
ORIGINAL RESEARCH
published: 29 June 2021

doi: 10.3389/fnins.2021.667011

Frontiers in Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 667011

Edited by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Reviewed by:

Shuangming Yang,

Tianjin University, China

Chenchen Liu,

University of Maryland, Baltimore

County, United States

*Correspondence:

Lea Steffen

steffen@fzi.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 11 February 2021

Accepted: 04 June 2021

Published: 29 June 2021

Citation:

Steffen L, Koch R, Ulbrich S,

Nitzsche S, Roennau A and

Dillmann R (2021) Benchmarking

Highly Parallel Hardware for Spiking

Neural Networks in Robotics.

Front. Neurosci. 15:667011.

doi: 10.3389/fnins.2021.667011

Benchmarking Highly Parallel
Hardware for Spiking Neural
Networks in Robotics
Lea Steffen*, Robin Koch, Stefan Ulbrich, Sven Nitzsche, Arne Roennau and

Rüdiger Dillmann

Interactive Diagnosis and Service Systems (IDS), Intelligent Systems and Production Engineering (ISPE), FZI Research Center

for Information Technology, Karlsruhe, Germany

Animal brains still outperform even the most performant machines with significantly

lower speed. Nonetheless, impressive progress has been made in robotics in the

areas of vision, motion- and path planning in the last decades. Brain-inspired Spiking

Neural Networks (SNN) and the parallel hardware necessary to exploit their full potential

have promising features for robotic application. Besides the most obvious platform

for deploying SNN, brain-inspired neuromorphic hardware, Graphical Processing

Units (GPU) are well capable of parallel computing as well. Libraries for generating

CUDA-optimized code, like GeNN and affordable embedded systems make them an

attractive alternative due to their low price and availability. While a few performance tests

exist, there has been a lack of benchmarks targeting robotic applications. We compare

the performance of a neural Wavefront algorithm as a representative of use cases in

robotics on different hardware suitable for running SNN simulations. The SNN used for

this benchmark is modeled in the simulator-independent declarative language PyNN,

which allows using the same model for different simulator backends. Our emphasis is

the comparison between Nest, running on serial CPU, SpiNNaker, as a representative

of neuromorphic hardware, and an implementation in GeNN. Beyond that, we also

investigate the differences of GeNN deployed to different hardware. A comparison

between the different simulators and hardware is performedwith regard to total simulation

time, average energy consumption per run, and the length of the resulting path. We

hope that the insights gained about performance details of parallel hardware solutions

contribute to developing more efficient SNN implementations for robotics.

Keywords: spiking neural networks, parallel hardware architectures, benchmark, robotic motion control,

neurorobotic

1. INTRODUCTION

Although impressive progress has been made in robotics, in the areas of perception and motor
control, animal brains with significantly less performant components still outperform even the
most sophisticated machines. While brain inspired research with Spiking Neural Networks (SNNs)
and neuromorphic sensors shows great potential, their slow execution on common simulation
frameworks running on serial CPUs prevent their broad application in robotic areas as vision,
motion-, and path planning up to date.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.667011
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.667011&domain=pdf&date_stamp=2021-06-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:steffen@fzi.de
https://doi.org/10.3389/fnins.2021.667011
https://www.frontiersin.org/articles/10.3389/fnins.2021.667011/full

Steffen et al. Benchmarking Parallel Hardware in Robotics

As performing the updates for every neuron in parallel
significantly reduces simulation time, hardware enabling massive
parallelism enables the full exploitation of SNNs’ capabilities. In
order to allow researchers and developers to make a good choice
regarding the software and hardware solutions when working
with spiking neurons, comprehensive benchmarks are required.

Inspired by the nervous system, highly parallel platforms
have been developed targeting low-power, large-scale SNN
simulations in real time. The basis for biomimetic or
neuromorphic hardware is the observation that the operation
principles of information processing in nature differ greatly
from artificial methods. In most cases, artificial methods are
significantly less effective than their biological counterpart,
for which reason scientists for instance, started to investigate
retinal computation (Mead, 1990), inspired by processing in
the brain. Well known representatives of this technology are
IBMs TrueNorth chip (Merolla et al., 2014), Intel’s Loihi (Davies
et al., 2018), the SpiNNaker system of the University of
Manchester (Furber et al., 2014), and BrainScaleS developed in
Heidelberg (Friedmann et al., 2016).

TrueNorth is a digital neuromorphic chip that supports
the simulation of up to 1 million neurons and 256 million
synapses per chip. While the chip has a high density of neurons
and synapses, one is limited to use the LIF neuron model
and the synapses are static (Merolla et al., 2014). Loihi chips
consist of 128 neuromorphic cores capable of simulating up
to 1,024 LIF neurons each. The Loihi chip is fully digital and
supports dynamic synapses (Davies et al., 2018). SpiNNaker is
a fully digital neuromorphic system developed for large-scale
simulations of SNNs. As it is composed of general-purpose
ARM microprocessors, neuron and synapse models can be
specified and adapted by software, making it very flexible (Furber
et al., 2014). In Mayr et al. (2019), the second generation
SpiNNaker-2, featuring 10 Million instead of 1 Million cores,
is introduced. BrainScaleS, which is derived from the single-
chip implementation Spikey (Schemmel et al., 2006), is a
neuromorphic mixed-signal chip. In contrast to many others,
BrainScaleS and its successor, BrainScaleS 2 are analog (Müller
et al., 2020a,b).

Besides these popular candidates of non-von Neumann
computing a multiplicity of neuromorphic hardware has been
developed in the last decade. In Yan et al. (2021), a differentiation
in 3 classes is made; (1) systems with static synapses like
TrueNorth, NeuroGrid, Braindrop, HiAER-IFAT, DYNAPs,
Tianjic, NeuroSoC, and DeepSouth, (2) systems supporting a
configurable plasticity like ROLLS, ODIN, and TITAN and
lastly, (3) systems supporting a programmable plasticity like
both BrainScaleS, both SpiNNaker and Loihi. Another digital
representative is focused on memory centric computing is
Neurocube (Kim et al., 2016). However, since the development
is progressing rapidly, a comprehensive list is difficult and
quickly outdated. Comparatively new developments are the
large-scale neuromorphic architectures CerebelluMorphic (Yang
et al., 2021b) and BiCoSS (Yang et al., 2021a). CerebelluMorphic
is a cerebellum-inspired neuromorphic architecture. Since the
cerebellum is crucial for motor control, this technology is very
interesting for robotics.

Another type of hardware well-suited for parallel computing
is the Graphical Processing Unit (GPU), which was originally
developed for computer game graphics. The introduction of high
level programming languages such as CUDA orOpenCL, allowed
GPUs to be used for general purpose parallel programming. This
trend is supported by the development of accessible, inexpensive
embedded systems like Nvidia’s Jetson boards. Already in 2010
a parallel implementation of a SNN on NVidia CUDA showed
a significant speed up (Nowotny, 2010). This idea was further
investigated and in Yavuz et al. (2016) GPU enhanced neuronal
networks (GeNN) a tool for code generation for specifying
ANNs, especially focusing on SNNs, is introduced. It provides
a simple C++ API generating optimized C++ and CUDA code.
GeNN includes as well a C++ backend and CUDA backend and
additional pythonmodule (PyGeNN) to support TensorFlow and
PyNN. Further methods to execute ANNs on GPU are presented
in Minkovich et al. (2014) and Mutch (2010). As stated in
Vineyard et al. (2019), techniques for comparing neuromorphic
architectures and similar systems are vital, as many event-driven
methods may be well-suited for some, but inapplicable for others.

In Blundell et al. (2018), methods for code generation
in computational neuroscience are reviewed and respective
simulators, modeling languages, and frameworks are introduced
and assessed. The authors cover, amongst others, code
generations for a variety of hardware and software solutions
like the neural simulators Brian (Stimberg et al., 2020), NEST
(Gewaltig and Diesmann, 2007), NEURON (Carnevale and
Hines, 2006), and GENESIS (Bower et al., 1998) running on
serial CPU as well as techniques focusing on the execution
on NVIDIA GPUs as GeNN (Yavuz et al., 2016) and Myriad
(Rittner and Cleland, 2014). Furthermore, code generation for
the neuromorphic hardware SpiNNaker (Furber et al., 2014) and
the high-performance computing platform The Virtual Brain
(TVB-HPC) (Sanzleon et al., 2013) are included.

In 2018, two benchmarks focusing on a neuroscientific use
case, a cortical microcircuit model, have been presented. In van
Albada et al. (2018), the models are implemented in PyNN and
the performance of the SpiNNaker system running 6 SpiNN-
5 boards and NEST running on a HPC cluster is compared.
While the focus of the benchmark is on the accuracy of the
simulation results, the total simulation time and energy per
synaptic event are evaluated as well. Configurations of the HPC
tuned for low energy consumption and simulation speed perform
better than the SpiNNaker system. The simulations in both
NEST- and SpiNNaker implementations are similar with regard
to accuracy, hence showing the capabilities of the SpiNNaker
system to perform large scale simulations. In contrast to van
Albada et al. (2018), Knight and Nowotny (2018) uses C++
for simulating the cortical microcircuit model with GeNN on
different pieces of hardware and comparing the performance to
the SpiNNaker and NEST implementations. The authors state
that—at least for their use case—certain GPUs outperform HPC
systems as well as neuromorphic hardware regarding energy
consumption and speed. As the accuracy of the simulation in
GeNN is also comparable to the NEST implementation, GPUs
are shown to be suitable architectures for SNN simulations
that are able to compete with neuromorphic hardware. The

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

authors also outline the possibility of using GPU-based SNN
controllers in robots. Benchmark scenarios more focused on
a task applicable outside of the neuroscientific community are
carried out in Diamond et al. (2016) andOstrau et al. (2020). Both
apply image classification and evaluate their models by using the
MNIST data set. The former is executed on the neuromorphic
systems Spikey and SpiNNaker, as well as GeNN. The latter uses
Cypress and therefore the PyNN interface for NEST, Spikey and
SpiNNaker and for GeNN and BrainScaleS the respective C++
interfaces are applied. In Diamond et al. (2016), the SNN used
for image detection is a model of the olfactory system described
in Schmuker and Schneider (2007).

As the work of Ostrau et al. (2020) shows some similarities
to our work, it is noteworthy that they pre-learn several
conventional ANNs which are transformed into SNNs. It is
shown that the SpiNNaker system can be efficient if it is used
to its full extend, whereas the GeNN implementations are most
suitable if one focuses primarily on short simulation times.

Very recently, a comparison between Loihi and a prototype
of SpiNNaker 2 has been done in Yan et al. (2021). Two kind of
benchmark tasks are used, keyword spotting and adaptive robotic
control to compare the hardware regarding power consumption
and computation time. The authors conclude that a general
statement is not possible as the energy efficiency is highly
influenced by the number of input dimensions. As SpiNNaker
2 handles high-dimensional vector-matrices better, it is faster
and more energy-efficient for keyword spotting. Loihi is superior
in regard to less complicated vector-matrix multiplication.
Furthermore, in DeWolf et al. (2020) a development workflow,
targeting neurorobotics applications, running on standard as
well as neuromorphic hardware, is presented. The authors
illustrate how Nengo helps users to develop robotic sensor and
actor applications, using two examples. The work creates a
basis for benchmarking neuromorphic architecture, specifically
Loihi, against standard hardware regarding robotic applications
implemented in Nengo.

Even though applying SNNs to robotic use cases is very
promising and despite the necessity of dedicated hardware for
fast and resource-friendly execution, the performance of parallel
hardware for SNNs has not been analyzed in the context of
robotics sufficiently. One particular area of robotics, path finding,
has not been investigated yet. In Davies (2019), an article
giving guidance for benchmarking neuromorphic hardware, the
temporal wavefront propagation was rated as an interesting
candidate by name, as it is seen as a viable contribution to the
greater field of neuromorphic benchmarks. While the authors of
Yan et al. (2021) include a robotics scenario, their benchmark is
limited to neuromorphic hardware. However, to develop efficient
robotics solutions with SNNs, it is crucial to know specification-
and performance-related details of all accessible systems to make
an informed decision regarding hardware. Hence, we focus on
an application-oriented robotic scenario. Using PyNN enables
us to include representatives of GPU-based and neuromorphic
computing as well as conventional simulators. Furthermore, this
performance comparison covers several different GPU-based
hardware realizations as the GeNN implementation is run on
three candidates of the Jetson series by Nvidia.

In this work, we carry out a benchmark of hardware well
suited for SNN simulation with an application-oriented test
scenario intended to be used in robotics.

2. METHODS

To correctly derive how the different systems perform in
comparison, it is crucial to run the experiments with a realistic
workload. As this work compares parallel benchmarks for robotic
applications, we chose the 3D neural path planning (Steffen et al.,
2020), described in section 2.1, as the test scenario. It was chosen
because path finding and motion control are corner stones for
robotics. Due to their strong synergies, hardware and software
in brain-inspired systems need to be considered together when
selecting suitable candidates for benchmarking. In section 2.2,
the decision-making process and its outcome are set out. As
the architecture of parallel hardware, especially neuromorphic,
is very different from the von Neumann architecture (VA),
traditional benchmarks are hardly transferable to event-driven
spiking use cases. Hence, meaningful metrics as introduced in
section 2.3 are necessary.

2.1. A Robotic Scenario—The Wavefront
Algorithm
A popular method for pathfinding is the so-called Wavefront
algorithm. It represents the environment as a matrix Map(i, j).
Each free cell has a value assigned to it which represents its
distance from the target cell and is also referred to as the weight.
Its value corresponds to the minimal value of its neighboring
cells +1. If a cell is occupied it is not assigned value. This can be
formalized by:

Map(i, j) =

{

min(neighborhood(i, j))+ 1 if empty

nothing if full
(1)

In order to find the shortest path the mobile agent then simply
follows the cells with the smallest weights until it reaches its target
(Nooraliei and Nooraliei, 2009; Pal et al., 2011).

In Steffen et al. (2020), the neural path planning algorithm
for robotic motion control is introduced. This implementation
is the test scenario of our benchmark. The method generates a
synaptic vector field (SVF), revealing a path, by propagating a
wavefront on a 3D environment. The environment is represented
as a cognitive map, a grid of excitatory place cells realized as
an SNN. The method, based on the 2D variation proposed in
Ponulak and Hopfield (2013), applies bio-inspired techniques
and is especially interesting for reactive flexible motion control
as needed for Human-robot interaction. The implementation of
Steffen et al. (2020) is carried out in NEST and tested on maps
with varying degrees of complexity. The NEST implementation
already allows fast simulation and query times but shows strong
weaknesses regarding the creation time. The purposeful use of
dedicated hardware, allowingmassive parallelism, shall overcome
these issues. A detailed visualization of the implemented
algorithm is given as a sequence diagram in Figure 1A. As
the evaluation in section 3 embodies a specific analysis of the

Frontiers in Neuroscience | www.frontiersin.org 3 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 1 | (A) Sequence diagram of the neural Wavefront algorithm for robot motion control, as presented in Steffen et al. (2020). (B) A vector field’s flow on a map

including three obstacles. The start neuron is marked in cyan and the target neuron in light green. (C) Impact of an up scaled map on the number of neurons and

synapses is shown. The x-axis represents the map size and the y-axis shows the number of neurons and synapses, respectively.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

algorithm’s sub-tasks, a brief explanation of the significant sub-
processes is provided.

2.1.1. A Cognitive Map
The neural environment representation is realized as an SNN
using place cells. The network’s topology corresponds to a
discretization of the environment. Each voxel is translated as a
place cell implemented as a single neuron. The network’s neurons
are connected via the Manhattan method, solely supporting
lateral connections. As we use bi-directional connections the
synapses are not symmetrical. The neurons representing free
and occupied space are identical. However, neurons embodying
free space are connected by excitatory synapses and neurons
embodying obstacles by inhibitory ones.

2.1.2. Synaptic Vector Field
The SVF is an interpretation of the synapses’ weights, of the
trained network. For learning spike-timing-dependent plasticity
(STDP), a biologically plausible learning rule updating the
weights depending on the precise pre-synaptic and post-synaptic
spike times (Gütig et al., 2003) is used. To generate a SVF
with neural waves, three steps are required. (1) Initialization,
the place cell representing the target position triggers the neural
wave. Applying an electrical current to the respective neuron,
increases its membrane potential. Thereby a spike is emitted,
exciting the neuron’s neighbors and so starting the wave of
activation which evolves through the neural grid. (2) Learning,
through the learning rule STDP the synaptic weights are altered
in the direction of the wave. (3) Interpretation, by retrieving the
synapses’ weights as vectors, a vector field is generated. This
vector field is used for visualization purposes and for finding a
path. In Figure 1B, a 3D visualization of the SVF is provided.
The Vector’s length and color provide information about the
strength of their weights. Shorter, darker vectors stand for weaker
synaptic weights and longer, brighter vectors, indicate strong
synaptic weights. For clarification, only 5% of the vectors are
visualized in Figure 1B and the length of all vectors has been
doubled to increase their visibility. However, this does not affect
their expressiveness as their relative length is still meaningful
with respect to their strength. It can be seen that the vectors are
pointing in the direction of the start.

2.1.3. Path Search
The synaptic weights, building up the vector field, are interpreted
as forces used to move the agent and thus generate a path. The
resulting path naturally leads away from obstacles as synapses
connecting two neurons of the free space are stronger than
synapses between free and occupied neurons. By averaging over
the local vectors at each step local minimas can be avoided.
The resulting force vector is subsequently added to the previous
movement direction.

2.2. Tools and Techniques
Three different simulators, or rather hardware solutions, have
been selected for the benchmark, representing three strongly
deviating approaches for simulating spiking neurons. NEST is
chosen as an actual simulator and the SpiNNaker system as a

representative for neuromorphic architectures. GeNN constitutes
a recently developed alternative running on conventional parallel
hardware. GeNN can be used on a GPU but also in a CPU-only
mode, which allows it to run on a broad range of hardware from
desktop PCs to embedded systems.We evaluate GeNNwith both,
its CPU-only and GPU version. The CPU-only mode allows to
compare the performance to the results obtained with the NEST
simulator which were presented in Steffen et al. (2020). Both,
GeNN on CPU and NEST, are run on a single processor core.
A visualization of all applied hardware and software solutions
is provided in Figure 2. As this paper aims to evaluate the
performance of systems in context of robotics, the Jetson series
by Nvidia is chosen as a hardware backend for GeNN on GPU.
The Jetson series consists of several different embedded GPU
systems, which were designed with the goal of supporting AI
solutions in hardware with a small form factor. This enables the
Jetson chipset to be integrated into mobile units (Franklin, 2018).
The boards are general purpose hardware and are both more
widely available and cheaper than the specialized neuromorphic
hardware. Three different Jetson boards are evaluated in this
benchmark, the Jetson Tx2, AGX Xavier, and Xavier Nx. In order
to make the results of the embedded systems more comparable,
a regular desktop PC is included in the analysis. The desktop
PC is also used to run the NEST simulations. The PC has 32
GB of RAM and contains an Nvidia RTX2070 GPU and an
AMD Ryzen 7 3700x CPU. A SpiNN-5 Board is used to run the
SpiNNaker implementation.

2.2.1. Hardware Specific Adaptations
In order to allow a fair comparison between the simulators, the
benchmarking scenario needs to be implemented in a similar
way on all platforms. PyNN offers the possibility to use the
same model for all simulators. However, as noted in Diamond
et al. (2016) this implies the risk that individual strengths of
the simulators are not accounted for. Despite this issue, in
this paper, all SNNs are modeled with PyNN, whereas Ostrau
et al. (2020) opted to use the Cypress library and Diamond
et al. (2016) decided to model their networks in the native
modeling languages of the simulators instead of using their PyNN
interface. However, using PyNN to model all networks allows
to simulate exactly the same model on all backends. Figure 2
provides an overview of the hardware and software applied for
this benchmark.

The benchmark is based on the NEST implementation
of Steffen et al. (2020). Since all three models are implemented
in PyNN, in theory it would be sufficient to specify a different
PyNN backend. However, the different backends implement
divergent subsets of PyNN’s functions and models. Therefore,
changes to the code are required to run the simulation on
the different backends. However, it is also note-worthy that
there are some possibilities to tailor the simulation more to the
individual system. This allows to better account for individual
strengths and weaknesses of each architecture. A big difference
in the implementation of the simulators is the step size. While
SpiNNaker uses a time step of 1ms, GeNN andNEST simulations
are usually run at time steps of 0.1 ms. This is due to the fact
that 0.1 ms is the time step most often used for neuroscientific

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 2 | Overview of the hardware and software applied for this benchmark. On the top level the Wavefront algorithm representing the test scenario is featured. In

the model layer below it is visualized how the algorithm is implemented via PyNN running in python. On the interface level the model is translated to the respective

back ends and subsequently transferred onto the final hardware layer for execution.

simulations (van Albada et al., 2018). The default time step is
chosen for each simulator. The Wavefront algorithm is intended
to solve a path planning problem in a time efficient manner,
therefore, artificially slowing down the simulations in GeNN and
NEST would not be realistic and distort the results. The time
step of the simulation running on SpiNNaker is not lowered
to match that of the other two simulators, as this would result
in a slowdown of the simulation by a factor of 20. To account
for the different time steps chosen, different total simulation
times are required to allow the simulations to finish on the
different platforms.

The original implementation of the neural wavefront
algorithm presented in Steffen et al. (2020) uses the
IF_cond_alpha model, which is a standard model in
PyNN. It implements a LIF neuron with an alpha function
to describe its post synaptic potential. This neuron model is
currently not supported in sPyNNaker. The neuron model
was thus changed to IF_cond_exp, an LIF neuron with an
exponentially decaying post-synaptic potential. The SpiNNaker
system has an additional constraint, the representation of
synaptic weights as 16 bit integers. To convert the weights, a bit
shift operation needs to be performed (van Albada et al., 2018).
The algorithm used to determine the bit shift, does not allow
the original maximum synaptic weight of wmax = 4000.0 µS.
The highest maximum weight that can be implemented is

wmax = 63.0 µS. The Wavefront Algorithm uses STDP with
additive weight dependence. The value of wmax = 63.0 µS is
too low, for the additive weight dependence to induce enough
weight change to create the correct SVF. Therefore, for the
implementation in sPyNNaker, the maximum weight is scaled
down to wmax = 63.0 µS. After the simulation, the weight is
scaled back up by a factor of fscale = 4000.0/63.0. The re-scaling
is not entirely correct, as the STDP rule introduces an additional
term that cannot be properly re-scaled by this method. It would
be possible to re-scale the weights correctly by sampling the
weights before and after simulation, calculating 1w and scaling
it independently. However, this would introduce additional
overhead in the pathfinding phase of the algorithm. In practice,
the re-scaling, even though not entirely correct, still produces
acceptable results. In the original implementation, the target
neuron which starts the neural wavefront receives a DC current
as an input. The current increases the neuron’s potential inducing
a spike. DC current sources are currently not implemented in
sPyNNaker. Hence, the spike in the target neuron is induced
using a neuron population of type SpikeSourceArray. The
SpikeSourceArray population can then be connected to
specific neurons via a projection. In this implementation the
SpikeSourceArray population consists of one neuron that
is connected to the target neuron with a static synapse. Instead of
building up the membrane potential in the target neuron, a spike

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

TABLE 1 | Overview of all system specific adaptations for each NEST, SpiNNaker, and GeNN, in respect to the original implementation of Steffen et al. (2020).

Features Original implementation NEST SpiNNaker GeNN

Neuron model IF_cond_alpha IF_cond_exp IF_cond_exp IF_cond_exp

Step size 0.1 ms 0.1 ms 1 ms 0.1 ms

Weights Unscaled Unscaled Scaled Unscaled

Spike source DC source DC source SpikeSourceArray DC source

is induced right away. This is advantageous as the wavefront can
be initiated right after the first time step. The spike source array
introduces a small overhead for the simulation time for small
maps on pynn_genn. To induce almost instantaneous spiking,
the current in the DC source is set to 1,000 mV. A complete
overview about all system specific adaptations is given in Table 1.

2.2.2. Measurements
In order to gather data about performance, several measurements
take place inside the simulation code. The individual functions
Create neurons, Create synapses, Simulation,
Build SVF, Compilation/Load Simulation, and
Finding path are timed with the help of a python wrapper
function. It saves the time stamp before the function is started
and again when the function terminates. The delta is the
execution time of the function and labeled with the function’s
name. In NEST the initialization of neurons and synapses
in the code causes them to be initialized as soon as their
respective definitions are executed. With sPyNNaker and
pynn_genn the values are instantiated as well, however, when
the run() function is executed, the synapses are instantiated
again. This is due to the fact that they need to be placed onto
the vertices of the MachineGraph in case of sPyNNaker, and
executed in C++ or CUDA C in case of pynn_genn. The
run() function combines the loading and running of the
simulation in sPyNNaker and the compilation and running of
the simulation for pynn_genn into one step. This makes it
impossible to determine the exact time needed for the individual
steps with the help of the wrapper. To determine the time
required for loading and compilation, the sPyNNaker and
GeNN simulation are initially run for 0 s. This triggers the
loading and compilation respectively, but does not start the
wavefront. When running the simulation on SpiNNaker again,
the entire loading process is restarted. To avoid that the loading
time is measured twice, the created logs of the SpiNNaker
machine are read out. The logs contain timestamps that allow
to determine correct start time. This timestamp is then used
with the end timestamp of the python wrapper to determine
the simulation time. The path length is determined during
simulation time by obtaining the length of the list containing
the path.

2.2.3. Map Scaling
To compare how the different hardware solutions handle an
increasing number of neurons and synapses, the networks are
scaled up. As the network is a direct neural representation of
the environment, enlarging the maps implies a likewise grow

of the neural embodiment. The original maps, used in Steffen
et al. (2020) of size 20 × 20 × 20, served as the reference
value for the smallest maps. How an enlarged map influences
the number of neurons and synapses within the network is
visualized in Figure 1C. The number of synapses increases
exponentially while the number of neurons is increased in a
cubic manner, when the size of the map is scaled up. A prior
examination regarding the maximum map size supported on
each hardware specific implementation is required. The map size
is limited by the available memory of the respective hardware
architecture, for GeNN und NEST. For SpiNNaker, the long
simulation times associated with larger maps limited the size of
the network.

2.3. Metrics
To measure the performance of the applied hardware solutions,
several metrics are introduced. As stated in Vineyard et al. (2019)
it is practically meaningless to compare parallel architectures
using the same metrics as applied to conventional VAs. Due to
the architectural approaches being designed and optimized for
different use cases, it is challenging—but absolutely necessary—
to choose appropriate metrics enabling a solid understanding of
their advantages and trade-offs.

2.3.1. Simulation Time
It is not insightful to compare only internal metrics of the systems
such as the speed of the processor clock. Instead, a comparison
indicating how the systems perform when given an actual task is
required. TheWavefront algorithm aims to solve the pathfinding
problem as fast as possible and ultimately in real-time. Hence, the
most interesting metric to consider is the execution time. When
considering the time, not only the actual execution time is of
interest, but also the amount of time needed to load or compile
the simulation.

2.3.2. Energy Consumption
The second meaningful metric is the energy consumption,
more precisely, the average energy needed per run. For
robots in general—but particularly for mobile robots—it is
important that the individual components do not consumemuch
energy. The measurement of the energy consumption is carried
out externally. In literature, two methods for obtaining data
regarding energy consumption are common. Firstly, a consumer
grade power meter that allows to store time stamped data
which can be extracted via an SD card. In Ostrau et al. (2020),
the Ruideng UM25C power meter and PeakTech9035 power
meter are used. Secondly, image recordings of the power meter
with subsequential digital post-processing. In Diamond et al.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

(2016), van Albada et al. (2018), and Knight and Nowotny
(2018) cameras are used to record the display of the power
meter. A digital post-processing is required to obtain meaningful
energy data.

For this benchmark, the energy consumption is measured
using a household energy meter of type Voltcraft 4000 Energy
logger that allows to store and extract time stamped data. The
power meter has a minimal resolution of 0.1 W and an accuracy
of ±1% and one count for the expected power draw. The power
meter samples the power draw only once per minute and saves
the data internally with a time stamp. The internal storage is
extracted with the help of an SD card and then subsequently
converted into csv format by the Voltsoft software that comes
with the Voltcraft 4000 Energy Logger. In order to obtain the total
energy consumption, the values are integrated using the numpy
trapz function. The time step is set to 60s.

2.3.3. Path Length
The path length is measured during simulation, after a path has
been successfully determined. As the path is saved as a list, its
longitude is simply the length of the list. To compare the length
of the paths found on the different implementations, the median
of the path lengths is taken over all runs on a particular map for
each hardware solution. This allows to quickly determine if the
path length differs throughout runs on the same simulator.

Comparing the path length determined on the different
hardware solutions poses an issue. On SpiNNaker the weights
differ because they are converted via bit shifting, causing some
small errors, which are then amplified by the scaleup later in the
process. Ultimately, we would use the path length to compare the
accuracy of the different STDP implementations. In other words,
we investigate if in case all simulators get the same initial weights,
do they have the same final weights after learning via STDP.

2.3.4. Hardware Resources
In addition to the main metrics, the consumption of different
hardware resources, namely the memory usage and CPU/GPU
of the Desktop PC and the Jetson boards are measured. This
is done with the help of logging software. For the Desktop PC,
glances1 is used for CPU andMemory as well as NVIDIA System
Management Interface (nvidia-smi2) for the GPU data. On the
jetson boards a logging script based on jetson-stats3 is run to log
the memory usage.

3. EXPERIMENTS AND RESULTS

3.1. Comparing Different Hardware
Solutions
The total time of the simulation includes the time measurements
of all functions that are needed to execute the Wavefront
algorithm. Table 2 gives an overview of the median total time,
path length, and average energy consumption per run. However,
as the comprehensive version is very long and detailed, Table 2

1https://nicolargo.github.io/glances/.
2https://developer.nvidia.com/nvidia-system-management-interface.
3https://github.com/topics/jetson-stats.

TABLE 2 | An overview of the results of the simulations on the map IV.

Map size Total time [s] Path length Average energy

per run [J]

GeNN 20 54.13 36.0 2254.65

25 85.38 40.0 4358.44

28 116.33 46.0 5521.26

30 143.63 49.0 7169.49

33 201.29 50.0 2347.63

SpiNNaker 20 64.62 32.0 13132.09

25 128.50 49.0 23881.05

28 171.26 44.0 14484.20

30 162.46 50.0 13593.85

33 259.03 53.0 21046.42

35 324.96 55.0 24599.44

40 368.47 72.0 30573.19

NEST 20 8.39 38.0 1861.54

25 18.34 42.0 1908.04

28 26.76 41.0 2453.65

30 35.20 48.0 3089.95

33 50.28 48.0 4294.51

35 72.84 58.0 6126.01

40 114.15 65.0 7641.54

45 180.23 66.0 12266.63

55 421.65 81.0 50946.67

The median total time, path length, and average energy consumption per simulation

run is listed for each implementations. The GeNN version was carried out on an

AGX Xavier. Data regarding GeNN executed on other hardware solutions is given as

Supplementary Material.

is only an excerpt. It comprises SpiNNaker, NEST, and GeNN.
The GeNN implementation was carried out on an AGX Xavier.
The complete table including data for GeNN on RTX2070, in
CPU-only mode, on a Tx2 and a Xavier Nx is provided as
Supplementary Material. The detailed analysis in this paper is
focused on map IV from Steffen et al. (2020), since this is the
most complex. Tests on other maps presented in Steffen et al.
(2020) show similar results, indicating that the statements can
be generalized. As not to go beyond the scope of the work these
additional results are not presented in this paper.

The times for the individual functions Create neurons,
Create synapses, Simulation, Build SVF,
Compilation/Load Simulation, and Finding path
are at first evaluated separately for every map. The median,
which is more robust against outliers than the mean, and the
standard deviation of the time are determined for every function
separately. In order to obtain a total time, as provided in the
second column of Table 2, the duration for the individual
functions are summed for every run and subsequently.

The implementations running on the desktop PC are generally
faster than implementations on other hardware. With total
simulation times between 7.20 and 409.27 s, the implementation
of GeNN on the CPU has the shortest total time of all
implementations, followed by the implementation in NEST
(8.39–421.65 s). Both implementations run on a single thread
on the CPU of the desktop PC. The GeNN implementation

Frontiers in Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 667011

https://nicolargo.github.io/glances/
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/topics/jetson-stats
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

running on the RTX2070 GPU has slightly longer total
simulation times than the two implementations on the CPU.
The implementations running GeNN on the Jetson Boards take
significantly longer than the implementations on the desktop PC.
The total simulation time of map size 30 on the RTX2070 is still
considerably shorter than the total simulation time for map size
20 on any of the Jetson boards. The AGX Xavier has the best total
simulation times out of the three boards, followed by the Xavier
NX. The implementation running on the SpiNNaker board has
worse total simulation times than the AGX Xavier, beating the
Xavier NX and the Tx2, with the Tx2 being the slowest out of all
hardware systems tested. The GeNN implementation running on
the CPU scales better than the NEST implementation. Both are
showing an exponential increase in total simulation time with
increasing map sizes. For the AGX Xavier and Tx2 a similar
trend can be observed, however, the trend is less noticeable due
to the limited map sizes. For simulations with GeNN on the
Xavier NX and the RTX2070, the total time appears to increase
linearly. Some linear segments can be observed when looking at
the scaling of total time on the SpiNNaker implementation. There
is, however, a very striking deviation from the scaling, the total
time decreases when the map size is increased from 28 to 30.

3.2. Performance Analysis of Isolated
Functionalities
Additionally to the total time measurements in Table 2,
Figure 3B shows how the individual functions scale with
increasing map size for the implementation of GeNN running
on the CPU. One can see that the exponential component in
the scaling of total time is caused by the creation of synapses.
In Figure 4A, the proportion for synapse creation is shown
to increase considerably with increasing map sizes, eventually
outweighing compilation time. For a map size of 55, synapse
creation makes up 75.01% of the total time. On smaller maps,
the compilation time dominates the total time. The proportion
of the function Simulation increases only slightly with an
increase in map size. Except for the creation of synapses, all
other sub functions increase linearly with increasing map sizes.
Compared to the implementation of GeNN on the RTX2070, the
compilation times for GeNN on CPU are shorter. As shown in
Figure 4B, on the RTX2070, compilation and loading timesmake
up by far the largest fraction of the total time with 77.63% for a
map size of 20. The proportion of compilation and loading time
decreases with increasing map sizes, however, it still makes up
almost 50% of the total time. Creating synapses takes more than
twice as long as the simulation of the SNN itself for maps of all
sizes. The development of the individual functions is illustrated
in Supplementary Material. All sub functions scale linearly with
increasing map sizes, except for the synapse creation, where the
beginning of an exponential increase can be observed.

The proportions of individual functions on the Jetson
boards show a pattern similar to the RTX2070. Figures 3B,D,
6B,D show how the time of individual functions scale
with respect to increasing map sizes4. The function

4Plots regarding the scaling properties of GeNN on Tx2, Xavier NX, and RTX2070

(desktop GPU) are provided in Supplementary Material.

Compilation and loading and Simulation show
a linear increase for the Tx2 and the AGX Xavier, whereas
Create synapses shows the beginning of an exponential
increase when the map is scaled up. On the Jetson Xavier Nx,
the function Create synapses scales linearly. The time
required for compilation/loading reaches a plateau at maps of
size 30. The time required to build the SVF remains almost
constant on the AGX Xavier for all map sizes. For the Tx2 and
Xavier NX, however, a strong increase is measured for the largest
map size. The proportions of the different sub-functions are
visualized in Figure 5. With 76.6, 73.8, and 69.3% compilation
and loading time represents the largest part of the total time
on all three Jetson boards for map size 20. The proportion of
the compilation and loading time decreases when maps get
larger, however, they still make up around 45% of the total time
and are almost two times higher than the actual simulation
of the SNN. The function to create synapses also takes longer
than the simulation time itself. With exception to the Xavier
Nx on map size 20, synapse creation takes more than twice
as long as the actual simulation for all Jetson boards on all
map sizes. The time required to build the SVF increases with
larger maps in proportion to the total time. On the Xavier Nx,
in particular, a strong increase can be observed for maps of
size 30.

The latest update of pynn_genn introduced the
reuse_model flag. I allows for the CUDA backend to
reuse the model of a previous run of a simulation, if the same
network is used. Most of the generated code can therefore be
reused and does not need to be compiled again, thus significantly
saving compilation time. For the simulation running on the RTX
2070 the compilation and loading time could be reduced by
8.01 s for the smallest map and 7.84 s for the largest map which
accounts for 72.1 and 44.4% of the simulation and loading time.
For the Jetson AGX Xavier a reduction by 24.51 s for the smallest
map and 27.76 s for the largest map were observed which
amounts to a reduction by 61.9 and 22.1% of the simulation and
loading time.

Figure 4C shows that for the NEST implementation. The total
time is dominated by the creation of synapses which makes up
between 84.3 and 89% of the total simulation time for all map
sizes. This reflects the results in Steffen et al. (2020), where the
creation of synapses also contributes the most to simulation
time. For the SpiNNaker implementation (see Figure 4D), the
simulation and loading times far outweigh the time it takes
to create the synapses, which is very similar to the observed
behavior of GeNN on the CPU (Figure 4A). Similar times for
Create synapses are expected, as the function is executed
on the CPU of the desktop PC in both cases. However, on the
SpiNNaker board, Create synapsesmakes up amuch lower
proportion of the total time, ranging from 3.3% to 15.6% for
the smallest and largest map, respectively. The time it takes to
load the simulation and to build the SVF makes up the highest
proportions of the total time. As illustrated in Figure 6B, the
sudden decrease of total simulation time, that can be observed
in Figure 6A, appears to be mainly due to a decrease in the
time it takes to build the SVF. It contributes up to 59% to the
total time, which is a much larger proportion than the NEST

Frontiers in Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 3 | Scaling properties of functions for GeNN on the CPU in (A,B) and for Jetson AGX Xavier in (C,D). (A,B) Show how the total time and energy consumption

scale with increasing map sizes. In (C,D), the development of the different functions of the Wavefront algorithm is displayed with regard to an increasing map size. The

x-axes show the map size and thereby, the number of neurons.

implementation or the GeNN implementations running on the
desktop PC.

On all systems, the time it takes to create neurons is negligible
compared to all other functions which is not surprising as the
number of neurons is only a fraction of the number of synapses
and weights. The function Path finding also makes up only
a small proportion of the total time.

3.3. Path Length
The path length, stated in the third column of Table 2, is
measured during the simulation, after the pathfinding process is
finished. The path is saved as a list, which means the path’s length
equals the list’s length. To compare the length of the paths found
on the different implementations, the median of the path lengths

is taken over all runs on a particular map. To check if the path
length differs between individual runs, the standard deviation
of the path lengths is considered as well. Since the Wavefront
algorithm does not guarantee to find an optimal path (Steffen
et al., 2020), the path for map size 20 has more detours than
the path in the larger map. This is visualized for GeNN on PC
in Figure 7.

The wavefront Algorithm relies on the weights of the synapses
to create the SVF and find a path. In order to make the path
length comparable, it needs to be ensured that the simulators
start out with the same initial weight. Unfortunately this can
only be ensured for the simulations in NEST and GeNN, as the
bit shifting in the SpiNNaker system causes rounding errors,
which are amplified by the scaling of the weights. As expected the

Frontiers in Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 4 | Distribution of total time simulated with GeNN on a desktop PC in (A,B) and NEST in (C) and SpiNNaker in (D). The different proportions of the

sub-functions in percent are shown as bars for every map size. For (A,B), the compilation time, shown as a green bar, make up the highest proportion of the total

time. With increasing map sizes, the proportion of synapse creation increases. In (B) (RTX2070), the proportion of the actual simulation also increases steadily,

whereas it remains more constant in the CPU implementation in (A). In (C), the NEST implementation, the synapse creation has by far the highest proportion of the

total time. For the SpiNNaker implementation in (D), the functions to load the simulation and build the SVF form the highest proportion of the total time.

path lengths differ between the SpiNNaker implementation and
the other implementations. However, there is also a difference
between the NEST and GeNN implementations. The most
striking observation is that the path lengths differ on different
GeNN implementations. Path lengths on the Jetson boards even

differ between individual runs on the same map and same Jetson
board. To rule out that the different GeNN implementations
start out with different parameters, the initial synaptic weights
are compared. The initial weights are measured after the code
is compiled and loaded onto the GPUs. This ensures that

Frontiers in Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 5 | Distribution of total time on Jetson boards. The different proportions of the sub-functions in percent are shown as bars for every map size. Compilation

and loading time, shown as a green bar, make up the highest proportion of the total time. With increasing map sizes, the proportion of synapse creation (blue bar) and

simulation (orange) increases. On the Xavier Nx a sharp increase in the proportion of the time to build the SVF (gray) can be observed for map size 30. (A) Xavier Nx,

(B) AGX Xavier, (C) Tx2.

values are not altered during compilation or initialization on
the GPU. All GeNN implementations share the same initial
weights. To further narrow down the cause of the different path
lengths, the final weights are analyzed as well. As expected, the
final weights differ between the Jetson boards and the GeNN
implementations on the PC. The final weights also differ between
runs on the maps on all three Jetson boards. The differences
in the path length, hence arise during the simulation of the
Wavefront algorithm.

3.4. Energy Measurement
The data about power consumption, as provided in the fourth
column of Table 2, is stored with a timestamp associated with
every data point. To get the relevant data for eachmap, the power
measurement data is matched with the timing data, by comparing
their timestamps. All power draw data with timestamps between
timestamp_start of the first run and timestamp_end of
the last run are considered. As the power meter only logs power
draw once a minute, very few data points are available for every
map. The data is linearly interpolated and integrated to obtain
the total energy. The total energy obtained is then divided by the
number of simulation runs to get an average value for the energy
consumption of a single run.

The energy consumption depends on the total time and the
energy efficiency of the applied hardware. Figures 3A,C, 6A,C
show how the total time and energy consumption per run
increase with an up scaledmap size for GeNN on the CPU, GeNN
on an AGX Xavier, the SpiNN-5 board and in NEST. It can be
observed that the average energy consumption is increasing very
similarly to the total time. The AGX Xavier and Xavier NX both
require less energy per run than the GeNN implementations on
the desktop PC. This is despite the fact that both Jetson boards
have a much longer total time. The GeNN implementation on
CPU consumes less energy than the implementation on the RTX
2070 which correlates with the shorter total simulation times.

3.5. Hardware Resources
The usage of hardware resources shows similar development for
the different simulators on the different map sizes, therefore
resource use is discussed by using exemplary data. Additional
data is provided as Supplementary Material. The development
of memory usage is similar for all GeNN simulations. Figure 8
shows memory utilization in percent for the Jetson AGX Xavier
which is similar to the other GeNN simulations and SpiNNaker
for map size 33. For the Jetson AGX Xavier there is a very slow
steady increase inmemory usage, until the simulation is compiled
and loaded which causes a sharp rise in memory utilization and is
followed by a slower steady increase during the simulation itself.
For SpiNNaker the memory usage rises much earlier, during
the creation of the synapses and then rises again sharply when
the simulation is loaded. The development of the CPU usage
on the Desktop PC differs between the different simulators.
Figure 9, shows the CPU utilization in percent for GeNN on
CPU, GeNN on the RTX2070 and for SpiNNaker. For GeNN
on the RTX270 a large single spike can be observed that takes
place during compilation and loading of the simulation. For
the SingleThreaded CPU backend of GeNN a large spike and
a second smaller spike can be observed which coincide with
compilation ad loading of the simulation and the simulation
itself, respectively. Curiously, a larger proportion of the CPU is
used during the compilation and loading process of the CUDA
backend. For SpiNNaker one can observe a large spike in CPU
usage during the creation of synapses and during the function
Build SVF.

4. DISCUSSION

The fact that there is no significant difference in path
lengths between the different implementations shows that the
mechanisms to simulate STDP produce similar and consistent
results. The Jetson boards form an exception in this regard as
they have different path lengths in different runs of the simulation

Frontiers in Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 6 | Scaling properties of functions for SpiNNaker in (A,B) and NEST in (C,D). (A,C) Show how the total time and energy consumption scale with increasing

map sizes. In (B,D), the development of the different functions of the Wavefront algorithm is shown with regard to an increasing map size. The x-axes show the map

size and the number of neurons.

with the same map size. This difference is most likely caused
by the non-associative nature of floating point numbers, which
can lead to different results when additions are parallelized in
GPUs. This makes it difficult to compare results obtained from
calculations on a GPU to results obtained from calculations on
CPUs (Whitehead, 2011). The possibility of simulation results
differing between runs of a simulation, especially when STDP is
used, is described in Yavuz et al. (2016). In Knight and Nowotny
(2018), no noticeable divergence between simulations of the
microcircuit mode were reported. In our benchmark only a single

spike wave is simulated, making the model more susceptible
to small differences in the simulation. However, it is surprising
that the result deviations only appear on the embedded systems
and not on the discrete GPU. Particularly as both are used with
the single precision floating point operations, which makes the
deviations in the simulation results more likely than double
precision operations.

The Jetson boards, representing edge computing, stand out
with regard to energy efficiency. As they are designed with a
use for mobile applications in mind, they are optimized for low

Frontiers in Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 7 | Path found for size 20 and 25 with GeNN on CPU. The start neuron is highlighted in green, the target neuron cyan, and the path orange. For map size 25

a more direct path is found, which causes the path length to be slightly shorter, despite the larger map size. (A) Path for map size 20. (B) Path for map size 25.

power draw. A desktop PC on the other hand is not optimized
in this regard. This explains the high energy consumption per
run on the implementations on the desktop PC, despite the
much shorter total simulation times. The NEST and GeNN
implementation running only on the CPU of the desktop PC need
less power than the GeNN implementation on the RTX2070 as
their simulation times are shorter and the GPU is an additional
device requiring energy. The high energy consumption of the
SpiNNaker implementation shows that hardware with a higher
power draw, that at the same time is able to run the simulation
faster can still be more efficient than systems that have a low
power draw but longer simulation times.

4.1. Contextual Analysis
For all implementations of GeNN, compiling/loading of the
simulation and the creation of synapses are both tasks which are
performed by the CPU. Therefore, for the majority of the time,
only the CPU performs operations. Only the actual simulation
of the SNN is carried out by the GPU. As the Jetson boards are
designed for GPU heavy tasks, their CPUs are rather lightweight.
The CPU complexes of all Jetson boards is made up of ARM
based CPUs. For the Xavier Nx the CPUs can reach a maximum
frequency of 1.9 GHz. A maximum frequency of 2.26 GHz
can be reached by the CPUs of the AGX Xavier, while the
CPUs of the Tx2 reach a maximum frequency of 2.0 GHz.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

FIGURE 8 | Memory utilization in percent for GENN (exemplary AGX Xavier) and neuromorphic hardware for the map size 33. (A) AGX Xavier. (B) SpiNNaker.

FIGURE 9 | CPU utilization in percent for different simulation options of GeNN on a Desktop PC and additionally on neuromorphic hardware for the map size 30. (A)

GENN (GPU), (B) SpiNNaker, (C) GENN (CPU).

These maximum frequencies are low, however, consumer CPUs
are generally more powerful than embedded processors. This
explains the large difference in compilation times between the
implementations on the Jetson boards and the simulations of
GeNN on PC. The difference in compilation time between
pure CPU implementation and the one using the GPU can be
explained by the fact that no transfer between host RAM and
GPUmemory needs to take place when only a CPU is used. Also,
no additional CUDA code needs to be generated and compiled in
the CPU only version of GeNN.

The implementation in NEST does not need to be compiled
or loaded to an external device. However, it takes longer to create
neurons and synapses than on the GeNN CPU implementation.
As shown in Figure 1C, the amount of synapses drastically
increases with increasing map sizes which also leads to an
increase in the time needed to create them. The creation
of synapses is performed on the CPU using python for all
implementations. For GeNN implementations, this entails the
instantiation of PyNN projections. However, the synapses need
to be instantiated again later when the C++/CUDA code is
run. The compilation and simulation portions of GeNN do not
display any exponential increase when maps are scaled. This

suggests that GeNN, when used with its native frontend, can
cope significantly better with large numbers of synapses than
when it is used with its pynn_genn frontend. This comes as
no surprise as C++ is a compiler language while python is an
interpreter language which tends to be slower than compiler
languages. When comparing the time required to create neurons
and synapses in the GeNN and NEST implementations one
also needs to account the compilation time in GeNN, but even
when doing so, neurons and synapses are instantiated faster on
the GeNN implementation. This advantage becomes especially
apparent for large map sizes where it takes more than 20 s longer
for the NEST implementation to create the synapses then for
the GeNN CPU implementation. This difference in the time it
takes to construct the network causes the overall shorter total
time of the GeNN implementation on CPU, as NEST has shorter
times for all map sizes when comparing only the simulation of
the network.

For the implementation on the SpiNN-5 board, a similar
amount of time is spent on synapse creation as in the GeNN
CPU implementation. However, as the functions Simulation,
Load Simulation, and Build SVF take much longer, it
is less noticeable. As described in Rowley et al. (2020), both

Frontiers in Neuroscience | www.frontiersin.org 15 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

simulation and loading require communication with the host
system. This additional overhead explains the large difference
in time required for simulation between the SpiNNaker system
and the GeNN implementations. Especially the time it takes to
build the SVF for the SpiNNaker stands out, as the SVF is built
by the CPU of the desktop PC just like the implementations of
GeNN on the desktop PC and NEST, which are all considerably
faster. This can be explained by the fact that to build the SVF,
the weights of all inhibitory- and excitatory connections are
required, which need to be extracted from the simulation. For
the implementation of GeNN on CPU and NEST, the weights
are already present on the system RAM, hence requiring short
loading times. These loading times get a bit bigger for GeNN
on the RTX2070, where they need to be loaded from the device
memory of the GPU. In the SpiNNaker implementation, the
weights need to be transferred between the SpiNNaker device
memory and the system RAM via a 100 Mbit Ethernet cable
which is about 10 times slower than on the internal data busses
used in the GeNN and NEST implementations.

4.2. Limitations and Outlook
The hardware performance comparison between high-
performance GPU (RTX2070) and embedded GPU (Nvidia
Jetson) can be seen as inappropriate. As one can foresee that the
implementation running for desktop GPU are much faster while
consuming more energy. However, it is still very interesting to
see the exact delta of embedded GPU and discrete GPU/CPU. It
provides a good insight about how far the state of development
with embedded systems really is.

Memory is a limiting factor in this benchmark, as it limits
the size of the SNN that can be simulated. Especially for the
GeNN implementations that use the CUDA backend this poses
a problem. Memory on GPUs tends to be less than the RAM on a
PC. Regarding the Jetson boards, memory is shared between CPU
and GPU which further limits their capabilities to simulate large
SNNs, as there is an increasing performance penalty once the
memory reaches its limits. The scripts that log the hardware data
only allow for a sampling rate of 1 Hz as logging data more often
than once per second results in uneven sampling intervals. Due to
the low sampling rates of the energy logger, an in-depth analysis
of the energy consumption and power draw is not possible. The
data, however still shows trends and gives an order of magnitude
of the energy consumption of the different hardware platforms.
The implementation of models in pynn_genn introduces a
large overhead on the GeNN implementations, as the synapses
and neurons first need to be instantiated as pynn projections
and populations before they can be simulated in GeNN which
is implemented in C++.

As neuromorphic platforms with static synapses, such as
True North or NeuroGrid, do not support neural plasticity,
this benchmark using STDP is not well applicable for them.
Platforms with configurable plasticity are generally capable of on-
line learning. However, ROLLS does not support the required
learning rule and the ODIN and TITAN chip have a quite limited
number of neurons, only allowing the investigation of tiny maps.
Platforms with programmable plasticity like BrainScaleS 1 & 2,
SpiNNaker-2, and Loihi not only support online learning but
also the required learning rule STDP. Therefore, our benchmark
implementation is easily transferable to them. Hence, we want
to transfer the implementation to either Loihi, SpiNNaker-2, or
BrainScaleS 2.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

LS, AR, and RD are responsible for the idea, the core concept, and
the architecture of this paper. LS, RK, SU, and SN did the research
and wrote the paper. All authors contributed to the article and
approved the submitted version.

FUNDING

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement
No. 945539 (Human Brain Project SGA3) as well as
the Baden-Württemberg Stiftung under the research
program Neurorobotik.

ACKNOWLEDGMENTS

We would like to acknowledge the effort of our partners
within the HBP who took the time to give helpful advice and
feedback. Particularly Thomas Nowotny, James Knight, and
Sacha van Albada.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.667011/full#supplementary-material

REFERENCES

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018). Code generation in computational neuroscience: a review of tools and

techniques. Front. Neuroinformatics 12:68. doi: 10.3389/fninf.2018.00068

Bower, J. M., Beeman, D., Bower, J. M., and Beeman, D. (1998).

“Introduction,” in The Book of GENESIS (New York, NY: Springer), 3–5.

doi: 10.1007/978-1-4612-1634-6_1

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book |

NEURON. Cambridge University Press. doi: 10.1017/CBO97805115

41612

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.

Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Frontiers in Neuroscience | www.frontiersin.org 16 June 2021 | Volume 15 | Article 667011

https://www.frontiersin.org/articles/10.3389/fnins.2021.667011/full#supplementary-material
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1007/978-1-4612-1634-6_1
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Steffen et al. Benchmarking Parallel Hardware in Robotics

DeWolf, T., Jaworski, P., and Eliasmith, C. (2020). Nengo and low-power AI

hardware for robust, embedded neurorobotics. Front. Neurorobot. 14:568359.

doi: 10.3389/fnbot.2020.568359

Diamond, A., Nowotny, T., and Schmuker, M. (2016). Comparing neuromorphic

solutions in action: implementing a bio-inspired solution to a benchmark

classification task on three parallel-computing platforms. Front. Neurosci.

9:491. doi: 10.3389/fnins.2015.00491

Franklin, D. (2018). NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era

of AI in Robotics. NVIDIA Developer Blog, NVIDIA Corporation.

Friedmann, S., Schemmel, J., Gruebl, A., Hartel, A., Hock, M., and Meier,

K. (2016). Demonstrating hybrid learning in a flexible neuromorphic

hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.

doi: 10.1109/TBCAS.2016.2579164

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input

correlations through nonlinear temporally asymmetric Hebbian plasticity. J.

Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-03697.2003

Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S.

(2016). Neurocube. ACM SIGARCH Comput. Archit. News 44, 380–392.

doi: 10.1145/3007787.3001178

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC

and neuromorphic solutions in terms of speed and energy when

simulating a highly-connected cortical model. Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

Mayr, C., Hoeppner, S., and Furber, S. (2019). SpiNNaker 2: a 10 million

core processor system for brain simulation and machine learning. Concurr.

Syst. Eng. Ser. 70, 277–280. Available online at: https://niceworkshop.org/wp-

content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Minkovich, K., Thibeault, C. M., O’Brien, M. J., Nogin, A., Cho, Y., and Srinivasa,

N. (2014). HRLSim: A high performance spiking neural network simulator

for GPGPU clusters. IEEE Trans. Neural Netw. Learn. Syst. 25, 316–331.

doi: 10.1109/TNNLS.2013.2276056

Müller, E., Mauch, C., Spilger, P., Breitwieser, O. J., Klähn, J., Stöckel, D.,

et al. (2020a). Extending brainScaleS OS for brainScaleS-2. arXiv [Preprint]

arXiv:2003.13750.

Müller, E., Schmitt, S., Mauch, C., Billaudelle, S., Grübl, A., Güttler, M., et al.

(2020b). The operating system of the neuromorphic brainscales-1 system. arXiv

arXiv:2003.13749.

Mutch (2010). CNS: Cortical Network Simulator Programming Guide - Overview |

The Center for Brains. Minds and Machines.

Nooraliei, A., and Nooraliei, H. (2009). “Path planning using wave front’s

improvement methods,” in ICCTD 2009 - 2009 International Conference

on Computer Technology and Development (Kota Kinabalu), 259–264.

doi: 10.1109/ICCTD.2009.202

Nowotny, T. (2010). “Parallel implementation of a spiking neuronal network

model of unsupervised olfactory learning on NVidia R©CUDA,” in Proceedings

of the International Joint Conference on Neural Networks (Barcelona).

doi: 10.1109/IJCNN.2010.5596358

Ostrau, C., Homburg, J., Klarhorst, C., Thies, M., and Rückert,

U. (2020). Benchmarking Deep Spiking Neural Networks on

Neuromorphic Hardware. arXiv:2004.01656. doi: 10.1007/978-3-030-6161

6-8_49

Pal, A., Tiwari, R., and Shukla, A. (2011). A focused wave front algorithm for

mobile robot path planning. Lecture Notes Comput. Sci. 6678(Pt 1), 190–197.

doi: 10.1007/978-3-642-21219-2_25

Ponulak, F., and Hopfield, J. J. (2013). Rapid, parallel path planning by

propagating wavefronts of spiking neural activity. Front. Comput. Neurosci.

7:98. doi: 10.3389/fncom.2013.00098

Rittner, P., and Cleland, T. A. (2014). Myriad: a transparently parallel GPU-based

simulator for densely integrated biophysical models. Society for Neuroscience

(Abstract),Washington, DC.

Rowley, A., Rhodes, O., Bogdan, P., Brenninkmeijer, C., Davidson, S., Fellows,

D., et al. (2020). “Stacks of software stacks,” in SpiNNaker–A Spiking Neural

Network Architecture, eds S. Furber and P. Bogdan (Norwell, MA: Now

Publishers), 79–128. doi: 10.1561/9781680836530.ch4

Sanzleon, P., Knock, S. A.,Woodman,M.M., Domide, L., Mersmann, J., McIntosh,

A. R., et al. (2013). The virtual brain: a simulator of primate brain network

dynamics. Front. Neuroinformatics 7:10. doi: 10.3389/fninf.2013.00010

Schemmel, J., Grübl, A., Meier, K., and Mueller, E. (2006). “Implementing

synaptic plasticity in a VLSI spiking neural network model,” in

International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–6.

doi: 10.1109/IJCNN.2006.246651

Schmuker, M., and Schneider, G. (2007). Processing and classification of chemical

data inspired by insect olfaction. Proc. Natl. Acad. Sci. U.S.A. 104, 20285–20289.

doi: 10.1073/pnas.0705683104

Steffen, L., Kübler da Silva, R., Ulbrich, S., Vasquez Tieck, J.

C., Roennau, A., and Dillmann, R. (2020). Networks of place

cells for representing 3D environments and path planning.

BioRob. 8, pp. 1158–1165. doi: 10.1109/BioRob49111.2020.92

24441

Stimberg, M., Goodman, D. F., and Brette, R. (2020). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation

software NEST for a full-scale cortical microcircuit model. Front. Neurosci.

12:291. doi: 10.3389/fnins.2018.00291

Vineyard, C. M., Green, S., Severa, W. M., and Koç, Ç. K. (2019). “Benchmarking

event-driven neuromorphic architectures,” in ACM International Conference

Proceeding (Knoxville, TN). doi: 10.1145/3354265.3354278

Whitehead, N. (2011). Precision & Performance: Floating Point and IEEE 754

Compliance for NVIDIA GPUs. Technical report, NVIDIA Corporation.

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., et al.

(2021). “Comparing Loihi with a SpiNNaker 2 prototype on low-latency

keyword spotting and adaptive robotic control,” in Neuromorphic Computing

and Engineering. Available online at: http://iopscience.iop.org/article/10.1088/

2634-4386/abf150

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021a). BiCoSS: toward

large-scale cognition brain with multigranular neuromorphic architecture.

IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3045492.

[Epub ahead of print].

Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., and Azghadi, M. R.

(2021b). CerebelluMorphic: large-scale neuromorphic model and architecture

for supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst.

doi: 10.1109/TNNLS.2021.3057070. [Epub ahead of print].

Yavuz, E., Turner, J., andNowotny, T. (2016). GeNN: A code generation framework

for accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Steffen, Koch, Ulbrich, Nitzsche, Roennau and Dillmann. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 June 2021 | Volume 15 | Article 667011

https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.3389/fnins.2015.00491
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.3389/fnins.2018.00941
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.1109/ICCTD.2009.202
https://doi.org/10.1109/IJCNN.2010.5596358
https://doi.org/10.1007/978-3-030-61616-8_49
https://doi.org/10.1007/978-3-642-21219-2_25
https://doi.org/10.3389/fncom.2013.00098
https://doi.org/10.1561/9781680836530.ch4
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1109/IJCNN.2006.246651
https://doi.org/10.1073/pnas.0705683104
https://doi.org/10.1109/BioRob49111.2020.9224441
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1145/3354265.3354278
http://iopscience.iop.org/article/10.1088/2634-4386/abf150
http://iopscience.iop.org/article/10.1088/2634-4386/abf150
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics
	1. Introduction
	2. Methods
	2.1. A Robotic Scenario—The Wavefront Algorithm
	2.1.1. A Cognitive Map
	2.1.2. Synaptic Vector Field
	2.1.3. Path Search

	2.2. Tools and Techniques
	2.2.1. Hardware Specific Adaptations
	2.2.2. Measurements
	2.2.3. Map Scaling

	2.3. Metrics
	2.3.1. Simulation Time
	2.3.2. Energy Consumption
	2.3.3. Path Length
	2.3.4. Hardware Resources

	3. Experiments and Results
	3.1. Comparing Different Hardware Solutions
	3.2. Performance Analysis of Isolated Functionalities
	3.3. Path Length
	3.4. Energy Measurement
	3.5. Hardware Resources

	4. Discussion
	4.1. Contextual Analysis
	4.2. Limitations and Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

