and
Results. The discussion is shown in Discussion. Conclusion
concludes the article.

MATERIALS AND METHODS

In this section, detailed configurations of the filtering method
including the two-stage filtering process and the frequency
selecting principles in this process are illustrated.

Two-Stage Refine Filtering Process
The whole process of this method is shown in Figure 1. The
classification system was divided into two stages. In the first stage,

the EEG data without filtering were fed into a convolutional
neural network to complete the first training and the weights
were saved. The Grad-CAM results were acquired according
to the feature maps and the MI classification results. Then, it
can be figured out whether training data contribute a positive
or negative weight to correct classification results. In the data
processing process, the frequencies to be filtered were determined
according to the Grad-CAM results and detailed frequency
selecting principles are illustrated in the next section. In the
second stage, the raw data were filtered with the frequencies
selected according to the results of first stage. The filtered data
were used as input in the second training process.

Frequency Selecting Principles
After the first training process with the backbone network,
the Grad-CAM, which is shown in Figure 2, is carried out to
judge which part of a cropped data segment is beneficial to the
correct results. The Grad-CAM was determined according to the
classification results of the first stage and Figure 2 shows that the
signals with a bright color contribute to correct results and the
signals with a dark color contribute nothing to correct results.
The signals with a bright color were called useful data, which
contribute a positive weight to correct classification results, and
the dark one was called useless data, which contribute negative
weights to correct results. Then, the data were transformed with
Fourier transformation to extract frequency information. The
frequency of useful data that contribute to correct results is
named good frequency, and the frequency of useless data that
contribute nothing to correct results is named bad frequency.
It is obvious that different data samples have different random
“useful” or “useless” time intervals and there are many intervals
in each segment to be calculated. Considering the huge amount
of training data, a tenth of the data were sampled for Grad-CAM.

FIGURE 4 | Left circle represents the selected bad frequencies. Right circle
represents the selected good frequencies. Red part of the left circle
represents the selected frequencies to be filtered.
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FIGURE 5 | The backbone network. “SRF,” “MRF,” and “LRF” means three different branch networks with different receptive field. The input was copped as “copy
input.” “Conv1,” “Conv2,” and “Conv3” mean three convolutional process. “SRF MI classification,” “MRF MI classification,” and “LRF MI classification” represents
three classification results of three branches. The MI classification was computed according to three results.

Details of the Selecting Process
As is introduced before, the EEG signals are assessed with Grad-
CAM and then the bad and good frequencies of the signals
are recorded, respectively, which is illustrated in Figure 3.
A useless part of the data segment was Fourier transformed
and the frequency with highest amplitude was recorded as the
useless frequency considering that the frequency with the highest
amplitude may be most representative. The useful part was
processed the same as the useless part. The bad frequency data
cannot just be filtered because many frequencies belong to both
good and bad frequency due to the huge amount of EEG and the
inaccuracy of the data acquisition process. The low frequencies
will always be chosen due to the 1/f characteristic of the power
spectrum, and in this case, many low frequencies repeated in both
good and bad frequencies. To get a better performance of the

network by filtering bad frequency, the bad frequency needs to
be selected further according to its amount.

In this study, the selected frequencies were collected and the
frequencies that belong to bad frequencies but do not belong
to good frequencies are selected as the filtering frequency that
is illustrated in Figure 4. The bad and good frequencies are
sorted, respectively, in descending order according to their
amount. To avoid filtering out useful signals, a small amount
of the bad frequencies ranking ahead were selected and a
large amount of the good frequencies ranking ahead were
selected. Having tried several configurations, in this study,
the top 20 bad frequencies are selected and the top 100
good frequencies are selected. Among the 20 bad frequencies,
frequencies that do not belong to good frequencies are selected
as the filtering frequency.
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EXPERIMENT AND RESULTS

Experiment Setup
The methods proposed above are evaluated on BCI competition
IV dataset 2a (Ang et al., 2012). The EEG dataset was recorded
with 22 Ag/AgCl electrodes that are distributed according to
the international 10–20 system. The data acquisition experiment
prompts nine subjects to perform four different tasks named
imagery movement of left hand, right hand, both feet, and
tongue. For each subject, two sessions on different days were
recorded and each session consists of 288 trials. Each trial
belongs to one of the four classes and each trial consists of
a fixation process of 2 s, a cue time of 1.25 s, and a MI
time of 4 s; a short break followed after the MI process.
A band-pass filter between 0.5 and 100 Hz was applied
to the signals, and a notch filter of 50 Hz was taken to
suppress line noise.

In this study, the 1.25-s period of EEG data after the visual
cue was taken as experiment data. The EEG was then represented
with the 3D representation method mentioned above and the
label corresponding to the cropped EEG was presented with a
one-hot-vector format.

To evaluate the experiment results, the 10-fold cross-
validation method was used. All training data and testing data
of BCI IV dataset 2a are combined and then divided into
10 subsets randomly. In each run, nine subsets were used to
train and the other one was used as validation data. The final
results were obtained by averaging 10 validation results. After the
date was filtered, the filtered data were also evaluated with the
above method. The p-values presented in the experiment were
calculated from a two-tailed paired t-test.

Backbone Network
To evaluate the filtering method, a MI classification structure
is needed. In this study, a multi-branch convolutional neural
network proposed in our former work (Xinqiao et al., 2019)
was adopted. As is shown in Figure 5, our backbone network
was made up of three CNNs with different receptive fields
and the branches are, respectively, named small receptive field
network (SRF), medium receptive field network (MRF), and large
receptive field network (LRF). The input of the network was a
concatenation of 22 electrode signals that contain both temporal
and spatial information.

Three branches were fed, respectively, with 3D EEG proposed
in our previous work and small convolutional filters are adopted
in the light of VGG’s architecture. Forward and back propagation
is carried in different branches simultaneously and a soft-max
(Liu and Liu, 2017) activation is set in the end of each branch.
The final classification result is acquired by summing the branch
networks’ respective results and putting the summing result into
an additional soft-max activation.

Modification of Previous Network
In our previous study, it was discussed that different branches
focus on different temporal information. For the purpose of
recording each Grad-CAM result of all electrodes’ signals in
each branch and filtering them in each branch, the input needs

to be copied into three copies. In this circumstance, the first
shared convolution layer of the previous network was replaced
with three single convolution layers. To reduce the computation
cost enhanced by this modification, the number of the dense
layer’s nodes was reduced. The convolution layer’s parameters are
presented in Table 1.

Two-Stage Refine Training Evaluation
MI Classification Experiments
The 10-fold validation results of the multi-branch network in
the first stage and the second stage are presented in Table 2.
In this table, MB-I represents the first classification stage
and MB-II represents the second classification stage. MB-I
and MB-II are two stages of one system whose former stage
was fed with raw training data and the latter stage was fed
with filtered training data. The results of the two stages were
compared to determine whether the method can improve the
classification results.

Comparing the results of nine subjects between MB-I and
MB-II, it is obvious that all subjects with MB-II perform better

TABLE 1 | Three convolution layers’ parameters of three branches.

Conv layer SRF MRF MRF

Conv1 Size: 3 × 3 × 5 Size: 3 × 3 × 5 Size: 3 × 3 × 5

Strides: 2, 2, 4 Strides: 2, 2, 4 Strides: 2, 2, 4

Filters: 16 Filters: 16 Filters: 16

Conv2 Size: 2 × 2 × 1 Size: 2 × 2 × 3 Size: 2 × 2 × 5

Strides: 2, 2, 1 Strides: 2, 2, 2 Strides: 2, 2, 4

Filters: 32 Filters: 32 Filters: 32

Conv3 Size: 2 × 2 × 1 Size: 2 × 2 × 3 Size: 2 × 2 × 5

Strides: 2, 2, 1 Strides: 2, 2, 2 Strides: 2, 2, 4

Filters: 64 Filters: 64 Filters: 64

“Size” means the height, width, and depth of the 3D convolution window. “Strides”
means the strides of the convolution window along each dimension. “Filters” means
the number of output filters in each convolution layer.

TABLE 2 | Comparison of 10-fold cross-validation results training with raw data
and filtered data.

Subject MB-I MB-II

1 74.8125 75.3158

2 58.923 60.429

3 78.297 79.221

4 69.901 70.601

5 67.083 67.989

6 67.699 68.461

7 74.142 75.382

8 76.705 77.047

9 82.859 83.461

Mean 72.269 73.101

Standard deviation 7.156 6.937

p-value 1.3E-04 –

p-value means the significant difference of the cross-validation results carried by
the same network training with raw data and filtered data.
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than with MB-I on testing accuracy and the mean value of MB-
II is nearly 1% higher than MB-I with p-value < 0.01. The
standard deviation value of MB-I is 0.2% higher than MB-II,
which means the filtered data are more stable than raw data in
classification tasks.

Learning Process Visualization
To explore the difference of learning process between raw data
and filtered data, the data were trained for 30 epochs and the
testing losses (the Negative log-likelihood cost) and accuracies
of all subjects are monitored and recorded in Figure 6. The
testing data were random one-fold data of each subject. MB-
I represents the first classification stage and MB-II represents
the second classification stage. The green line represents the loss
in training process and the orange line represents the accuracy
in training process. The left axis of each subplot represents
the loss value of each subject and the right axis represents
the accuracy value.

It is obvious that the accuracy of MB-II is higher than MB-
I except for most subjects. For subject 4, the performances of
the network evaluated with filtered data are outstanding with
an accuracy of 4% higher than with raw data. Actually, the
results of subject 4 ranges widely in the 10-fold validation

process, which means that the MB-II did not always perform
much better in 10-fold validation results; however, the mean
accuracy of MB-II was higher than MB-I as is illustrated in
Table 2.

For subject 1, subject 6, and subject 8, the MB-II acquired a
lower testing accuracy and a higher testing loss than MB-I in early
epochs. However, in the end of the training process, the MB-II
performed better than MB-I, which means the filtering method is
useful for enhancing classification accuracy.

For subject 2 and subject 3, the accuracy of MB-I and MB-
II is nearly the same but the network evaluated with filtered
data acquired lower testing loss, which may benefit from filtering
several bad frequencies.

Comparison With the State-of-the-Art
Three state-of-the-art MI classification methods and our formal
classification method are compared with the method proposed in
this study. We firstly give a brief description of other methods
having been introduced in the Introduction section and then
analyze the kappa value (Lai et al., 2016; Wang et al., 2019)
of different methods, which is defined to evaluate classification
accuracy. Results of all methods are recorded in Table 3.
“MB-M” represents the modified multi-branch network used in

FIGURE 6 | Test loss and accuracy of nine subjects in thirty epochs.
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TABLE 3 | Comparison of the kappa value with the state-of-the-art methods.

Subject MB-M MB FBCSP Shallow ConvNet C2CM

1 0.698 0.699 0.68 0.820 0.833

2 0.523 0.459 0.42 0.432 0.537

3 0.787 0.788 0.75 0.835 0.87

4 0.629 0.594 0.48 0.621 0.556

5 0.669 0.647 0.40 0.490 0.5

6 0.622 0.538 0.27 0.380 0.273

7 0.642 0.653 0.77 0.898 0.861

8 0.746 0.702 0.76 0.758 0.778

9 0.825 0.713 0.61 0.657 0.727

Mean 0.682 0.644 0.571 0.655 0.659

Standard deviation 0.093 0.100 0.184 0.188 0.204

this study and “MB” represents the multi-branch network in
our previous study.

Filter Bank Common Spatial Pattern: FBCSP was proposed
in Ang et al. (2012) and is capable of autonomously selecting
the proper subject-specific frequency range for bandpass filtering.
The method performed best on the BCI Competition IV 2a
dataset in competition.

Shallow ConvNet (Schirrmeister et al., 2017): Inspired by
FBCSP, the network adopts bandpass and CSP spatial filters in
the first two layers so as to optimize all parameters jointly.

C2CM (Sakhavi et al., 2018): C2CM adopts the strategy of
breaking up 2D convolutions into two 1D convolutions and
filtering data with FBCSP. This method makes the network more
flexible for separating the information of time and space but
increases the computation parameters for an additional layer.

As is shown in Table 3, the kappa value of MB-M is higher
than MB for most subjects. For subject 6 and subject 9, the
kappa value of MB-M is nearly 1% higher than MB, which
reveals the advantage of the two-stage refine training method.
The MB-M also outperforms other state-of-the-art methods with
a higher mean value and a lower standard deviation value. For
subject 9, the kappa value of MB-M was much higher than other
methods, which means several vital bad frequencies were filtered
in the second stage.

DISCUSSION

The proposed two-stage refine filtering method, which is
inspired by Grad-CAM, was novel and proved to improve
the performance of the multi-branch network proposed in
our previous study. In the field of MI classification, correct
filtering suppresses the influence of noise and makes the feature
extracting process easier. Consequently, the MI classification
results are improved. According to the experiment results,
it can be inferred that the filtered training data are more
stable than the raw training data and the method is robust in
different subjects.

It is special for this method to improve the performance of a
network according to its mechanism. In other words, the method
improves the classification results according to the characteristics

of training data with little artificial intervention. In this case,
the filtering method could be commonly used in the majority
of deep learning-related tasks. To further evaluate the method,
the filtering method can be applied to different EEG-related
networks proposed by others. Moreover, the method should not
only be effective on MI classification since the filtering range is
selected according to the performance of the network. Similarly,
applying the method to other fields such as voice processing is an
advisable attempt.

It is also worth mentioning that this method is actually
an iterable process, which means we can filter the data after
the last training process according to the Grad-CAM of the
last classification results. However, multiple iterations may lead
to overfitting in the training process and thus influence the
correct MI classification. In this case, an appropriate amount of
frequencies to be filtered is needed and higher accuracy of MI
classification may be acquired in this way.

CONCLUSION

In this study, a two-stage refine filtering method was proposed
for MI classification inspired by Grad-CAM. The method was
applied to the multi-branch network and proved to improve the
performance of the network. This method is considered as a
universal method and promising in many other fields.
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