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With the arrival of the Internet of Things (IoT) and the challenges arising from Big
Data, neuromorphic chip concepts are seen as key solutions for coping with the
massive amount of unstructured data streams by moving the computation closer to
the sensors, the so-called “edge computing.” Augmenting these chips with emerging
memory technologies enables these edge devices with non-volatile and adaptive
properties which are desirable for low power and online learning operations. However,
an energy- and area-efficient realization of these systems requires disruptive hardware
changes. Memristor-based solutions for these concepts are in the focus of research and
industry due to their low-power and high-density online learning potential. Specifically,
the filamentary-type valence change mechanism (VCM memories) have shown to be
a promising candidate In consequence, physical models capturing a broad spectrum
of experimentally observed features such as the pronounced cycle-to-cycle (c2c) and
device-to-device (d2d) variability are required for accurate evaluation of the proposed
concepts. In this study, we present an in-depth experimental analysis of d2d and c2c
variability of filamentary-type bipolar switching HfO2/TiOx nano-sized crossbar devices
and match the experimentally observed variabilities to our physically motivated JART
VCM compact model. Based on this approach, we evaluate the concept of parallel
operation of devices as a synapse both experimentally and theoretically. These parallel
synapses form a synaptic array which is at the core of neuromorphic chips. We exploit
the c2c variability of these devices for stochastic online learning which has shown to
increase the effective bit precision of the devices. Finally, we demonstrate that stochastic
switching features for a pattern classification task that can be employed in an online
learning neural network.
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INTRODUCTION

In the past years, conventional computers have experienced an
enormous rise in computational power and now exceed the
human capabilities for tasks like mathematical calculations, or
even games like Go (Silver et al., 2016) and StarCraft II (Vinyals
et al., 2019). However, severe power consumption limitations
stand in the way of realizing complex tasks like navigation
and recognition in conventional hardware. Solutions for such
tasks are much faster and multiple orders of magnitude more
energy-efficiently accomplished by biological systems like the
human brain. With the rise and accompanying promises of
machine learning, humans are now trying to build systems that
can energy-efficiently solve the kind of problems that biological
systems are efficient at. These tasks have several common
attributes such as noisy inputs and ambiguous rules. While a
task like playing chess can be formalized in a way that allows
a computer to outperform based on brute force, i.e., by being
able to test millions of positions this is not true for complex
tasks, where the space of possible solutions explodes far earlier.
One approach toward enabling computers to cope with this
unconventional challenge is neuromorphic computing in which
physical phenomena are used as computational primitive and
where signals are represented in an analog form (Mead, 1990).
This approach might be facilitated by the use of new memristive
devices based on spin (Magnetic Random Access Memory—
MRAM) (Apalkov et al., 2016), phase change (Phase Change
Memory—PCM) (Wong et al., 2010) or redox reactions (Redox
based Resistive Random Access Memory—ReRAM) (Waser et al.,
2009). These memristive systems are usually structured in a
matrix-like fashion to realize neuromorphic computing systems
(Steinbuch, 1961, 1963; Ziegler et al., 2020). Here, ReRAM
devices offer several benefits: their low-power, dense integration
feasibility and rich device physics open up the opportunity for
online learning. A hybrid CMOS-ReRAM neuromorphic chip
can serve as an adaptive substrate, accelerating complex problem
solving while maintaining a low power budget. Employed at
the edge, these hybrid systems can be used as a first data
processing stage by gathering and then filtering raw sensor
outputs. These ideally autonomous edge systems will often
require online learning capabilities to adapt to their environment
and to mitigate aging effects of the single components. As these
systems will be severely power limited, efficient and finely tunable
synapses will be necessary. Since synapses are one of the most
important elements in neuromorphic computing systems, any
concrete implementation of synaptic elements using, for example,
emerging device technology will need to be evaluated with regard
to the synapses dynamic range (bounds of the synaptic efficacy)
and their grade of tunability (analog depth of the synaptic
efficacy) (Giulioni et al., 2009). The utilized filamentary-type
ReRAM devices rely on the movement of oxygen vacancies in
an insulating matrix for their resistance change. Based on this
physical mechanism two pathways have emerged to use them
as synapses. The first one is focused on the analog operation
of the devices. In this approach, incremental reconfiguration of
these mobile vacancies is the goal, leading to gradual resistance
changes in a limited conductance window (Prezioso et al., 2015;

Covi et al., 2016; Frascaroli et al., 2018). It has been shown,
however, that expanding this conductance window diminishes
the possibility for such incremental changes and more abrupt,
self-accelerating switching phenomena dominate (Fleck et al.,
2016; Cüppers et al., 2019). The second operation possibility
is based on using them as binary switches and exploiting their
stochastic switching behavior. Especially for the filamentary-type
valence change mechanism (VCM) devices this operation mode
must be seen under the aspect of device-to-device (d2d) and
cycle-to-cycle (c2c) variability. This is the focus of this work.

Several approaches have been exploited for synapse emulation
utilizing the stochastic nature of the resistance change in
ReRAM devices. From the literature, two main pathways are
identified, these are the single-device and the compound-device
architectures. On the side of single device architectures, extensive
studies exist on the variability phenomenon both for d2d and
c2c aspects (Jo et al., 2009; Suri et al., 2013; Yu et al., 2013a;
Naous et al., 2016; Wenger et al., 2019; Zahari et al., 2020). The
idea to incorporate multiple resistive devices into a synapse has
been introduced earlier (Gaba et al., 2013; Bill and Legenstein,
2014; Hu et al., 2014; Singha et al., 2014; Boybat et al., 2018,
2019; Payvand et al., 2018, 2019). All variants followed the
strategy to compensate for the short-comings of single devices
by forming compound synapses. Singha et al. (2014) concluded
that a synapse construction based on multiple parallel devices
does not yield a significant advantage over single analog switches,
but can be chosen as an alternative pathway when other tradeoffs
emerge. However, while extracting the typical switching voltage
stochasticity from c2c, their work doesn’t consider the aspect
of d2d variability, which should yield a significantly different
result for a single, analog device synapse compared to the multi-
device approach (Singha et al., 2014). Boybat et al. employed
parallel PCM devices as analog synapses for three different neural
network tasks. They conducted a very detailed study of variability
between individual devices and the switching stochasticity over
multiple cycles. However, the main goal of their work was to
stabilize analog conductance changes in the synapse’s update
under application of repeated current pulses (Boybat et al., 2018).

Common for previous works published on the subject of
stochastic switching of ReRAM devices in neural networks is
the utilization of behavioral models. These lead to voltage-
dependent switching probability models such as the Poisson
distribution (Jo et al., 2009; Gaba et al., 2013; Naous et al., 2016;
Payvand et al., 2018; Zahari et al., 2020), sigmoidal distribution
(Wenger et al., 2019), Gaussian distribution (Yu et al., 2013b)
and lognormal distribution (Medeiros-Ribeiro et al., 2011; Hu
et al., 2014), and even linear dependence (Singha et al., 2014).
By definition, these models only capture the minimal required
behavioral aspects and possess little to no predictive character
for any setup modification. However, with the aim to correlate
the single ReRAM device behavior with the neuromorphic circuit
behavior, it is imperative to use more detailed compact models
that are able to capture the full dynamical spectrum of the
employed device type.

In this work, we follow this comprehensive approach.
Therefore, we combine detailed experimental characterization of
d2d and c2c variability of stochastically switching HfO2/TiOx
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nano-sized VCM devices with a physically motivated compact
model. The latter describes a broad spectrum of switching
behavior as well as the variability phenomena that are observed
in experiment. Going further, the parallel operation of multiple
devices in the proposed synaptic building block is experimentally
demonstrated and the physical origin underlying the benefit
of increasing the number of devices is revealed. Through
a theoretical analysis the influence of various variability
components on the synapse behavior is disentangled and
evaluation criteria for a favorable synapse behavior are developed.

We then demonstrate that network performance issues,
caused by the use of devices under the impact of d2d and
c2c variability can be resolved by employing the multi-device
synapses. A spiking neural network (SNN) for the classification
of overlapping patterns served as a benchmark in this regard.
Its resilience toward pattern overlap and noisy input signals is
demonstrated. The algorithm employed for training this network,
a technologically plausible adaptation of the Delta rule, uses
stochastic rounding (Hopkins et al., 2020) as a means to improve
the network’s performance. To improve the network’s behavior a
novel hyperparameter tuning algorithm is established which can
deal with the device variability.

In the following section, we describe the used materials and
experimental methods as well as the simulation model and the
network we used. The subsequent results’ section is split into four
parts. The first part focuses on the statistical device variability
characterization and the modeling of the SET process on the 1 µs
timescale which is the timescale of the considered application.
The second part verifies that the employed model captures the
device switching dynamics over multiple orders of magnitude in
switching time, including the c2c behavior. The third part shows
our findings on the basic synaptic building block of the neural
network that is formed by a parallel connection of ReRAM cells.
The fourth part shows the performance of the SNN utilizing
stochastic gradient descent for very noisy pattern detection.
Following this, we discuss our results and finalize with proposing
future strategies for the optimization of the SNN.

MATERIALS AND METHODS

Pt/HfO2/TiOx/Ti Nano-Crossbar Devices
In this study, nano-sized Pt/HfO2/TiOx/Ti crossbar devices with
lateral dimensions of 100 nm by 100 nm were used. First, the
25 nm thick sputtered Pt bottom electrode (BE) is patterned
by electron beam lithography on top of a 5 nm Ta adhesive
layer, a 10 nm SiO2 insulating layer and a Si substrate. The
BE is then structured by back-etching using Reactive Ion Beam
Etching (RIBE). Subsequently, the 3 nm HfO2 and the 3 nm
TiOx layers are deposited via plasma-enhanced atomic layer
deposition (ALD) and thermal ALD, respectively. The 10 nm Ti
top electrode (TE) metal and a 20 nm Pt protective layer are
deposited by electron beam evaporation. The second electron
beam lithography defines the structure of the TE. The protective
Pt layer, the Ti TE and the oxide layers are finally back-etched via
a RIBE process. Details about the fabrication process are given in
(Hardtdegen et al., 2018).

Our previous studies employed this system for a description
of enhanced switching performance by insertion of intentionally
grown TiOx at the HfO2/Ti interface (Hardtdegen et al., 2018),
the underlying physical mechanism of gradual and abrupt
switching (Cüppers et al., 2019), and the switching variability
phenomenon inherent to all filamentary VCM-type switches
(Bengel et al., 2020). It has been shown, that the described stack
can be utilized for all typical memristor measurement techniques.
Hence, this study also employs the same stack as a test vehicle for
the proposed neuromorphic functionality.

Electrical Measurements
Before showing typical resistive switching an electroforming step
of the as-prepared devices has to be performed. It is carried
out by applying a negative polarity voltage sweep with an
Agilent B1500A semiconductor analyzer with a measurement-
sided current compliance of 50 µA and a sweep rate of 0.66 V/s.
The electroforming voltage of the devices is at (-2.7 ± 0.1) V,
applied to the active electrode (AE). The device switching
performance is assured by measuring 30 consecutive voltage
sweeps at a low sweep rate of 0.67 V/s. Typically, a high device
yield of more than 90% is achieved by this method.

Individually Contacted Devices
In this study, the ReRAM devices were operated in two different
ways. Employed as single devices, they were contacted by two
probe needles, which were placed close to the device under
test to minimize parasitic effects caused by series resistances
and capacitances.

For the SET pulse measurements on single devices over
multiple orders of magnitude in switching time, a custom-built
pulse measurement setup comprising an Agilent B1110A pulse-
/pattern generator and a Tektronix TDS6804B digital storage
oscilloscope is used. For the exact measurement setup, the reader
is referred to Marchewka et al. (2016). Furthermore, a Keithley
4200 SCS semiconductor analyzer was employed for the transient
voltage-current measurements. For single device measurements
that only required read-pulse-read operation, an ArC ONE
platform of ArC Instruments Ltd. was employed.

Probe Card Arrangement
The second contacting scheme exploited the device arrangement
consisting of arrays of 32 × 1 devices connected in parallel.
Specifically, the bottom electrodes of these devices are connected
and a common ground contact is added on one side of this 32× 1
line array. The devices are hence contacted individually on their
respective 32 top electrodes with a line probe card, while a 33rd
probe is placed on the ground contact. This allows for parallel
signal application.

In this context, the capability of the ArC ONE of routing the
signals to multiple electrodes simultaneously (termed MultiBias
module by the manufacturer) is used in this study.

JART VCM v1b Model Including
Variability
For the simulations the Jülich Aachen Resistive Switching Tools
(JART) VCM v1b variability model is used (Cüppers et al., 2019;
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Bengel et al., 2020; Juelich Aachen Resistive Switching Tools
[JART], 2019). It is a SPICE level, physics-based compact model
describing filamentary bipolar resistive switching devices based
on the valence change mechanism (VCM)-type Redox-based
Resistive Random Access Memory (ReRAM). The model relates
the observed resistive switching behavior to the motion of ionic
defects leading to a modulation of the concentration Ndisc close
to the AE. A high concentration represents a low resistive
state, whereas a decreased concentration leads to an increased
resistance. The equivalent circuit diagram of the model is shown
in Figure 1A.

The deterministic model parameters are listed in Table 1.
In our previous work (Bengel et al., 2020), d2d and c2c

variability were realized by drawing a random set of parameters
from a truncated Gaussian distribution (seed parameters) for
d2d variability and then changing those parameters, throughout
the simulation, around that seed parameter to produce
c2c variability. The truncation of the Gaussian distribution
determines the maximum deviation of the parameters around
its mean value and was the same for the initialization as well
as for the variation throughout the simulation. The variability
parameters were chosen as the minimum and maximum oxygen
vacancy concentration in the disc Ndisc,min and Ndisc,max, as well

TABLE 1 | Simulation parameters (for the explanation of the symbols see Bengel
et al., 2020).

Symbol Value Symbol Value

lcell 3 nm A* 6.01·105 A/(m2K2)

ldisc 0.25 nm eΦBn0 0.18 eV

rfil 30 nm eΦn 0.1 eV

zvo 2 µn 4·10−6 m2/(Vs)

a 0.25 nm Nplug 20·1026 m−3

ν0 2·1011 Hz Ndisc, max 0.25·1026 m−3

1WA 1.6 eV Ndisc, min 0.2·1023 m−3

ε 17·ε0 Rseries 1,300 �

ε8B 5.5·ε0 Rth, eff, SET 4·107 K/W

T0 293 K Rth, eff, RESET 14·106 K/W

as the radius of the switching filament rfil and the length of the
disc region ldisc. The choice of parameters was motivated based
on the experimental findings of Baeumer et al. (2017), where it
was shown that the filament could form at different positions in
the cell, which lead to variability in the LRS and HRS. Compact
modeling aims to provide a tool for the design of circuits as
well as bridging the gap between device-level technology and
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FIGURE 1 | (A) Shows the equivalent circuit diagram of the JART VCM v1b model used to describe a Pt/HfO2/TiOx/Pt (HOTO) device. The exact stack properties
can be found in Hardtdegen et al. (2018). (B) Schematically shows the modification made to the variability model exemplary for the variability model parameter rvar.
For each device, a seed parameter is drawn from the d2d range. Around this seed parameter, the cell can change its variability parameters by the smaller c2c range.
(C–E) Show the effect of different amounts of the c2c variability on the SET probability behavior for three cells. For (C), the c2c percentage was 5%, for (D) it was
15%, and for (E) it was 25%. (F–H) Show the effect of different amounts of d2d variability. This was achieved by decreasing the d2d range and the variation
coefficient for (F). For (G) the values from Table 2 were chosen and for (H) the d2d range was increased. The changes are conceptually shown by the small PDFs
given on top of diagram (C–H).
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circuit design. Therefore, if a certain application is considered, the
compact model must adequately model the device behavior under
the conditions of the specific experiment. For this paper, the
relevant experiment is the measurement of the SET probabilities
at different applied voltages starting from a specific range of
HRS. Due to the large cycling variability and the large spread
between different devices observed in our experiment, we decided
to modify how we use the variability model by splitting the ranges
for d2d and c2c variability (see Figure 1B). In the new version, a
cell is initialized by drawing the seed variability parameters from
a truncated Gaussian distribution. The c2c variability is achieved
by changing those parameters during the simulation. However,
the range in which these parameters can change during cycling
is limited independently from the range of the d2d variability
through a fixed percentage around the seed value. This enables
us to tune d2d and c2c variability independently to fit the model
parameters to the measurements. The new implementation,
therefore, uses three different parameters to modify the different
variability of the model. The relative standard variation which
determines the width of the truncated Gaussian distribution is
used to initialize the devices. This quantity influences mostly
the d2d variability since it determines whether the parameters
will be initialized closer or further away from the median value
on average. The c2c variability is controlled by two parameters
namely the c2c percentage and the maximum step size. The c2c
percentage determines the range around the drawn set of seed
parameters for each device in which the parameters can change
through repeated switching. On the other hand, the maximum
step size determines by how much variability parameters can
maximally change between two subsequent switching cycles.
The influence of these different parameters can be observed in
Figures 1C–H. C, D and E show the effect of different amounts of
c2c variability on the SET probabilities while F, G, and H show the
effect of different amounts of d2d variability. It can be observed
that increasing the c2c variability makes the behavior of single
devices more stochastic. This implies that increasing voltages do
not always result in an increase of SET probability but might
also decrease it. Increasing the d2d variability spreads the SET
probability curves across a larger voltage range.

The parameters related to the variability are given in
Table 2. They were kept constant throughout the whole
results chapter showing the high degree of consistency between
model and experiment.

Network Fundamentals
To highlight the power of exploiting device stochasticity, we
employ our device model in a binary classification problem with

TABLE 2 | Simulation Parameters (for the explanation of the symbols see Bengel
et al., 2020).

Symbol Min/Median/Max Symbol Value

Nmin, var [1023 m−3] 0.1/0.2/0.3 Relative standard deviation 1

Nmax, var [1026 m−3] 0.05/0.25/20 c2c percentage 15%

rvar [nm] 25/30/35 Maximum stepsize 10%

lvar [nm] 0.175/0.25/0.35 – –

overlapping features. We systematically assess the classification
accuracy by raising the complexity of the problem through
increasing the overlap, i.e., the mutual information between the
patterns. The parameters of the variability model are drawn to
initialize the required number of devices, which depends on
the number of ReRAM per synapse. The devices are usually
initialized with a resistive state that roughly lies between the LRS
and HRS. The investigated neural network consists of 22 synapses
connected to an integrate-and-fire type output neuron. The
synapses each consist of one or multiple ReRAM cells connected
in parallel. The studied range is between 1 and 24 cells per synapse
and is realized by our VCM ReRAM model (JART VCM v1b). The
network structure is shown in Figure 2.

Pattern Generation
We have synthesized the patterns to have control over the
complexity and to study the network accuracy as a function
of the problem complexity. To generate the patterns half
of the synapses are picked randomly and stimulated with a
Poisson distributed spike train. The rest of the synapses are
not stimulated. We call this pattern+. To generate pattern-, we
define an overlapping parameter M, which is the number of
common features or amount of mutual information. M number
of synapses from pattern+ are then selected randomly as the
common feature of pattern-. The rest of the features of pattern-
is chosen randomly from the remaining synapses that are not
included in pattern+. The synapses making up pattern- are also
stimulated via a Poisson distributed spike train. As an additional
level of complexity, we also introduce noise in the patterns by
randomly flipping a specified number of features in pattern+ and
pattern-. Seven noisy test patterns are generated for pattern+
and seven for pattern-. These training patterns will be used
during the inference phase for the evaluation of the network’s
performance. A few exemplary patterns are shown as raster
plots in Figure 3. Figures 3A,B show one exemplary pattern+
and pattern-, respectively, with an overlap of seven. The seven
overlapping patterns are marked as red vertical symbols, while
the red horizontal lines represent the non-overlapping patterns.
C and D show two patterns+ in which two synapses have been
flipped each. The flipped patterns are marked as orange vertical
symbols, while the non-flipped patterns are marked as black
horizontal symbols.

Training Procedure
To train the network, we utilize a technologically plausible
training algorithm, namely a stochastic Delta rule algorithm,
which is the simplest form of gradient descent for single-
layer networks (Payvand et al., 2020). The Delta rule can be
formulated as

1wi = λ · (ŷ− y) · xi, (1)

where 1wi denotes the amount the weights that have to change
in the network, λ is the learning rate which can be used to scale
the amount of weight change per update, ŷ is the target, y is the
neuron output activity and xi selects the synapses to which the
current pattern is applied. For our binary classification problem,
the target for pattern+ and pattern- are the maximum and

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 661856

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-661856 June 1, 2021 Time: 18:47 # 6

Bengel et al. ReRAM Stochasticity for Pattern Classification

Vin,1 [V] ...

Vin,22 [V] ...
...

{

{

Synapse 1

Synapse 22

∫

Isyn,1

Integrate-and-Fire Neuron

......

......

t [s]

t [s]

{
10 Hz Poisson Spikes

Vout,1 [V]

Vout,2 [V]

High frequency response
for pattern+

Low frequency response
for pattern-

t [s]

t [s]

Isyn,22

FIGURE 2 | The neural network consists of 22 synapses connected to an integrate-and-fire type output neuron. The synapses consist of multiple VCM ReRAM
devices connected in parallel. The studied range is between 1 and 24 cells per synapse. It is trained to react to a pattern+ (which is presented to 11 of its synapses)
with a high number of spikes and to a pattern- (which is also presented to 11 of its synapses) with a low number of spikes.

minimum firing rate of the neuron FRMAX and 0, respectively.
Therefore, the update rule becomes

1wi = λ
FRMAX · label− FR

FRMAX
. xi, (2)

where label is 1 when pattern+ is applied and 0 if pattern- is
applied. FR is the firing rate of the neuron in response to the
applied pattern. This training rule is formalized in Algorithm 1.

Algorithm 1: Delta Rule implementation with stochastic synapses.

1: wi = rand () ;

2: while Test Accuracy < 100% or # epochs < 11 do

3: apply labeled train pattern

4: calculate FR

5: 1wi = λ · FRMAX · label−FR
FRMAX · xi

6: if label =0 then

7: if epoch = 1 then

8: Vtrain, i = VRESET, nominal · xi

9: else

10: Vtrain, i = round
(
VRESET, nominal · |1wi |

)
11: end if

12: else

13: if epoch = 1 then

14: Vtrain, i = VSET, nominal · xi

15: else

16: Vtrain, i = round
(
VSET, nominal · |1wi |

)
17: end if

18: end if

19: apply Vtrain, i

20: end while

To assess the untrained accuracy all training patterns are
presented to the network. At this stage, the accuracy of the
network is 50% in most cases, which is the accuracy of guessing

randomly. This first step is done to show that the network is
trained during the next steps and starts from a bad accuracy. The
simulations are performed in the following fashion. The synapses
are simulated using Cadence Spectre, and the current 6 Isyn (see
Figure 2) accumulated at the output node is saved. This output
current is then fed into an integrate-and-fire neuron model
realized in MATLAB which samples the current at 1 ms intervals.
The current is summed up until the neuron threshold ITH is
reached and the integrated current is reset to zero. Each instant
of time at which the neuron threshold is reached is counted as a
spike of the neuron. The total number of spikes produced for 1 s
is then compared with the decision threshold FRMAX/2. If the
number of spikes is larger the pattern is interpreted as pattern+
and if it is smaller it is interpreted as pattern-.

After the initial evaluation, the network is repeatedly trained
and tested for 10 epochs. During the training, a noisy training
pattern is applied to the specified synapses and the number of
spikes FR is counted. This number is then compared with the
target number for the current pattern which is either FRMAX
for pattern+ or 0 for pattern-. The difference between the real
and wanted number of spikes is scaled by FRMAX, multiplied
with the learning rate λ which is set to a value of 1.2 in our case,
and multiplied with a vector that corresponds to the assignment
of synapses of the current training pattern. This relationship is
described by Eq. (2). It represents the desired weight change
for all the synapses that just received a pattern. In this way,
the following programming pulse will be weaker if the neuron’s
response is close to the ideal response (0 or FRMAX) so as not
to disturb the achieved weights too much, and stronger if the
neuron’s response to the current pattern is far away from the
ideal response. After the calculation of the distance between the
ideal and the actual neuron response, the programming pulses are
applied to the synapses that also received the training signals. The
nominal SET (-0.8 V) and RESET (1.3 V) voltages are scaled by
1wi and rounded to the closest 100 mV increment. This scaling
of the voltages modulates the switching probability of the ReRAM
cells in the synapse. As the probability of switching is increased
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FIGURE 3 | Exemplary raster plots showing the Poisson distributed spike
trains which are applied to the different synapses for 1 s. (A,B) Show an
exemplary pattern+ and pattern–, respectively, with an overlap of seven
between the patterns. The overlapping synapses (1, 5, 8, 12, 15, 18, 22) are
marked as red vertical symbols. (C,D) Show two noisy pattern+ examples.
Based on the ideal pattern (not shown) two synapses were flipped (11 and 18
in C and 5 and 6 in D). The flipped synapses are marked as orange vertical
symbols.

if the network’s error is higher and decreased if it is lower, this
represents a technologically plausible stop learning mechanism.
Additionally, this can be seen as a form of randomized or
stochastic rounding (Muller and Indiveri, 2015) similar to the
one implemented in Payvand et al. (2018). In previous works,

stochastic rounding has been found to improve neural networks,
enabling to reduce the bit size of the weights (Gupta et al., 2015)
or enabling to reduce the input bit size (Gokmen et al., 2018)
while keeping the accuracy constant (Gokmen et al., 2018). The
scaled programming voltages are applied for 1 µs, leading to a
SET/RESET of the ReRAM cells of the respective synapses. This
training procedure is performed for three pattern+ and three
pattern- in a random succession for each epoch. After these six
training rounds, the network’s performance is tested on seven test
patterns for pattern+ and pattern-. This procedure is repeated
until the accuracy on the test pattern set reaches 100% or until
10 epochs are reached.

RESULTS

Device-to-Device Variability
Characterization on 1 µs Timescale
As mentioned in section “Materials and Methods,” filamentary-
type VCM devices integrated into crossbar structures as shown
in the scanning electron microscope (SEM) image in Figure 4A
exhibit significant d2d and c2c variability. This results in non-
uniform current responses to identical voltage sequences. An
example is illustrated in Figure 4B. Here, four exemplary current
transients resulting from identical voltage stress are shown. The
shown SET attempts were recorded on the same device in direct
succession, with only a RESET to the HRS before the next
SET attempt. Before the SET pulse is applied, a read signal of
-0.2 V is applied to the device, confirming the HRS of the
device. The following SET voltage pulse with a duration of
1 µs and an amplitude of -0.88 V causes a variable current
response of the device. In the case of Try 1, the current
remains at a low level for the pulse duration, exhibiting
no significant increase. The subsequent read signal confirms
that the device has not undergone a significant change in
resistance as the current is still low. In comparison, Tries
2, 3, and 4 show an abrupt increase in absolute current
during the voltage stress. As typical for filamentary VCM type
devices, this transition does not occur at a deterministic time
but is highly variable (tdelay, Try 4 > tdelay, Try 2 > tdelay, Try 3).
Furthermore, the current at the end of the pulse is not
identical for the tries with an abrupt increase but also suffers
from variability. The subsequent read signal current levels
reflect the currents at the end of the SET pulse, where
| Iend, Try 2|> | Iend, T ry 4| > | Iend, Try 3|. This phenomenon is
associated with the variability of the LRS and will be discussed
later. Figure 4B highlights the principle of the SET probability,
which would be 3 successful SET events divided by 4 attempted
tries, resulting in a SET probability of 75% at the given voltage-
time combination in this small scale example. Of course, a
higher number of events is required for obtaining statistically
significant ensembles.

Therefore, 15 individually contacted devices like the one
shown in Figure 4A were tested experimentally for their SET
probability traces. In this specific context, a SET probability
trace is the probability-voltage relation that shows the required
voltage range for a device to traverse from zero percent switching
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FIGURE 4 | SET switching variability for 1 µs voltage stress time. (A) SEM picture of a single nano crossbar structure. Zoom-in to the device crossbar. (B) Shows a
typical SET voltage stress sequence in the upper panel. A read pulse for verification of the HRS is followed by the voltage stress pulse. The resulting resistance state
is detected by another read pulse. In the lower panel, possible current responses are shown in logarithmic scale. The SET transitions are indicated by the arrows.
(C) Comparison of the read currents for HRS and LRS for simulation (blue lines) and experiment (red bars) by their respective probability density functions (PDF).
(D) Statistics of the d2d variability for experiment and simulation.

probability to 100% switching probability. The switching
probability is determined analogously to the small scale example
above. After the voltage stress, the resistance is determined. If it
is lower than 20 k�, the device has undergone the SET process
and the try is counted as successful. If the resistance is still above
20 k�, the try is counted as unsuccessful. The SET probability
is then given as the fraction of successful events over the total
amount of tries.

In this study, voltage stresses of 1 µs duration were
employed. The chosen voltage range of -0.6 to -1.1 V with
increments of -20 mV ensures that the entire trace is recorded
with a sufficient resolution of the voltage range, where non-
deterministic switching occurs, i.e., where the SET probability lies
between 0 and 100%. At every voltage step, 50 tries are performed.
This amount is a compromise between measurement speed and
statistical significance. Hence, each given probability value has to
be seen with an inaccuracy of at least 2%. Each try is proceeded
by a forced SET, a RESET, and another SET using a sweep signal.
The resistance state before the voltage stress is subsequently
precisely programmed to be in the range of 200 and 350 k�
before the SET try, which corresponds to read currents between
-0.57 and -1 µA. The read currents immediately before pulse
application are depicted as red histograms in Figure 4C (low
current peak). The distribution lies well within the defined
limits described above. Minor deviations at the lower and upper
boundary are noticeable. This behavior has been studied before
(Fantini et al., 2015; Wiefels et al., 2020) and can be explained by
ionic noise that is typically present in filamentary VCM systems.

Figure 4D depicts both the measured and simulated SET
traces of the described experiment. For better readability of the
comparison, the gathered device traces are analyzed statistically

in the following manner: The median trace value, as well as 5, 25,
75, and 90% percentiles at every tested voltage, are given. In this
context, the term “edge cases” refers to the SET probability traces
at the lower and upper voltage extreme. For the experimental
dataset, the 5 and 95% essentially reflect the edge cases because
of the limited device count. Therefore, the relative uncertainty
in these percentiles is relatively large. For the simulation dataset,
the actual edge cases may be located at slightly lower or higher
voltages than the 5 and 95% lines, respectively. Here, the relative
uncertainty is reduced because of the higher device number.
While the agreement between simulation and experiment of
the median and the 25 and 75% cases is nearly flawless, the
compact model exhibits a slight mismatch for the 5 and 95%
lines. However, this deviation is minor. The percentile lines
are, however, an important characteristic for comparison to the
simulation dataset. Overall, the experimental data shows the
expected behavior of combined c2c and d2d variability. Following
the median trace highlights the c2c aspect. It traverses from
zero SET probability at low voltages to deterministic switching,
i.e., a SET probability of 100%, at high voltages. The regime
of non-deterministic switching has a width of around 160 mV.
For the voltages in this range, the c2c variability leads to a
mixture of successful and unsuccessful events. The percentile
marks are indicative of the d2d spread of the devices. While the
median trace of the experimental datasets shows the beginning
of the non-deterministic regime at 0.80 V and the end at 0.96 V,
the 25% trace is shifted to lower voltages of 0.70 and 0.86 V,
respectively. The opposite trend is observed for the 75% trace
which shows a range between 0.86 and 1.04 V. The range
between these two traces, the interquartile range, is therefore
almost perfectly constant at 160 mV for all voltages. The same
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observation can be made with the 5 and 95% traces. Here,
a range of 280 mV is covered. These numbers are important
measures for comparison to the simulation, but also comparison
to other devices and device types. In cases where the SET
event was successful, i.e., the resistance was below 20 k�, the
resistance is noted. The red histogram at the higher current level
in Figure 4C summarizes the read currents of the measured
low resistance states. A significant spread from 10 µA up to
300 µA is visible. This spread further signifies the presence
of variability in our devices. Three important points must be
mentioned in this context: First, the displayed histogram is
gathered from 15 different devices. Closer analysis reveals, that
each device itself has a less significant spread. Hence, the d2d
aspect of this measurement has to be taken into account. On
top of that is the second point: The shown data summarizes
both the d2d and the c2c variability of the devices. The third
point is that in this measurement, low resistive states that result
from SET pulses with varying amplitude are shown. In our
previous work (Cüppers et al., 2019), we have demonstrated
the impact of stronger voltages on the resistance state after the
SET process. Therefore, voltage stresses that are barely enough
to switch the device will lead to higher resistances than voltage
stresses that switch the device with high certainty. Because
of these three aspects, the spread of the low resistive state
is not unexpected.

The simulation for this experiment was carried out with the
model parameters described in section “Materials and Methods.”
Two hundred fifty device seed parameters were drawn in the
described way. Each drawn device is tested in the same way
as described above for the experimental devices. Hence, the
distributions of the HRS prior to the voltage stress and the LRS
in cases where switching took place can be compared. Clearly,
visible in Figure 4C is the nearly perfect agreement of the HRS
distributions before the SET try. The comparison of the LRS
values is more complicated. As visible from the comparison of
distributions in Figure 4C, the simulation lacks parts of the
distribution both at the lower current end and the higher current
end. This difference is caused by two different phenomena.
The lower current end divergence is caused by the imperfect
description of the switching transition time by the model. As
discussed in our previous work (Cüppers et al., 2019), the SET
transition can be abruptly interrupted if the switching pulse is
ended, but the device has not fully undergone the SET process.
In the present model, the transition speed is higher than the
experimental one, thus causing mainly full switching events.
Therefore, the lower current end is not simulated as often as
in the experiment. The higher current end divergence is due
to the experimentally observed effect, that a stronger voltage
leads to a higher read current, even after the switching event is
completed. The employed simulation model cannot fully describe
this relation, since in these simulations the defined maximum
oxygen vacancy concentration is reached when the SET event
takes place. In total, the switching model still describes the
experimental data very accurately. The missing effects will be
addressed in our future work.

As stated above, a much higher number of devices is simulated
compared to the experimentally measured dataset. For the

evaluation, the same approach as for the experimental dataset is
chosen, and the median at each voltage as well as the 5, 25, 75, and
95% are calculated. The results are presented in Figure 4D. The
good agreement for the median SET probability trace is visible.
Moreover, all percentile traces are also well met, with only very
minor deviations at the 5 and 95% traces.

In conclusion, the simulation of SET events on the 1 µs
timescale reveals the high degree of agreement between
measurement and simulation. All statistical values, including
current levels and switching voltage, are well met. Slight
deviations are caused by the inherent variability of both
measurement and simulation on one hand and by minor effects
not accounted for in the model on the other hand.

Cycle-to-Cycle Switching Stochasticity
Over Multiple Orders of Magnitude in
Switching Time
To verify our simulation model beyond the correct c2c and d2d
description on the 1 µs time scale, we test its predictive capability
for a different experiment. A crucial prerequisite for a model is
to correctly display the switching dynamics over multiple orders
of magnitude in switching time (Menzel et al., 2011; Fleck et al.,
2016; Cüppers et al., 2019; Bengel et al., 2020).

For this purpose, a single device was experimentally tested
and the results were compared to the simulation. The chosen
device follows the median trace of the 1 µs experiment very
closely and is therefore considered as a good example. In this
experiment, the device is switched by voltage pulses that vary
over multiple orders of magnitude in pulse duration and voltage
stress. The device preparation procedure for SET probability
testing is identical to the one described in section “Device-to-
Device Variability Characterization on 1 µs Timescale.” However,
in this experiment, the device is stressed with a voltage pulse of
variable duration (100 ms down to 100 ns) and amplitude (-400 to
-925 mV in -25 mV decrements). The test procedure is repeated
25 times at each combination of pulse width and pulse amplitude.

Figure 5 displays the experimental SET probabilities at each
combination as a solid line. Noticeably, the onset of the SET
probability curve shifts to lower voltages when increasing the
pulse duration. This phenomenon has been studied before and
reflects the typical SET switching kinetics (Fleck et al., 2016;
Witzleben et al., 2017; Nishi et al., 2018; Cüppers et al., 2019;
Bengel et al., 2020; Böttger et al., 2020). However, the voltage
range, where the probability is neither 0 nor 100%, remains
roughly constant at around 160 mV, with some deviations caused
by the limited number of tries.

To reproduce this behavior over multiple orders of magnitude
in switching time, a simulation identical to the described
experiment was conducted by choosing a device seed parameter
that follows the simulated median trace of the previously
described 1 µs experiment. However, for this median-like
simulation device, the pulse duration dependent SET probability
traces are recorded not only once, but 50 times. Figure 5 contains
the results of this simulation. Here, the dashed lines represent
the SET probability at each combination of pulse duration and
voltage stress, calculated from the 1,250 tries attempted at this
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FIGURE 5 | (A) Shows the seed parameters of the simulated device.
(B) Shows the SET probability as a function of the pulse amplitude for different
pulse widths. An experimental and a simulation device, which are both close
to the median on the 1 µs timescale, are compared. Both voltage window and
voltage onset in dependence of pulse duration are correctly described,
verifying the predictive character of the compact model. The envelope areas
quantify the maximum possible voltage shifts resulting from insufficient
repetitions at a given voltage.

combination. At the same time, the colored areas outline the
range that is covered by each subset of 25 tries per combination.
This method was chosen to highlight the fact, that a SET
probability trace for the same device can show a shift of the
voltages when recorded twice. The true SET probability trace
is revealed by repeating the same pulse conditions a significant
amount of times. In our experiment, 25 attempts already yielded
stable results, but with each additional try, the accuracy of the
SET probability trace can be increased.

In Figure 5, only every second pulse duration is shown
for better readability. However, the not shown pulse durations
follow the same trend of onset voltage and show the same
width of the traces.

By comparing the experimental results to the simulation, it is
directly visible that the median simulated curves closely follow
the experimental ones apart from some minor deviations likely
caused by the limited number of tries in the experiment. The
key characteristic, namely the voltage range of non-deterministic
switching, is met reasonably well.

The good agreement between measurement and simulation
validates the JART VCM v1b switching model for this kind of
experiment. The predictive character, namely that the compact
model can describe the switching dynamics precisely on the 1 µs
scale as well as for multiple orders of magnitude in pulse time,

has been demonstrated. Therefore, we employ this model in the
following sections for our pattern classification network.

Experimental Demonstration of Parallel
Operation
In this section, we describe the implementation of the proposed
parallel synapse model from a theoretical standpoint and
experimentally demonstrate the operation. Several devices are
connected in parallel and are biased with identical voltage stresses
of 1 µs duration.

For the proposed probabilistic update, it is desired to apply a
voltage pulse of a given amplitude and get the probabilistic bitline
current response as the outcome, like it is described in section
“Network Fundamentals.” Therefore, different current response
levels have to be accessible with some probability. By increasing
(reducing) the voltage stress, the probability of getting a higher
(lower) current response should increase. In the following, we
will explain how ReRAM device variability affects the collective
synapse behavior by using our compact model to simulate the
different exemplary cases.

Device Requirements for Favorable Synapse
Behavior
For our proposed synapse implementation, it is required for the
synapse to be able to adopt intermediate current levels between
the two extreme cases of all devices in HRS and all devices in LRS.
If all devices were to show identical, deterministic behavior, no
intermediate current levels can be achieved, and the accumulated
synapse current will either be low or high for low and high voltage
signals, respectively. This undesirable or even worst-case scenario
is illustrated in Figures 6A,B, where A shows the SET probability
traces of three devices with identical seed parameters and no c2c
variability, while B shows the probability for normalized bitline
current levels at each voltage. As can be expected the synapse
will only show two achievable current levels since the LRS and
HRS values are the same for all three devices which switch in a
deterministic fashion at a specific voltage.

The addition of d2d variability leads to a significant change in
the synapse behavior. Figures 6C,D show three devices without
c2c variability but with significant d2d variability. Different
voltage onsets yield (n+ 1) separable bitline current levels, with
n being the number of devices per synapse. Each of the levels
has exactly 100% probability in a distinct voltage interval as the
devices still show deterministic switching at a voltage specific to
each device. The simulation was performed by modifying the seed
parameters to achieve a device switching at a low, a moderately
high and a high voltage. The device switching at a low (high)
voltage is realized by choosing a small (large) filament radius
(rvar), a small (large) disc length (lvar) and a high (low) initial
oxygen vacancy concentration in the disc (Ndisc, init).

Adding c2c variability to situation A, instead of d2d
variability leads to the behavior observed in Figures 6E,F. The
devices shown here have the same parameter seed. Throughout
the simulation, their parameters were varied to achieve c2c
variability. At each voltage 50 tries were performed for each
device. We would like to note here that this limited number of
repetitions at each voltage is the reason for the three different
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SET probability traces. Increasing the number of repetitions
will make the traces comparable and even identical for an
infinite number of repetitions. Since we can only simulate
a limited number of cycles, the SET probability traces are
different. In Figure 6F, the resulting bitline current range
probabilities form a voltage window. In this voltage window,
the intermediate bitline current ranges can be addressed with a
single voltage pulse. However, the voltage window has a width
of only around 200 mV although the total range of applied
voltages is 600 mV.

The previous cases are, however, theoretical cases since
filamentary switching VCM type devices exhibit significant d2d
and c2c variability as a consequence of the underlying physical
mechanism as well as tolerances in device fabrication. This makes
it virtually impossible to eliminate variability. By combining
d2d and c2c variability, we arrive at the most realistic case
shown in Figures 6G,H. Compared to the previous case, the
voltage window is significantly wider (around 400 mV), which
is caused by the early onset voltage of device D1 and the late
onset of D3. In this specific case, it would be sufficient to
employ voltage levels with a spacing of around 100 mV to
address the intermediate bitline current ranges. Another feature
of real devices that can be observed here is that the number of
accessible levels is larger than (n+ 1). This can be attributed
to the variability in the LRS state of the various devices as
shown in Figure 4C. It should be noted here that similar to
E and F resulting bitline current probabilities in H are not an
unambiguous consequence of the SET probability traces in G
due to the limited number of tries at each voltage level. Each
try of all devices at a specific voltage can be viewed as a discrete
stochastic process.

In summary, to realize an analog synapse with binary
switching devices, the interplay between d2d and c2c variability
is very important. Deterministic devices limit the number of
levels to two while adding d2d leads to an increase of the
number of levels in a deterministic fashion (the levels can be

programmed with 100% probability). Adding c2c variability leads
to probabilistic devices and a probabilistic update. The voltage
window to achieve this, however, might be limited. Differing
probabilistic devices widen this window, but are not necessarily
required for the proper synapse functionality if their individual
c2c variability covers a sufficiently wide voltage window. For
an increasing number of devices per synapse, the range of
conductances will shift toward higher values. However, if we
scale this range by the number of devices in each synapse, we
can see that the resulting fraction stays constant. Thus, the
bounds to the synaptic efficacy stay constant except for a shift
toward higher conductance levels, which might lead to a higher
power consumption. On the other side, the analog tunability
improves as more intermediate levels become accessible. Lastly,
this improvement in the synapse behavior will increase the
area that each synapse occupies. As d2d and c2c cannot be
eliminated in real devices our observations need to be tested
by measurements.

Experimental Demonstration
To verify our proposed explanation of the synapse behavior in
dependence of the included variability, we show two exemplary
cases of experimentally realized synapses. Therefore, we applied
the voltage stress to three devices simultaneously. In order to
do so, we employ a probe card arrangement as described in
the experimental section “Probe Card Arrangement.” From the
32 × 1 line array, we contacted three devices to see the direct
dependence of the device SET probability traces on the synapse
characteristic. The structure is shown in the scanning electron
microscopy (SEM) picture in Figure 7A. The addressed cases
reflect the cases discussed in Figures 6G,H. In this experiment,
the three devices in parallel were repeatedly stressed with voltages
from -0.7 to -1.2 V in steps of -50 mV. Each voltage was tested
100 times. The initialization was carried out for each device
individually and followed the same procedure as described in
section “Device-to-Device Variability Characterization on 1 µs
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Timescale.” After each voltage stress, the summed bitline current
is recorded for a read voltage of -0.2 V. On top of that, each device
is read individually with a read voltage of -0.2 V.

First, we contact three devices with very similar SET
probability traces, see Figure 7B. The resulting synapse behavior
is depicted in Figure 7C. As expected, the bitline current ranges
are only addressable in a very limited voltage range of about
0.2 V. This means, that intermediate synapse currents require
very precise voltage stresses to the devices. This combination
of devices reflects the case of identical probabilistic devices as
described in Figures 6E,F. In contrast, the second subset of
devices contacted shows a significant voltage margin between the
individual SET probability traces, see Figure 7D. At 0.70 V, the
highest probability is observed for the lowest current range of
0–30 µA, since only infrequently switching events occur and the
devices remain in the HRS. A lower probability is evident for the
second current range of 30–80 µA. By increasing the voltage to
0.75 V, the probability of reaching this second level is increased.
However, the first level or the third level may occur with a low
probability. This trend continues in a very regular pattern at
100 mV intervals until currents of 230 µA or more are observed.
Here, the currents do not increase further with voltage because
the synapse’s dynamic range is reached. Therefore, at 1.20 V, the
probability for reaching the last level, i.e., currents above 230 µA,
is 100%. The dynamic voltage window of this synapse, therefore,
lies in the voltage range from 0.70 to 1.05 V, which results in a
voltage window of 0.35 V. This behavior is favorable over the
case of nearly identical devices, since a higher voltage spacing for
the levels can be utilized, which in turn reduces the challenges
for integration.

In summary, our proposed synapse structure fulfills the
imposed requirements. The synapse’s tunability window is mainly

influenced by the switching probability behavior of the individual
devices it is composed of. Two possible ways for enlarging this
window can be derived: First, the presence of d2d variability
can improve the synapse behavior. However, only having d2d
variability can still lead to unwanted synapse behavior if nearly
identical devices happen to appear in a given synapse. A better
approach is to introduce more c2c variability in each device while
reducing the d2d variability to a minimum. By this method, the
voltage window remains large enough for several voltage levels
with moderate spacing. At the same time, the minimized d2d
variability ensures conformality of the synapse characteristic.

Synapse Simulations
For different synapse sizes, namely 3, 8, and 12 devices per
synapse, we simulated 50 synapses. At each voltage, 50 SET tries
were conducted. For comparing the arising effects when scaling
up the synapses, we introduce three new parameters as indicated
by the sketch in Figure 8A:

1. The difference between the first and the last SET probability
trace with respect to the pulse voltage. For this, the
area between the two extreme traces is calculated by the
trapezoidal numerical integration of the difference of the
first and last trace, see the shaded area in Figure 8A.

2. The synapse tunability voltage range. It is calculated by
the difference in voltage of the first current range at a
probability of 75% and the voltage of the last current
range at a probability of 75%. This value describes the
range of voltages in which the intermediate current ranges
(between “all devices HRS” and “all devices LRS”) can be
stochastically addressed. It should be adequately large for
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the chosen voltage levels of the application. The value is
marked with an arrow in Figure 8B.

3. The effective number of realistically addressable levels. For
this, the number of levels that reach a probability of 40%
or more over the whole voltage range is counted. It is
highlighted by the horizontal dashed line in Figure 8B.

Figure 8C displays the relation between the SET probability
difference and the synapse tunability voltage range for all synapse
sizes and each individually initialized synapse. The simulations
with three devices per synapse are indicated by green circles.
The achievable voltage window for a synapse constructed from
three devices ranges from quite low values to the desired larger
ranges. For three devices per synapse, an increasing relation
of the tunability range with the area enveloped by the highest
and lowest SET trace is obtained. The exact underlying relation
is, however, masked by the significant variability, which stems
from the combination of variable devices. The simulation results
are controlled by the experimental data. For this purpose, the
desired data points are determined from measurements shown
in Figures 7B,C and in Figures 7D,E, respectively, and are
added to the graph in Figure 8C as diamond-shaped symbols.
The data points from the experiment lie within the range
of the simulated multi-device synapses for the case of three
devices. This match clearly demonstrates the accuracy of the
developed compact model.

A further enlarged voltage tunability range of a multi-device
synapse can be achieved by increasing the number of devices
per synapse. Figure 8C also displays the simulation results for 8
and 12 devices per synapse. For the purpose of comparing these
synapses, the bitline current ranges were normalized with the
assumption that each device contributes 38 µA (corresponds to
5.2 k�) to the overall bitline current. Furthermore, instead of
splitting the resulting currents into 6 levels as for the 3 devices
per synapse, the currents are grouped in 11 and 15 levels for
8 and 12 devices per synapse, respectively. For the 8 and 12
devices per synapse structures, the tunability window is above

0.2 V, and levels at around 0.4 V. The synapse comprising 12
devices shows an even higher SET probability difference, but no
significant increase in the tunability window is evident. Most
important for synapses comprising 8 and 12 devices is the absence
of synapses with an undesirable low voltage tunability window.
This can be attributed to the low chance of drawing 8 or 12 nearly
identical devices for the synapse, respectively. By increasing the
synapse size, it becomes increasingly likely to draw devices from
the full d2d range, hence making sure that sufficient variability is
present in the synapse. For the three devices, there is a chance
of getting three highly similar devices with their limited c2c
voltage range, thus causing low voltage window synapses as
e.g., shown experimentally in Figures 7B,C. Figure 8D shows
the statistical analysis for the 50 simulated synapses regarding
the effective number of addressable intermediate bitline current
levels for each synapse. As expected, the number of levels
with a probability of 40% or more increases with synapse size,
allowing for more accurate tuning of the larger synapses. The
experimentally determined data points are plotted as diamond
symbols. Again, the data points derived for the extreme cases lie
at the edges of the simulated range. It is therefore expected that
increasing synapse size will yield higher network performances,
especially if overlapping patterns are shown since such require
improved synapse tunability.

Classification of Overlapping
Spatio-Temporal Patterns
The general simulation procedure for network simulation is
described in section “Network Fundamentals.” While during
the training phase the network’s weights are adjusted to
minimize the pattern recognition error, the network also contains
hyperparameters. Hyperparameters are these parameters used
to control the learning process. Unlike the weights, the
hyperparameters are not derived through training but have
to be specified prior to the training. For our utilized
network, the hyperparameters are defined by the learning
rate λ, the neuron threshold current ITH, the maximum
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achievable spike rate FRMAX, which also determines the
spike decision threshold, and the SET and RESET voltages
for the synapses. While these parameters have a significant
impact on the network performance, they are typically not
trained but rather preset to a constant value. Therefore,
their choice has to be motivated in a different way, which
usually involves trial and error. In this work, however,
we describe a plausible procedure to tune two of the
hyperparameters, namely ITH and FRMAX, before the training of
the neural network starts. This alleviates the problem of finding
optimal hyperparameters, since two parameters less have to be
optimized manually.

Tuning of the Hyperparameters
ReRAMs exhibit significant d2d and c2c variability as discussed
in the previous sections. This makes finding global parameters
for the neuron threshold (ITH) and the decision threshold
(FRMAX/2), which ensure good network convergence,
challenging. In any case, a global combination of ITH and
FRMAX for all neurons would be a compromise and would
degrade the performance by having this global constraint. Our
approach is to mitigate this issue at a local scale by self-adapting
the values at the individual neuron level. Before training the
network, we first strongly excite the neuron by turning all
synapses on, using a stronger SET pulse (-1.3 V for 1 µs) to
achieve a global SET probability of 100%. We then sample the
output current that is achieved for several different exemplary
pattern+ training signals (applied to 11 random synapses).
We need to excite all synapses because of the external noise
(flipped bits). By varying ITH, we can sample the maximum
possible number of spikes that can be generated by this output
neuron for different ITH. In a second step, all synapses are
turned off by applying a RESET pulse (+1.3 V for 1 µs) and
the output current is sampled for several different exemplary
pattern- training patterns. By varying ITH, we can then sample
the minimum possible number of spikes that can be generated
by this output neuron for different ITH. By averaging over
the responses, we can find the value of ITH that results in the
largest difference between the neurons response to pattern+
and pattern-. With this ITH the decision threshold FRMAX/2
is defined as the difference between the weakest response of
the neuron to the different pattern+ signals and the strongest
response of the neuron to the different pattern- signals. It is
found that the optimum ITH is increased with the number
of ReRAM cells per synapse as a higher current will pass
through the parallel devices. The decision threshold FRMAX/2
is found more or less independent of the number of devices per
synapse. The values are distributed between 20 and 30 Hz. The
tuning algorithm is formalized in Algorithm 2. In summary,
the proposed algorithm maximizes the distance between the
neurons response for pattern+ and pattern-. An additional
advantage is that it enables adaptation to failed devices and
even would enable retraining of the network. This might be
useful if after a certain time some of the devices start to fail.
In that case, the described procedure can be repeated and
adapted hyperparameters can be found that consider the failed

devices. After these hyperparameters have been algorithmically
optimized, the training starts.

Neural Network Performance in the Presence of
Overlapping Patterns
First, we looked at how the achievable accuracy of the neural
network changes if the overlap between pattern+ and pattern-
is increased and how the accuracy is improved if the number
of devices per synapse is increased. The studied ranges for the
overlap were 4, 5, 6, 7, 8, 9, and 10 while the studied range of
devices per synapse was 1, 4, 8, 12, and 24 devices. Figure 9A
shows the simulation results of the neural network’s accuracy as a
function of the overlap between the patterns and the number of
devices per synapse. If the accuracy reached 100% after a certain
training epoch, the training was stopped and this accuracy was
taken as the final value of this run. Otherwise, the accuracy
after 10 epochs was used. Figures 9B–F show the evolution of
the accuracy over the training epochs for all 10 runs (thin gray
lines) as well as the mean curve (thick red line) for an overlap
between the patterns of nine. B shows the results if each of the
22 synapses consists of only 1 ReRAM device, and C to F for
4, 8, 12, and 24 devices per synapse, respectively. From this
figure, multiple effects can be observed. Due to the different
sources of variability that already exist in the initialization
phase of the network (d2d, Poisson inputs, etc.), 10 runs were
performed for each combination of overlap between the patterns
and number of devices per synapse. From Figure 9A it can be
observed that the overlap between the two patterns influences the
network’s performance. We generally observed that the network
reliably reaches an accuracy of 100% for small overlaps (<5),
independent of the number of devices per synapse. For larger
overlaps, the average accuracy is degraded. However, this effect
is stronger for networks where only a small number of devices
are used. This shows that increasing the number of devices
per synapse is a way to improve the performance of the neural
network if the classification problem becomes more difficult.
This can also be observed in Figures 9B–F. While networks
with only one or four devices per synapse struggle to reach
an accuracy of 100% during training, perfect accuracy can be
achieved after only one training epoch for networks with more
devices. While some runs also achieve high accuracies after a few
training rounds for the small networks, other runs struggle as
their accuracy is stuck at a low value or oscillates over the epochs.

A closer look at the training is depicted in Figure 10. Here,
the conductances of the different categories of synapses for
the runs in Figures 9B,D,F as well as the number of spikes
that were generated for positive and negative patterns are
shown. A, B, and C show the conductances normalized to the
number of 1, 8, and 24 devices per synapse, respectively, of
the synapses receiving pattern+ (orange line and diamonds),
pattern- (blue line and circles) and both patterns (black line and
triangles) over the training epochs. Again, the overlap between
the patterns was nine. The solid and dashed lines show the
mean values while the different symbols show the values of the
actual synapses. D, E, and F show the corresponding number of
spikes (FR) that are generated if pattern+ (orange) or pattern-
(blue) is presented to the neuron. The lines again show the
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Algorithm 2: Hyperparameter tuning algorithm.

1: wi = rand () ;

2: apply VSET = (−1.3 V ||1 µs)

3: for j = index test patterns do

4: I+,j =
∑22

n=1 Isyn, n, j

5: end for

6: for k = index ITH do

7: FR+, k
(
ITH, k

)
= mean (number of spikes, j)

8: end for

9: apply VRESET = (1.3 V ||1 µs)

10:for j = index test patterns do

11: I−, j =
∑22

n=1 Isyn, n, j

12: end for

13: for k = index ITH do

14: FR−, k
(
ITH, k

)
= mean (number of spikes, j)

15: end for

16: ITH, k = max
(
FR+, k − FR−, k

)

mean values while the symbols show the number of spikes
generated for the unique patterns. Similarly to Figure 9, we
observe that a higher number of devices improves the network’s
performance. While A and D (one device per synapse) show
that the training is not complete after 10 epochs the training
already finishes after the sixth epoch for B and E (eight devices
per synapse) or after the first training epoch for C and F (24
devices per synapse). Looking closer at Figure 10A shows the
reason why the training is not successful. While the synapses
receiving only pattern+ (orange) or only pattern- (blue) are
programmed to distinct values that stay constant throughout
the training, the synapses receiving both patterns (black) are

not programmed to a stable conductance level and change
throughout the training, oscillating between the conductance
boundaries. Since the overlap was nine in this example, the
group of synapses receiving exclusively pattern+ or pattern- each
only consists of two elements while the black group consists
of nine elements. The consequences of this can be seen in
Figure 10D, which shows the number of spikes generated in this
case for pattern+ (orange) pattern- (blue). The distance between
the neuron’s responses to pattern+ and pattern- is small and
both are subject to abrupt changes. This prevents a converging
of the delta rule algorithm as the training voltages are not
scaled down. A contrast to this can be seen in Figures 10B,E
which were achieved for an increased number of devices per
synapse of eight. In this case, the synapses receiving both
patterns quickly reach a stable conductance range. As can be
expected the neuron responds to this increase (decrease) in
current with a significantly higher (lower) number of spikes for
pattern+ (pattern-). Lastly, C and F show an even improved
picture. The training is already finished after the first training
epoch as all synapses achieve a stable conductance value. It
can be observed in A, B, and C that the neural network
only reaches 100% accuracy, when the synapses receiving both
patterns (black) are completely excited. Our explanation for
this finding is that fully excited and fully depressed synapses
are representative or more stable device states in the sense
that they require higher voltages to be switched. It has been
shown that a higher HRS requires higher SET voltages to set the
device and that a smaller LRS requires higher RESET voltages
to reset it. Therefore, if a synapse is found in a fully excited
or depressed state, it will require higher absolute voltages to
switch it to the opposite state as if the synapse was only partially
excited or depressed.
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In summary, our results show that increasing the number
of devices per synapse greatly increases the performance of the
network as it allows for a more gradual tuning of the weights and
helps with reaching the stop learning condition (100% accuracy).

Neural Network Stability for Noisy Input
Patterns
As the last example, we look at the network’s performance when
the inputs are noisy. The number of flipped bits represents
an external noise source. For the case of N flipped bits, N
random synapse assignments are changed for every training and
test pattern. This makes the classification problem significantly
more difficult since causes the wrong synapses being trained.
Here a range of zero flipped bits up to two flipped bits was
tested. For higher numbers of flipped bits, the accuracy is heavily
degraded and no network architecture was able to reliably achieve
accuracies much higher than random guessing. An overview
of the results for one and two flipped bits can be seen in
Figures 11A,B. As expected, the accuracy worsens when some
of the input bits are flipped in each training and test run.
Another important feature to be observed in Figures 11C–E is
that the unique runs showcased by the orange diamonds and
the blue circles show a significantly larger spread if the number
of flips is increased, resembling the significant rise in pattern to
pattern variability. The different test patterns are fixed before the

training starts and they are not changed over the epochs. While
some patterns produce more easily distinguishable spike numbers
(close to zero for pattern- or about 60 for pattern+), other
patterns provide not such a clear spike response. The number
of patterns producing an unclear response increases with the
number of flipped input bits. For zero flips all patterns provide a
clear spike response, for one flip there is one pattern that falls out
of line and for two flips most of the patterns provide an unclear
spike response. This degradation can also be seen in the median
spike response for pattern+, which is close to 60 for zero flips,
around 50 for one flip and only at 40 for two flips.

The dependence of the accuracy on the number of devices per
synapse and the overlap between the patterns is, however, more
complicated than before. One trend which can be observed is that
for smaller overlaps the smaller networks usually perform better
than their larger counterparts. Our explanation for this is that
when the network becomes larger it stops training the weights
after the first few epochs as the error-adjusted SET and RESET
voltages become too small to significantly adjust the weights.
Figures 12A,C show this exemplarily for the case of two flips,
an overlap of 4 and the networks containing one (A) or 24
(C) devices per synapse. The conductances of the synapses in
Figure 12A are much more shallow than their counterparts in
Figure 12C, which enables the network to reach a better final
result. The synapses in Figure 12C show very little change after
around the second epoch which means that the network has
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stopped training at this point. As we saw in Figure 10 larger
networks generally lead to a faster convergence, as they can find
weight values for high accuracies quicker. In the presence of
flipped bits in the inputs, this behavior will still hold. However,
as some of the synapses are trained in the opposite direction,
this initial stable solution does not yield 100% accuracy. Their
smaller counterparts take longer to find a stable solution as the
weights are easier disturbed. This gives the smaller synapses
a certain robustness against the incidence of flipped bits. An
increase in overlap stresses the point that larger networks perform
generally better for one flip, see Figure 11A. For two flips the
same statement is true, see Figure 11B.

Multiple effects determine the final accuracy of a network with
a given size and overlap that can be achieved. On the one hand,
smaller networks have an advantage if the overlap between the
patterns is small or medium as their less stable weights can be
tuned even if the error becomes smaller (see Figures 12A,C).
However, larger networks perform better for one flipped input
and larger overlaps, which can be explained in the same way
as for the zero flip cases. The comparison of the smallest and
largest considered network for an overlap of nine and two flipped

input bits in Figures 12B,D shows why larger networks can find
better solutions for high overlaps than smaller networks. While
the unique synapses receiving both patterns (gray triangles)
for the small network are mostly programmed to a less stable
medium conductance states (see Figure 12B), the larger network
can program them to a more stable high conducting state (see
Figure 12D).

Overall, the accuracy is reduced if the inputs are noisy. As can
be expected, this effect is stronger if more inputs are noisy. As the
drop in accuracy is closely related to the utilized training rule, it
seems reasonable to investigate how to increase noise resilience.
As seen from the device analysis, this noise resilience will have to
take into account the specialties of ReRAM programming. One
idea toward this might be to use a non-linear scaling of the voltage
in the delta rule algorithm. If—for the sake of argument—we
assumed that the first spike response was at a maximum distance
from the goal spike response, this would leave us with a 1wi
of 1 (see Eq. 2), giving the nominal programming voltage VSET
or VRESET in the training step. If the next spike response to an
applied pattern was now at half the distance from the goal spike
response, the resulting 1wi would be 0.5 corresponding to half
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the SET or RESET voltage to be applied afterward. This dividing
of the training voltage in half is, however, problematic when
applied to our devices. As can be seen in Figure 4D, the range
of voltages that lead to a 50% SET probability is around 300 mV,
considering also the edge cases. This range is not significantly
changed if one goes to other SET probabilities. If now the nominal
SET voltage was -1 V, to ensure a 100% probability, half of that
would be -500 mV, which would result in no switching at all.
For half the algorithmic response the actual response is more
or less set to zero. Of course, this assumed case does not occur
frequently, and typically our voltage scaling approach works. Also
the SET probabilities are affected by the HRS with smaller HRS
states leading to an increased probability for a constant voltage.
Still, there is room for improvement if adapted scaling of the
training voltages is performed.

DISCUSSION

Here, we reported on a synapse concept that employs
multiple filamentary VCM-type memristive devices in a parallel
configuration. The goal was to achieve the favorable multilevel
conductance tuning required in the majority of neuromorphic
hardware architectures. To this end, the switching stochasticity,
which is an inherent feature of these devices, was exploited. The
following points summarize the main findings of this study:

First of all, it has become obvious that for a correct device
description it is necessary to study multiple devices on multiple
timescales and with high repetition numbers. Findings based
on single device experiments or limited cycle numbers are to
be considered with extreme caution, as inaccurate c2c and d2d
variability assumptions can change the results on higher levels
of integration architectures significantly. Primarily, this can be
seen in the shown examples in Figure 6 and in Figure 1. Various
combinations of c2c and d2d variability lead to different synapse
behavior. If not modeled with respect to a minimum statistical
range of devices, wrong conclusions on the synapse behavior
might be drawn, leading to suboptimal operation, which will
increase the mismatch between simulation and experimental
investigation of a network.

Second, it is crucial to evaluate the agreement between
experimental results and the employed simulation tool in detail
as shown in this work. Several aspects need to be addressed
accurately:

• Resistance distributions of HRS and LRS
• SET voltage onset and distribution
• Switching dynamics
• Device-to-device spread

Ultimately, simulation tools like the proposed one are
unavoidable for testing novel neuromorphic concepts for their

Frontiers in Neuroscience | www.frontiersin.org 18 June 2021 | Volume 15 | Article 661856

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-661856 June 1, 2021 Time: 18:47 # 19

Bengel et al. ReRAM Stochasticity for Pattern Classification

feasibility in real-world situations. In this context, accurate device
compact models may be seen as an important step on the way
toward large-scale neuromorphic applications, just like transistor
models are at the foundation of current processing units.

Third, we investigated the concept of parallel devices for a
single synapse. Our bottom-up derivation of favorable synapse
behavior concluded that for our desired application it is very
important to have a certain amount of variability in total, which
may be composed of both c2c and d2d variability to different
extents. This minimum variability in the synapse composition
translates into favorable tunability of the synaptic weight. We
showed that additional devices in the synapse compound enhance
this tunability factor, hence enhancing the synapse performance.
We attributed this effect to an increased number of realistically
addressable levels, a larger operation voltage window and more
distinct levels per synapse. For this purpose, we introduced three
parameters to assess the quality of a compound synapse, verified
through experiment and simulation.

An interesting outlook for the future presents itself. In more
advanced integration routes the amount of d2d will most likely be
reduced, while the c2c amount will remain as it is a consequence
of the physical nature of the VCM-type resistance change.
Therefore, the addressed case with small d2d variability may
arise. We consider our approach to be resilient toward this
development, as the requirement lies within the interplay of
c2c and d2d variability. However, adjustments regarding the
operation voltages may become necessary because the voltage
window is significantly reduced under these circumstances,
requiring a voltage spacing in the tens of millivolts in our case.

Fourth, we integrated the proposed synapse structure into
an exemplary neural network which was trained using a
technologically plausible algorithm making use of the concept of
stochastic rounding. By developing an optimized hyperparameter
tuning scheme for our devices, the network was able to converge
to 100% accuracy for easy tasks. As expected from the previous
discussion, higher complexity problems, i.e., higher overlap
between the patterns, required additional devices per synapse to
maintain high accuracy. Here, a top-down view on the network
training stage revealed that a higher device count per synapse
leads to more resilience against perturbations in the form of
pattern overlap. However, this stability proved to have a weakness
when additionally considering input noise, i.e., flipped bits, in
the training stage. As the final synapse weight was reached
after a single epoch for large synapses, noise in the form of
flipped bits leads to degraded accuracies. In contrast, fewer
devices per synapse required multiple epochs for reaching the
minimum error, therefore averaging over multiple flipped bit
events. Hence, for low overlaps, a lower device count surpassed
the performance of higher device numbers per synapse, while
high overlap tasks were better solved by higher device count
synapses. One mitigation strategy of this unexpected result may
present itself in a more conservative voltage scaling approach,
which begins at a lower voltage and employs smaller voltage
increments. By this technique, the prolonged learning stage
allows averaging over multiple flipped bit patterns and therefore
adds noise robustness to the network. The need for adjustments
like the developed hyperparameter tuning algorithm and the

device-aware network operation emphasizes the importance of
algorithms that are tailored to the physical substrates.

As memristive devices have become widely used in
neuromorphic applications in recent years, the concept of
using multiple devices per synapse has been applied to different
realizations of memristive devices. Examples for experimental
realizations of this concept were done for Electro-Chemical
Metallization (ECM) cells (Gaba et al., 2013) and Phase Change
Mechanism (PCM) cells (Boybat et al., 2018), as well as other
VCM systems. In addition, since the primary requirement
for employing the concept is switching voltage variability, we
consider it to be applicable to other VCM systems such as
Ta2O5 (Nishi et al., 2018), TiO2 (Yoon et al., 2013), SrTiO3
(Rieck et al., 2021). However, in many systems, the possibility
of analog switching has been demonstrated. Further studies
are required for a parallel configuration of such analog type
switches since our concept is based on digital switches with two
distinguishable states.

However, the diverse resistance switching phenomena
observed in these systems will require careful design of the
synapse operation algorithms. For instance, higher resistance
variabilities will reduce the realistic number of addressable
synapse current levels, while a tighter switching voltage
distribution may reduce the voltage window where conductance
tunability is possible. The parameters derived in the present
study are able to capture these device-related characteristics and
offer comparable quantities for different devices and device types.

On the network level, mainly theoretical results have
been obtained so far due to the difficulty of large scale
integration possibilities.

Singha et al. (2014) used simulations to investigate this
synapse concept for showing Spike Timing Dependent Plasticity
(STDP) behavior. Their findings showcase that increasing the
number of parallel devices in the synapse brings the synapse
closer to the optimal analog case. However, in their study,
they did not consider resistance variability nor d2d variability.
At the current state of memristive device research, these two
issues have not been resolved, but may be reduced in the
future. Our modeling therefore represents a more realistic picture
of the current state of the art. Even including the described
artifacts, we were able to achieve promising results, suggesting
that the concept can compensate for some of the perceived
device shortcomings. Also, they did not go to the network
level to investigate the performance of a neural network based
on their synapses.

Bill and Legenstein (2014) proved the feasibility of the
proposed synapse concept in a STDP update rule from a
theoretical point of view and with simulations of idealized
bistable devices. Their study came to the similar conclusion, that
the network classification error can be reduced by increasing
the synapse resolution, i.e., increasing the number of devices
per synapse M. However, in their abstract model, they did not
consider conductance variability in the states, leading to the
assumption that each synapse can assume up to M + 1 discrete
conductance. A more realistic case is shown in our study, where
the actual addressable number of states per synapse is lower
than M + 1, caused by the conductance variability. However,
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the overall trend of performance gain is maintained, which
is in line with their study. Furthermore, the study predicts a
strong resilience of parallel device synapses against device non-
uniformity, which we can confirm from our study.

Overall, the results obtained from previous literature studies
and our study agree that the proposed concept of multiple
devices per synapse is a promising approach, presenting a feasible
alternative to single analog devices as synapse elements. However,
by introducing multiple devices per synapse, new challenges
arise due to the device characteristics, which were shown to
have direct impact on synapse levels and tunability window.
Moreover, multiple devices per synapse results in an increased
area footprint and peripheral CMOS circuitries. Solutions such
as the demonstrated hyperparameter algorithm will be required
to access the full potential of this promising approach.

CONCLUSION

An extensive study of the c2c and d2d variability phenomenon
was presented. An adaptation of our highly detailed physics-
based compact model allowed us to study the neuromorphic
concept of employing multiple parallel devices as synapse.
Through experiment and simulation utilizing the compact
model, we verified the feasibility of the concept of analog synapse
tuning by single voltage pulse operation. It was found that by
increasing the number of devices per synapse, a larger voltage
window and a higher number of realistically addressable current
ranges are realized in the synapse. This is explained through
the interplay of c2c and d2d variability of the devices. The
proposed concept fundamentally requires at least one degree of
variability, hence it will also work in the presence of reduced
d2d variability in future improved fabrication routes. The synapse
structure was then tested in a pattern classification SNN, for
which we developed a device inspired novel hyperparameter
tuning algorithm that considers synapse inhomogeneities. As
predicted from the study on single synapses, the network’s ability
to detect overlapping patterns is improved by increasing the
number of devices per synapse, which is attributed to the higher
degree of incremental tuning capability. It was found that in
the presence of noise, a slower convergence to the final network

state is favorable, which can be realized by adapted voltage
scaling algorithms in the proposed concept. This study highlights
the importance of physically derived simulation models for the
evaluation of neuromorphic concepts.
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