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The objective of this study was to explore using ECoG spectrogram images for
training reliable cross-patient electrographic seizure classifiers, and to characterize the
classifiers’ test accuracy as a function of amount of training data. ECoG channels
in ∼138,000 time-series ECoG records from 113 patients were converted to RGB
spectrogram images. Using an unsupervised spectrogram image clustering technique,
manual labeling of 138,000 ECoG records (each with up to 4 ECoG channels) was
completed in 320 h, which is an estimated 5 times faster than manual labeling without
ECoG clustering. For training supervised classifier models, five random folds of data
were created; with each fold containing 72, 18, and 23 patients’ data for model
training, validation and testing respectively. Five convolutional neural network (CNN)
architectures, including two with residual connections, were trained. Cross-patient
classification accuracies and F1 scores improved with model complexity, with the
shallowest 6-layer model (with ∼1.5 million trainable parameters) producing a class-
balanced seizure/non-seizure classification accuracy of 87.9% on ECoG channels and
the deepest ResNet50-based model (with ∼23.5 million trainable parameters) producing
a classification accuracy of 95.7%. The trained ResNet50-based model additionally had
93.5% agreement in scores with an independent expert labeller. Visual inspection of
gradient-based saliency maps confirmed that the models’ classifications were based on
relevant portions of the spectrogram images. Further, by repeating training experiments
with data from varying number of patients, it was found that ECoG spectrogram images
from just 10 patients were sufficient to train ResNet50-based models with 88% cross-
patient accuracy, while at least 30 patients’ data was required to produce cross-patient
classification accuracies of >90%.

Keywords: semi-supervised labeling, ECoG labeling, big data, electrographic seizure classifier, epilepsy

INTRODUCTION

One of the major challenges in epilepsy treatment is the ability to reliably assess patient outcomes
(Engel, 2011; Engel et al., 2013). Patient reports of seizures can be unreliable and incomplete
because patients may be amnestic for seizures, may not document their seizures, or because
seizures often occur during sleep (Bazil et al., 2004; Kerling et al., 2006; Hoppe et al., 2007).
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A potential solution to this problem is to automatically
detect and count electrographic seizures from
electrocorticographic/physiological data captured using devices
such as implanted neuromodulation devices (Ryapolova-Webb
et al., 2014; Skarpaas et al., 2019), or health-monitoring wearables
that record long-term ambulatory patient data (Bruno et al.,
2018; Regalia et al., 2019).

Machine and deep learning models previously developed for
detecting electrographic seizures from physiological data have
demonstrated excellent performance (Thodoroff et al., 2016;
Acharya et al., 2018; O’Shea et al., 2018; Ansari et al., 2019; Roy
et al., 2019). However, most of these models are either patient-
specific or trained on small subsets of patients, which limits
their applicability to new patients or patients in whom only
small datasets are available. Additionally, previous models were
mostly trained on electroencephalographic (EEG) data captured
during intracranial EEG diagnostic monitoring, which may vary
substantially from data captured in a long-term ambulatory
setting and hence may not translate effectively to data captured
outside the clinical setting (Ung et al., 2017; Baumgartner and
Koren, 2018; Sun et al., 2018).

Large multi-patient ambulatory electrocorticographic (ECoG)
datasets obtained during clinical trials of the NeuroPace R© RNS R©

System may facilitate the development of machine learning (ML)
algorithms for seizure detection (Morrell, 2011; Bergey et al.,
2015; Skarpaas et al., 2019). However, training of a supervised
machine/deep learning electrographic seizure classifier (ESC)
requires ECoG datasets that contain training labels to mark both
electrographic seizure and non-seizure portions in the datasets.
In computer vision classification tasks involving classifying
everyday objects such as cats and dogs, the task of labeling large
datasets is often crowdsourced to non-specialist workers around
the world (example: Amazon Mechanical Turk1, FigureEight2,
Samasource3). A similar crowdsourcing technique may not be
suitable for labeling ECoG datasets given their complex nature.
Individuals specifically trained on labeling ECoG records are
needed, and even then, interlabeler agreement is not guaranteed
(Halford et al., 2011; Halford et al., 2015). The process of
creating training labels for large ECoG datasets can thus be
laborious and in many cases may even deter the development of
powerful ML models.

Electrographic seizure patterns are often stereotypical within
individual patients in time windows spanning a few months to
many years (Manford et al., 1996). Hence, if a representative
electrographic seizure pattern in a patient is manually labeled,
a method to automatically pre-label other similar electrographic
seizure patterns in the patient would substantially expedite
the process of manual review and labeling of ECoG data.
Further, if this method is generic and can be readily applied
to individual patient’s ECoGs without the need for patient-level
customizations, the solution could easily scale to large multi-
patient datasets. ‘One-shot’ and ‘few-shot’ learning techniques
for classifying objects with just one or a few training examples

1https://www.mturk.com/
2https://www.figure-eight.com/
3https://www.samasource.com/

of each class are currently being explored in computer vision
with promising results (Vinyals et al., 2016; Snell et al., 2017).
This paper describes a semi-supervised labeling technique,
based on unsupervised features extracted by a pre-trained
deep convolution neural network, for expediting the process
of labeling the large multi-patient ECoG dataset captured
with the RNS System.

Electrographic seizure patterns can vary substantially between
patients due to differences in seizure onset zones, disease
etiologies, and location and orientation of recording electrodes
(Haas et al., 2007). Given the heterogeneous nature of
electrographic seizures, development of ESCs that generalize
in new patients can be a complex problem, one on which
the rules- or feature-based algorithms may fare poorly. Deep
learning models can learn rules and features directly from
data and are particularly well-suited for problems that are
too complicated to craft rules (LeCun et al., 2015). Many
previous papers have demostrated the superiority of deep
learning based EEG classification models over traditional
machine learning models (Arora et al., 2018; Zeng et al.,
2018). In this paper several different deep learning models
of varying architectures and depths have been trained to
classify ECoG records as electrographic seizures or non-
seizures.

Performance of deep learning models generally improves
with depth. However, the majority of the previous work
on training deep learning models for seizure detection have
used convolutional neural networks (CNNs) that are <10
layers deep (Roy et al., 2019),which is relatively shallow
compared to the more recently developed contest-winning
models (Russakovsky et al., 2015; He et al., 2016). This is
presumably due to the limited amount of EEG training data
available in the previous studies. In the current study, training
and validation experiments were performed on the large multi-
patient ambulatory ECoG dataset (137,985 ECoG records from
113 patients) captured with the RNS System. Because of this
abundance of data, the deeper 18-layer ResNet18 and 50-layer
ResNet50 (He et al., 2016) architectures were experimented
with, in addition to shallower CNNs. ResNet models contain
residual blocks which have been shown to alleviate the problem
of exploding and vanishing gradients which can arise in deep
neural network architectures and were chosen for this reason
(He et al., 2016).

Despite the tremendous progress made by CNNs in
classifiying 2 dimensional (2D) image data (LeCun et al.,
2015), most of the previous work in training CNNs for
ECoG/EEG classification has focused on using raw time-series
signals as input to one dimensional CNNs (Ullah et al., 2018;
Roy et al., 2019; Yildirim et al., 2020). Very few studies have
explored converting ECoG time-series signals to spectrogram
images for training 2 dimensional CNNs, and even the ones
which do have demostrated their methods on relatively small
EEG datasets (Kuanar et al., 2018; Vrbancic and Podgorelec,
2018). Validating 2D CNN training on large multi-patient
ECoG spectrogram image datasets will certainly add confidence
in this technique, and will encourage similar EEG/ECoG
classification studies to leverage the latest developments in
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2D CNN image processing, potentially accelerating the rate of
neuroscience discoveries.

Although it is widely accepted that large ECoG training
datasets will lead to better model generalizability to new patients
(LeCun et al., 2015), to the best of our knowledge, characterizing
electrographic seizure classification accuracy in held-out patients
as a function of the number of patients whose data was
used for training, has not been performed. In this paper,
CNN models were trained with ECoG records from 10 to 80
patients, in increments of 10, to determine the generalizability
of models trained with ECoG records from varying numbers
of patients. All trained models were tested on expert-labeled
ECoG records from 80 additional held-out patients (i.e., in
addition to the 113 patients mentioned above) not used for
training or validation.

The work in this paper significantly adds to the existing
body of literature on labeling and training electrographic seizure
classifiers in several ways. First, it introduces a semi-supervised
labeling method for rapid manual-labeling of large ECoG
datasets. Second, it validates the use of ECoG spectrogram
images as inputs for training convolutional neural networks by
producing trained classification models with very high (>95%)
cross-patient classification accuracies. Third, it establishes a new
benchmark cross-patient electrographic seizure classification
accuracy level for ambulatory ECoG records. Fourth, it
characterizes classification accuracy as a function of the amount
of training data, thereby guiding the neuroscience community
on data collection requirements for solving similar ECoG/EEG
classification problems.

METHODS

The present study’s dataset comes from clinical trials of 256
patients treated with the NeuroPace R© RNS R© System (Bergey et al.,
2015). One hundred and ninety three randomly selected patients
were used for the analyses in this study.

All study protocols were approved by the US FDA
and the institutional review boards of the participating
investigation sites. All participants gave written informed
consent. The RNS System Feasibility, Pivotal and LTT studies are
registered on clinicaltrials.gov (NCT00079781, NCT00264810,
and NCT00572195).

The RNS System
The NeuroPace R© RNS R© System is an FDA approved adjunctive
treatment for patients with medically intractable partial onset
epilepsy having 1-2 seizure foci. Details about the RNS System
and the types of data it captures can be found in several previous
publications (Morrell, 2011; Bergey et al., 2015; Desai et al.,
2019b; Skarpaas et al., 2019). Briefly, the RNS System (Figure 1A)
consists of a closed-loop responsive neurostimulator device that
is placed in the skull. One or two quadripolar depth or strip leads
are connected to the device and implanted at the seizure foci.
The RNS System continuously senses brain activity and sends
electrical stimulation when patient-specific abnormal patterns, as
defined by the physician, are detected.

ECoG Acquisition and Patient Selection
ECoG records captured with the RNS System have a sampling
rate of 250 Hz per channel and are typically 90 s in duration,
however length may vary to a maximum of 180 s. An ECoG
record typically contains four channels of ECoG activity.
A variety of recording triggers save ECoG records including,
time(s) of day (scheduled ECoG records), detection of long
abnormal patient-specific patterns (long episode ECoG records),
and ECoG activity that saturates the recording amplifiers
(saturation ECoG records). About half of all ECoG records
captured with the RNS System are long episode (LE) ECoG
records. LE ECoG records can contain varying degrees of
abnormal epileptiform events on one or more ECoG channels
and are the only type included in this study. Figures 1B,C shows
four example ECoG records captured in one RNS System patient.

In the remainder of this paper, the term ‘ECoG record’
refers to an ECoG data file with up to 4 channels of ECoG
data, and the term ‘ECoG channel’ refers to each channel of
ECoG activity within an ECoG record. The terms ‘electrographic
seizures,’ ‘seizures,’ and ‘sz’ are used interchangeably to refer to
electrographic seizures; and ‘electrographic non-seizures,’ ‘non-
seizures,’ and ‘nsz’ are used to refer to electrographic non-
seizures.

Of the 256 patients enrolled in the RNS System clinical
trials, 193 were randomly selected for inclusion in this study.
Data from all 256 patients could not be processed due to
limited human labeler time resources. Data from 113 patients
were used to train, test and validate the ESC, and data from
the remaining 80 patients were used only for testing by
comparison of the ESC’s classification scores with those of a
board certified epileptologist. Figure 2 outlines the data split from
the 193 patients, and Figure 3 shows example spectral image
of ECoG channels labeled as non-seizures (top) and seizures by
a human labeler.

Patient-Specific 2D Embedding and
Clustering of ECoG Records
All analyses were performed using Python 3.5. Patient-
specific 2D embeddings of all LE ECoG records from 193
patients were created using unsupervised feature extraction
and dimensionality reduction techniques. Data preparation
involved removing any stimulation artifacts present in the
ECoG records (Desai et al., 2019a). In brief, blanked portions
of ECoGs (Figures 1B,C) were identified and marked along
with 10 samples preceding and 30 samples following the
detected artifact. ECoG data flanking either side of the marked
ECoG data were concatenated to delete stimulation and any
amplifier recovery artifact. Spectrograms of the time-series
ECoG data were computed using Tensorflow’s built-in function
tensorflow.contrib.signal.stft. Since high frequency (>90 Hz)
seizure and interictal activity is often observed in ECoG data
captured with the RNS System, frequencies from 0 Hz to
the Nyquist frequency (i.e., 125 Hz; sampling rate = 250 Hz)
were included in the spectrograms. The resulting grayscale
spectrograms were resized to (299 × 299) using Tensorflow’s
built-in function tensorflow.image.resize_nearest_neighbor, and
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FIGURE 1 | The RNS System and types of ECoG data captured. (A) Illustration of the NeuroPace RNS System. The neurostimulator is placed in the skull and
connected to up to two leads, each of which contains four electrode contacts. The leads can be cortical strip leads, depth leads or a combination. (B,C) Examples
of 4-channel electrocorticographic (ECoG) records for a single patient captured with the RNS System. (B) Scheduled/baseline ECoG record. (C) ‘Long Episode’ (LE)
ECoG records (i.e., ECoG records with detection of long abnormal patient-specific patterns). LE ECoG records can contain a variety of abnormal ECoG activity on
one to several ECoG channels. Stimulation artifacts are highlighted in red in panels (B,C). Stimulation artifact consists of short blanks in data followed by a brief
amplifier recovery artifact.

expanded to 3 identical color channels using Tensorflow’s built-
in function tensorflow.image.grayscale_to_rgb (Figure 4 step
[1]). Expansion of spectrograms to 3 channels was performed
because the pre-trained CNN (GoogLeNet Inception-V3) used
for feature extraction requires the input data to have shape
(299 × 299 × 3). The resulting 3 color channel spectrograms
were passed through the pre-trained GoogLeNet Inception-V3
model for feature extraction (Figure 4 step [2]). Tensorflow code
for converting the time-series ECoG data to spectrograms and
extracting features using the pre-trained GoogLeNet Inception-
V3 model is provided in the Supplementary Material. A similar
technique for embedding time-series ECoG data in 2 dimenional
surfaces for differentiating ECoGs by patient outcomes was
previously published by NeuroPace and are described in Desai
et al. (2019a).

The extracted features (dimensions 8 × 8 × 2048) were
flattened resulting in a vector of 131,072 floating point numbers
for each channel of ECoG data (Figure 4 step [3]). Features
vectors from the 4 channels in ECoG records were concatenated
to produce ‘ECoG-record-vectors’ that had 524,288 features. If
less than 4 channels were present in ECoG records (which
happened in a small fraction of ECoG records), zero-filled vectors

were used in the missing channel’s place. Principal Component
Analysis (PCA) was applied to randomly selected 1,024 ECoG-
record-vectors to derive a mapping function between the 524,288
features and the top 50 principal components. The mapping
function was then applied to all ECoG-record-vectors in a
patient to produce a reduced feature vector with 50 principal
components for each ECoG record. The resulting 50 components
were then passed to the t-SNE (t-distributed stochastic gradient
descent) algorithm to represent all ECoGs in a patient-specific
further reduced 2-dimensional embedding space.

Bayesian Gaussian Mixture (BGM; python function:
sklearn.mixture.BayesianGaussianMixture) was used for
automatically clustering ECoG records represented in the
patient-specific 2D embedding spaces. The BGM clustering
technique was chosen over other popular clustering
methods such as k-means, spectral, and dbscan (density
based spatial clustering) because of its ability to infer
the number of clusters from the data and because it
produced more sensible cluster identifications compared
to the other clustering methods that were evaluated. The
sklearn.mixture.BayesianGaussianMixture function takes
as input the maximum number of components/clusters
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FIGURE 2 | Patient splits for labeling, training, validating and testing electrographic seizure classifier models. (A) Patient splits for training and testing
electrocorticographic (ECoG) channel-level and ECoG record-level classification models with 80% patients’ data used for training and validation, and 20% patients’
data used for testing. The trained models were tested on individual ECoG channels within ECoG records from the 23 held-out patients in each training fold, to
generate ECoG channel-level classification test metrics. The trained models were additionally tested on an independent expert-labeled dataset from 80 patients with
seizure or non-seizure ECoG record-level labels. In this case, model predictions on individual ECoG channels within ECoG records were combined with the OR
operator applied to the seizure classification to produce ECoG record-level predictions. These were compared with expert labels to generate ECoG record-level
classification test metrics. (B) 10-80 patient splits for characterizing model performance as a function of amount of training data. *8 out of 113 patients did not have
ECoG channels with the ‘seizure’ label and were not included in this analysis. This was done to avoid creating training datasets (especially the ones with data from
small number of patients) with highly skewed number of examples of seizure and non-seizure classifications. The remaining 105 patients were split into 5 bins (with
21 patients in each bin) based on the number of labeled ECoG records available in the patient. Patients were uniformly and randomly selected from each of the 5
bins to create the 10-80 patient training sets. The 20 patient training set, for example, contained four patients randomly selected from each of the 5 bins. The trained
models were tested on ECoG records from 80 patients independently labeled by an expert. Note that unlike in panel (A), the only test dataset used in this case was
the expert labeled dataset from 80 patients.

(n_components). Depending on the data, the BGM model
can choose not to use all the components. Therefore, the
number of effective components/clusters can be smaller
than the number specified in n_components. For clustering
ECoG records in each patient using BGM, the n_components
attribute was set as maximum of [number of ECoG records
in patient/100] and 10. For example, for a patient with 5,000
ECoGs, n_components would be 50, and for a patient with 200
ECoGs, n_components would be 10.

Similar to observations in Macosko et al. (2015) where authors
clustered gene expression data, preliminary studies by NeuroPace
also showed superior clustering in the 2 dimensional t-SNE
output dataset compared to clustering in the original high
dimensional dataset. This is presumably because of a frequently
observed phenomenon called ‘curse of dimensionality’ in which
clustering algorithms lose effectiveness in high dimensional
spaces (Verleysen and François, 2005).

Labeling of ECoG Records
All LE ECoG records in 193 patients were manually labeled
and verified using a 2-step method. In 113 out of 193 patients,
ECoG records were given one of six labels: ‘ictal,’ ‘interictal,’
‘baseline,’ ‘noise,’ ‘low voltage fast only,’ or ‘unsure,’ and channels
in the ECoG record with the designated activity were selected
by author WB. WB was specifically trained in labeling activity in

ECoG records captured with the NeuroPace RNS System over a
2 month period by authors SD, TT and MM. Both time-series
waveforms and spectrogram views of data were used to guide
ECoG labeling. In case of labeling ambiguity, multiple reviewers
(authors SA, TT, and MM) provided inputs to ensure accurate
labeling. The ‘ictal’ label was selected if there was clear evolution
of baseline activity into electrographic seizure that lasted at least
10 s. The ‘unsure’ label was only selected when reviewers could
not reach a consensus on the activity type and ECoG records
with the ‘unsure’ label were not used for training, validation
or testing. ECoG channels with ‘interictal,’ ‘baseline,’ ‘noise,’
and ‘low voltage fast only’ labels formed the ‘electrographic
non-seizure’ classification while ECoG channels with the ‘ictal’
label were used as the ‘electrographic seizure’ classification.
When cluster centroid ECoG records were manually labeled, the
remaining ECoG records within the cluster were automatically
pre-assigned the same label.

The next step involved manual verification of the pre-assigned
labels. Thumbnails of ECoG records within each pre-labeled
cluster were displayed for label verification in a sorted order
based on their Euclidean distance to the centroid. If a pre-
assigned channel label did not match the activity observed on
that ECoG channel, the label was manually corrected by author
WB after consulting with additional reviewers as necessary.
Thumbnails of 15 ECoG records were displayed on each page
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FIGURE 3 | Examples of spectrogram images of ECoG channels. Top row (A) shows examples of spectrogram images computed from electrocorticographic (ECoG)
channels manually labeled as ‘electrographic non-seizure.’ Bottom row (B) shows examples of spectrogram images computed from ECoG channels labeled as
‘electrographic seizure.’

FIGURE 4 | Steps for creating 2D embeddings of patient-specific ECoG records. [1] Each channel in the time series electrocorticographic (ECoG) record was
converted to a spectrogram image after removal of stimulation artifacts. [2] Spectrogram image (size 224 × 224 × 3) of each ECoG channel was passed to a
pre-trained GoogLeNet Inception-V3 model for feature extraction. [3] The convolutional neural networks (CNN) extracted a feature matrix of dimensions
8 × 8 × 2048 for each spectrogram image. The feature matrix was flattened to create a feature vector of length 131,072. [4] Four feature vectors corresponding to
the four channels in an ECoG record were concatenated to create a feature vector of length 524,288 for each ECoG record. Vectors of zeros were substituted for
missing channels. [5] Dimensionality reduction with PCA and t-SNE was performed on the concatenated feature vectors to represent ECoG records in 2-dimensional
patient-specific embedding spaces. Unsupervised clustering of the resulting 2D data was performed. ECoG records closest to cluster centers (shown in black) were
identified and presented to the human labeler.# Cartoon representation of the GoogleNet Inception-V3 CNN model. Please refer to https://cloud.google.com/tpu/
docs/inception-v3-advanced for details about the GoogleNet Inception-V3 model.
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for label verification. Therefore if an ECoG cluster contained
90 ECoG records, 6 pages of ECoG records were displayed
with page 1 containing ECoG records that were closest to the
centroid and likely requiring no corrections to pre-assigned
labels. Whereas page 6 contained ECoG records that were farthest
from the centroids and hence was more likely to contain ECoG
records that required pre-assigned label corrections compared
to previous pages. When a closer look at activity in a ECoG
was desired, the thumbnail could be expanded to display high
resolution versions of the ECoG records in time series and
spectrogram view.

To compare the performance of the trained models with those
of an independent ECoG rater, an additional labeled test ECoG
dataset was created. In the remaining 80 patients, a board certified
epileptologist independently labeled centroid ECoG records as
either ‘electrographic seizure’ or ‘electrographic non-seizure.’ A
total of 262 and 333 ECoG records were labeled as either seizure
and non-seizure, respectively, by the epileptologist. Additionally,
the expert only provided labels at the ECoG record level, without
identifying the channels in the ECoG record to which the label
applied. That is, the seizure label was assigned to an ECoG
record if any of the channels in the ECoG record contained an
electrographic seizure, and the non-seizure label was assigned
otherwise. To compute labeler agreement percentage, author WB
additionally labeled all 595 expert-labeled ECoG records.

ECoG Preprocessing for Training CNN
ECoG records that were less than 80 s and greater than 100 s were
repeated or cropped to 90 s in length respectively. ECoG records
shorter than 80 s had a portion equal to the disparity duplicated
from the beginning of the record and concatenated onto the start.
Experiments were repeated with zero padding applied to short
ECoG records. In this case, instead of concatenating duplicate
portions of the ECoG, a vector of zeros was concatenated
onto the start to create the 90 s ECoG. ECoG records greater
than 100 s had 60 s before and 30 s after the storage trigger
(detection of LE) selected, the remaining portions of the ECoG
record were discarded.

Stimulation artifact rejection was performed on all ECoG
records as described in section “Patient-Specific 2D Embedding
and Clustering of ECoG Records.” Model training and testing
experiments were repeated without stimulation artifact
rejection to assess the impact of this step on the model’s
classification performance.

To facilitate additional ESC model training and testing,
spectrogram images of ECoGs were saved in folders organized
by class labels and patient IDs. This made it convenient to
perform error analyses for the different model architecture and
hyperparameter selections. Further, this type of data organization
made it stratightforward to apply several of Keras’s built-
in functions (such as ImageDataGenerator.flow_from_directory
function) for reading large datasets in batches for model training
and testing. The code used for converting ECoG data to spectral
images and saving them in.PNG format is provided in the
Supplementary Material section. Briefly, Matplotlib’s built-in
function matplotlib.pyplot.specgram with window size 256 and
step size 128 was used for creating the spectrograms (spanning

0-125 Hz on the frequency axis), and saved as RBG images using
the ‘jet’ colorsmap. Pixel values in the RGB images were scaled
between −1 and + 1 which is a standard preprocessing step
for training CNN models. ECoG classification experiments were
repeated with spectrograms images saved using the ‘grayscale’
colormap in which case spectrogram images were saved with the
3 color channels having the same value.

Model Training, Validation, and Testing
Experiments to Test the ECoG-Channel Level and
ECoG-Record Level Classification Performance of
Trained ESC Models
The 113 patients with ECoG channel level labeling were
randomly divided into three groups: 72 patients for training,
18 patients for validation and 23 patients for testing. This was
repeated five times for creating 5 folds of data for training,
validation and testing (Figure 2A). In the training dataset, the
majority classification (non-seizure class in all training folds)
was randomly downsampled to match the number of training
examples in the seizure and non-seizure classes. CNN models
were trained to classifiy each ECoG channel (note that each ECoG
record can contain up to 4 ECoG channels, see section “ECoG
Acquisition and Patient Selection” for details) as electrographic
seizure or non-seizure. The trained models in each of the 5
folds were tested on ECoG channels in the 23 patients held-
out in that fold.

Model performance was also tested on ECoG records from
80 patients independently labeled by an epileptologist. Model
predictions for ECoG records were derived by applying the OR
operator to the seizure classification. Consequently, if any of the
ECoG channels in the ECoG record were predicted as a seizure
by the trained model, the ECoG record was labeled a seizure.
A non-seizure label was applied only if all ECoG channels in
the ECoG record were predicted as non-seizures by the trained
model. Table 1A shows the number of patients, ECoG records
and ECoG channels in each of 5 folds.

Gradient-Based Saliency Maps
To gain some understanding of features learned by the trained
CNNs, and to ensure that classification is based on relevant
portions of the spectrograms, saliency maps (Simonyan et al.,
2013) of the trained classification model were created using
the built-in keras API, vizualize_saliency. Saliency maps are
computed as the gradient of the output with respect to the input,
and highlight the input regions in the datasets that contribute
most toward the output classification.

Trained Model’s Generalizability to Other Epilepsy
Datasets of Time-Series Brain Recordings
To test the trained ESC models’ generalizability to EEG datasets
captured with devices other than the RNS System, the models
were evaluated on the TUH EEG Seizure Corpus (v.5.1.0)4

(Shah et al., 2018), the largest publicly available EEG dataset.
Therein, 2,915 annoted seizures had an onset at >45 s into the
EDF data files and were used for testing. 90 s of EEG data

4https://www.isip.piconepress.com/projects/tuh_eeg/
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TABLE 1A | Number of patients, seizure and non-seizure ECoG channels in the training, validation and test datasets in each fold (and average across the 5 folds) for testing ECoG channel-level and ECoG record-level
classification performances.

Fold Training Validation ECoG channel-level testing ECoG record-level testing

# of pts # of SZ ECoG
channels

#of NSZ ECoG
channels*

# of
pts

# of SZ ECoG
channels

# of NSZ ECoG
channels

# of
pts

# of SZ ECoG
channels

# of NSZ ECoG
channels

# of
pts

# of SZ ECoG
records

# of NSZ
ECoG records

1 72 81,573 188,858 18 21,692 40,239 23 36,918 42,477 80 262 333

2 72 78,218 174,949 18 33,398 35,751 23 28,567 60,874 80 262 333

3 72 103,572 172,136 18 8,381 36,832 23 28,230 62,606 80 262 333

4 72 91,214 150,498 18 24,957 56,364 23 24,012 64,712 80 262 333

5 72 100,983 205,036 18 15,917 25,066 23 23,283 41,472 80 262 333

Avg 72 91,112 178,295 18 20,869 38,850 23 28,202 54,428 80 262 333

ECoG = electrocorticographic; NSZ = non-seizure; pts = patients; SZ = seizure. ∗Shown here is the total number of non-seizure ECoG channels available in the training dataset. Note that the non-seizure ECoG channels
were randomly downsampled to match the number of seizure ECoG channels to create balanced 50/50 class splits for training. Bold values are average of 5 folds.

TABLE 1B | Average number of ECoG channels (seizures and non-seizures) in training and validation datasets (and number of ECoG records in the test dataset) used in experiments for characterizing seizure
classification accuracy as a function of number of patients’ data used for training.

Training Validation ECoG record-level testing

# of pts Average # of SZ ECoG
channels across 5 folds

Average # of NSZ ECoG
channels across 5 folds*

# of pts Average # of SZ ECoG
channels across 5 folds

Average # of NSZ ECoG
channels across 5 folds

# of pts # of SZ ECoG
records in the 5 folds

# of NSZ ECoG
records in the 5 folds

10 14,469 23,263 5 5,229 7,717 80 262 333

20 26,064 57,695 5 7,037 15,701 80 262 333

30 39,356 87,258 6 8,441 19,504 80 262 333

40 51,730 113,262 8 10,873 13,212 80 262 333

50 67,034 133,792 10 13,733 25,686 80 262 333

60 80,767 159,479 12 15,352 25,598 80 262 333

70 94,769 181,877 14 16,938 39,042 80 262 333

80 108,277 214,530 16 20,656 37,438 80 262 333

The averages are computed across the 5 folds for each patient-level split. Numbers of training and validation ECoG channels in each fold for each patient-level split is shown in Supplementary Table 2. ECoG =
electrocorticographic; NSZ = non-seizure; pts = patients; SZ = seizure. Shown here is the total number of non-seizure ECoG channels available in the training dataset. Note that the non-seizure ECoG channels were
randomly downsampled to match the number of seizure ECoG channels to create balanced 50/50 class splits for training.
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spanning 45 s respectively on either side of annotated seizure
start times were converted to RGB spectrogram images using the
methods described in section “ECoG Preprocessing for Training
CNN.” The only differences in the data processing steps were
(1) skipping the stimulation artifact rejection step since it is
irrelevant to EEG data and (2) applying a 60 Hz denoising notch
filter to the raw timeseries data before the spectrograms were
created since 60 Hz noise is commonly present in EEG data. Each
EEG file resulted in 21 channels of data with channel referencing
performed as described in the.lbl file associated with each.edf file.
An equal number (2,915) of randomly selected 90-s EEG samples
with background activity were selected for testing.

Experiments to Characterize ESC Classification
Performance as a Function of the Amount of Training
Data
Multiple training sets were created by selecting ECoG records
from 10 to 80 patients in increments of 10 patients. Each training
dataset had an equal distribution of patients with few to many
ECoG channels to approximate the availability of data in the real-
world. Eight of the 113 patients had no ECoG channels with
seizure labels and were not included in these experiments. This
was done to avoid creating training datasets (especially the ones
with data from small number of patients) with highly skewed
number of examples of seizure and non-seizure classifications.
The remaining 105 patients with ECoG channel labeling were
divided into 5 bins based on the number of labeled ECoG
channels available for the patient. Each bin contained 21 patients,
where bin 1 had patients with the fewest labeled ECoG channels
and bin 5 had the patients with the most labeled ECoG channels.
Patients for each training set were equally (and randomly)
selected from all 5 bins. For example, the training dataset with 10
patients had 2 patients from each of the 5 bins, and the training
dataset with 80 patients had 16 patients from each bin. To create
incrementally larger training datasets, the same patients from the
prior smaller datasets were retained and new patients were added.

The validation dataset for each training dataset was created by
randomly sampling from the remaining (non-training) patients
in each of the 5 bins equally. Each validation set contained the
greater of five patients or 20% of the number of patients in
the training dataset. For example, there were 5 patients in the
validation datasets for the 10 and 20 patient training datasets, and
6 and 8 patients in the validation datasets for the 30 and 40 patient
training datasets, respectively. Table 1B and Supplementary
Table 2 shows the number of patients and ECoG channels in each
of the 5 folds for each level of patient split.

All trained models were tested on the same set of 262
seizure and 333 non-seizure ECoG records from the 80 patients
independently labeled by an epileptologist.

Model Architectures, Training
Hyperparameters, and Training Hardware
The five deep learning models evaluated and are summarized
graphically in Figure 5. The original ResNet50 and ResNet18
(available for download from keras.applications) were modified
by replacing the final 196 neuron dense layer with a 2 neuron
dense layer. This was done to adapt the 18 and 50 layer ResNet

models for the 2 class (seizure and non-seizure) classification task
described in this paper. Training was performed for a maximum
of 70 epochs with a learning rate of 10−6 for the 6, 7, and
12 layer CNNs or 10−7 for ResNets (18 and 50 layers) with a
learning rate decay factor of 0. The choice of learning rate and
learning rate decay factor was made after experimenting with
a range of values in preliminary experiments. Learning rates
higher than those listed above resulted in drastic fluctuations
in training and validation performance indicating undesirable
divergent behavior in the loss function, and those below the above
listed values resulted in very slow, suboptimal training. Initial
experiments with fine-tuning the training parameters of only
the final few layers of the ResNet models with the initial layers
retaining pretrained weights and biases from the imagenet dataset
demonstrated substantially worse classification performance on
the test dataset, compared to training the parameters in all
layers. Hence, the choice was made to fine-tune the weights
and biases of all layers. A training, validation and test batch
size of 32 was used with all models, and models were trained
with the Adam and Nadam optimizers. Training was stopped
earlier than 70 epochs, if <0.1% improvement in validation
accuracy was observed over 10 consecutive training epochs.
The trained model at the epoch number which produced the
highest validation accuracy was selected for testing. Keras v2.2.2
with Tensorflow v1.10.1 backend on an on-premise Ubuntu
16.04 machine with two NVIDIA GeForce GTX 1080 Ti GPUs
was used for running the experiments described previously in
Methods section “Experiments to Test the ECoG-Channel Level
and ECoG-Record Level Classification Performance of Trained
ESC Models.” Keras v2.3.1 with Tensorflow v2.1.0 on Compute
Engine Virtual Machines (machine type: n1-standard-4) with
NVIDIA Tesla K80 GPUs on the Google Cloud Platform was
used for running the experiments described in 2.6.4. Training was
enabled on all layers of all model architectures used in this study.

Trained Model and Code Availabilty
The trained deep learning models, and ECoG pre-processing
code described in this publication may be made available to
researchers for academic use. Requests sent to the research-
requests@neuropace.com will be reviewed in accordance with
NeuroPace data sharing policy and guidelines for requesting
support from NeuroPace for research. Key lines of python
code for pre-processing ECoGs are made available in the
Supplementary Material.

RESULTS

Semi-Supervised Labeling of ECoG
Records
Different patterns, sizes and/or numbers of LE ECoG record
clusters were obtained for each patient by the 2D embedding
and clustering process (Figure 6A). The median number of
clusters obtained with the BGM method was 9 (range: 2-45)
with a median of 161 (range: 1-1624) ECoG records in each
cluster. While in most cases, sensible cluster identification was
obtained with the patient-specific 2D embeddings, in some cases
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FIGURE 5 | The 5 model architectures used in this study. 6, 7, and 12 layer convolutional neural networks (CNN) models were trained and tested in this study along
with 18 and 50 layer ResNet models. Inspiration for the CNN model architectures was derived from a wide range of sources including https://tinyurl.com/y76stqkc,
while the ResNet model architectures are available on the Keras webpage: https://keras.io/api/applications/.

more dispersed LE ECoG record clusters were observed (example
orange and purple clusters in Figure 6A bottom-right panel).

Based on ad hoc analyses and visual inspection, two primary
factors appeared to be responsible for LE ECoG record clustering.
One factor was the type of electrographic activity in the ECoG
record and the other factor was the ECoG record length.
Electrographic activity indicative of seizures tended to produce
discrete clusters. Within a patient, multiple seizure clusters
were often apparent and distinguishable by seizure morphology
and the presence of seizures on different channels. Typically,
ECoG records <70 s in length tended to form separate clusters.

When electrographic seizures were captured in these short ECoG
records, they often clustered separately but in the vicinity of
other clusters containing short ECoG records. Since only a
minority of LE ECoG records captured with the RNS System
were short in length, clusters with short ECoG records were
an uncommon occurrence and did not substantially lengthen
the manual labeling effort. Similarly, in some patients, ECoG
records longer than 90 s (typically 180 s) were captured and in
those cases, ECoG records also tended to form separate clusters
similar to the short ECoG records. With the clustering tool
described above, channel-level manual labeling of 137,985 ECoG
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FIGURE 6 | Clustering of ECoG records in patient-specific 2D embedding spaces. (A) 2-dimensional embeddings of long episode (LE) electrocorticographic (ECoG)
records from six example patients included in this study. Different numbers and patterns of clusters were observed in the patient-specific 2D embedding spaces.
(B) 2D embeddings of 17,422 LE ECoG records from the patient with the most ECoG records included in this study. Only the green and gray clusters in the top right
of the embedding space contained electrographic seizures. (C) Example ECoG records from different locations in the 2D embedding space shown in panel (B).
ECoG record denoted with ‘a*’ is the centroid ECoG record within the green cluster in panel (B). ECoG records denoted with ‘a’ are two ECoG records that were
closest to the centroid ECoG (a*). ECoGs records b and c are two example ECoG records further away from the centroid in the same green cluster. Three example
ECoG records (d-f) from other areas of the embedding space contained interictal activity. ECoG record (g) is from a cluster (red cluster in panel B) that exclusively
contained short (<70 s) interictal ECoG records.

records from 113 patients took approximately 320 h. The time
required to label all of a patient’s ECoG records depended on the
number of records and variability within clusters. The median
labeling time was 1.5 h, while for some patients it took as little
as <15 min or as long as 3 days. These time estimates include
the time spent manually examining all cluster centroid ECoG
records in time and spectral domains, assigning each ECoG
channel to one of six labels (‘ictal,’ interictal,’ ‘baseline,’ ‘noise,’
‘low voltage fast only,’ and ‘unsure’) and manually reviewing
the pre-assigned (based on the centroid ECoG labels) channel
labels for every member of each cluster. As described in the
Methods section, if the pre-assigned channel labels did not
apply to a given ECoG channel, it was manually corrected after
consulting with additional reviewers as needed. The ML-assisted
labeling and verification process was faster in patients where
most clusters contained similar ECoG records compared to other
patients with more ECoG record variability within clusters. In
patients with highly similar ECoG records within clusters, usually

associated with stereotypical seizure and interictal activity, the
entire labeling and verification process took 15 mins or less
(for ∼1,200 ECoG records on average). However, it was more
common for 10-20% of the ECoG channels within a cluster
to require label correction. ML-assisted labeling of 17,422 long
episode ECoG records, the most from any patient (Figure 6B)
took only 2 h. In this patient, only two out of the 21 clusters
contained electrographic seizures. Figure 6C shows nine example
ECoG records embedded in the 2D space in panel (B). ECoG
records (a) closer to a cluster centroid ECoG (a∗) looked more
similar to the centroid ECoG compared to ECoG records (b,c)
further away from the cluster centroid. This trend was generally
seen in all clusters in all patients. Further, ECoG records from
other clusters (d-f) looked very different from ECoG records in
the green cluster (a-c).

Agreement between an independent expert labeller and author
WB on 595 ECoG records from 80 held-out patients (see Methods
section “Labeling of ECoG Records”) was at 98.3%. Eight and two
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ECoG records respectively labeled as seizures and non-seizures by
the expert did not agree with the labels provided by author WB.

ECoG Channel-Level and ECoG
Record-Level Classification
Performance of Trained ESC Models
Model Performance on ECoG Channels From 20%
Held-Out Patients
Test performances improved with increased depth of models
used for training, with the deepest trained model (ResNet50)
producing the highest precision and recall values among the five
model architectures trained. Figure 7 shows the precision recall
curves and confusion matrices for the five CNN models for a
randomly chosen data fold. F1 scores and test accuracies were
generally higher with the Nadam optimizer compared to the
Adam optimizer and are shown in Table 2. The corresponding
values with the Adam optimizer are shown in Supplementary
Table 1. While the ‘sz’ (seizure) class classification accuracy of
individual ECoG channels drastically increased with depth of
training models, the increase in accuracy in the ‘nsz’ (non-
seizure) class was moderate (Figure 7B and Table 2). Increases
in overall accuracies of 3.8% and 3.26% were observed when the
depth of the training model was increased from 6 to 7 layers,
and 7 to 12 layers respectively. However, accuracy increases of
only 0.51% and 0.28% were observed when model depth was
further increased from 12 layers to 18 layers, and 18 layers
to 50 layers respectively. Similar trends were observed with F1
scores, indicating that the point of diminishing returns relative
to model depth is around 12 layers. Among the five different
model architectures studied, the ResNet50 model had the highest
F1 score (94.26%) and class-balanced accuracy (95.72%), with
97.17% non-seizure class accuracy and 94.26% seizure class
accuracy. In addition to producing higher test performances,
deeper (≥12 layers) models also resulted in less fold to fold
variation in F1 scores and accuracies compared to the shallower
models (2.9%, 1.5%, 0.6%, 0.4% and 0.4% standard deviation
in overall accuracy values for the 6 layer, 7 layer, 12 layer
CNN, ResNet18 and ResNet50 respectively), indicating that the
shallower models not only underfit the training data, but were
also less robust compared to the deeper models.

ECoG length affected classification accuracy when comparing
short (<80 s), regular (90 s) and long (>100 s) records.
With the ResNet50 model, the average classification accuracies
on short (92.7%) and long (94.1%) ECoG channels were
significantly lower (p < 0.05, Wilcoxon rank sum test) compared
to classification accuracy on 90-s (96.4%) ECoG channels.
Similar trends in classification performance with short, long and
regular-length ECoG channels were observed with all model
architectures trained. The average classification performance
of the ResNet50 models on short ECoG channels was slighty
better when preprocessing was performed by duplicating and
concatenating the starting portion of the ECoG (92.7%), when
compared to zero-padding (91.8%), although this difference
was not statistically significant. The average classification
performance was slightly better (statistically non-significant)
when the stimulation artifact rejection step was applied (95.7%),

compared to when it was not applied (95.5%). Additionally,
the classification accuracy was significantly better (p < 0.05,
Wilcoxon rank sum test) when model training was done with
the spectrogram images saved in the ‘jet’ colormap (95.7%),
compared to spectrogram images saved in the ‘grayscale’
colormap (94.9%).

Model Performance on ECoG Records From 80
Expert-Labeled Held-Out Patients
As described in the Methods section, an ECoG record was
classified as a seizure if any of the 4 channels were classified
as a seizure by the trained ESC models. A non-seizure label
was assigned only if all 4 channels were classified as non-
seizures. A random binary classifier (with 50% chance of
classifying an ECoG channel as a seizure) would classify a 4-
channel ECoG record as seizure 93.75% of the time, and it
would classify a 4-channel ECoG record as non-seizure only
6.25% of the time. Hence, a random classifier would produce
extremely skewed class-specific accuracies guessing seizure ECoG
records correctly most of the time, while having a very poor
non-seizure class accuracy. In comparison, all trained models
produced more or less balanced seizure and non-seizure class
accuracies (as shown in Table 2B), demonstrating successful
training, with the test performance generally improving with
depth. A significant (p < 0.01, Wilcoxon rank sum test) increase
of 9.72% in overall accuracy and an 11.32% increase in F1
score was observed between the 6 layer CNN and the 12
layer CNN models, and a non-significant difference in test
performance (< 1.41%, p > 0.05, Wilcoxon rank sum test)
was observed between the 12 layer CNN and ResNet50-based
model. Similar to observations with ECoG channel level test
accuracies, substantial improvements in seizure class accuracies
were observed with increased CNN model depths, while the
non-seizure class accuracies remained relatively constant.

Training and validation curves for each type of model are
shown in Supplementary Figure 1. Training and validation
accuracies with the deeper ResNet50 and ResNet18 models
increased rapidly over the first few epochs with the condition
for early stopping (< 0.1% improvement in validation accuracy
observed over 10 consecutive training epochs) applying
substantially earlier than with shallower models.

Error Analysis
Type 1 (False negative) and Type 2 (False positive) error rates
for the representative data fold shown in Figure 7 are 17%
and 6% for the 6 layer CNN model, 12% and 6% for the 7
layer CNN model, 7% and 4% for the 12 layer CNN model,
6% and 5% for ResNet18 model, and 6% and 3% for the
ResNet50 model respectively. In all data folds, the deepest
ResNet50 model produced the least percentage of type 1 and
type 2 errors. Examination of errors showed that between 10-
15% of the misclassified ECoG channels could be attributed
to labeler error and were not model performance errors. The
remaining errors were due to model performance. A few example
ResNet50 classification errors are shown in Figure 8. Seizure
spectrograms with only faint frequency bands, lower amplitude
changes, or short durations (around 10 s) were sometimes
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FIGURE 7 | Precision Recall curves and confusion matrices for one example data fold. The trained models assigned a seizure or non-seizure label to individual
electrocorticographic (ECoG) channels, along with class prediction probabilities. The precision recall curves (left) show the precision or positive predictive value on
the y-axis, and recall or model sensitivity on the x-axis for different thresholds of prediction probabilities, for each of the five model architectures trained in this study.
The confusion matrices (right) show the number of ECoG channels of each classification (seizure and non-seizure) correctly and incorrectly predicted by the trained
models.

misclassified (Figure 8A). Also, non-seizure spectrograms were
sometimes misclassified when they contained cropped interictal
ECoG channels, resulting in short bursts of high frequency or
amplitude activity (typically found in electrographic seizures)
being repeated for longer than 10 s (Figure 8B). Finally, if ECoGs
longer than 100 s contained multiple long episode triggers, the
last one would be used for creating the spectrogram image. This
infrequently resulted in the main portion of the seizure being
cropped out of the resulting image, resulting in the ECoG channel
getting erroneously labeled as non-seizure.

Saliency Maps
Gradient-based saliency maps associated with the final fully
connected layer of the trained ResNet50 model are shown in
Figure 9. It appears that in seizure class, horizontal and diagonal
spectral power bands within the seizure activity are generally
highlighted, confirming that the neural network’s seizure
classifications are indeed based on seizure activity, and is not a
consequence of irrelevant feature learning. In comparison, non-
seizure class predictions had scattered background activation
patterns often associated with interictal spiking activity.

Model Generalizability to EEG Datasets Not Captured
With the RNS System
On the TUH EEG Seizure Corpus, the ResNet50 ESC models
had an average overall classification accuracy of 70.1% with an
average F1 score of 69.5%. The average seizure class classification
accuracy was 68.2%, while the non-seizure class classification
accuracy was 72%. In other words, 926 out of 2,915 seizure
spectrograms were missclassified as non-seizures, while 1,989
were correctly classified. Similarly, 817 out of 2,915 non-seizure
spectrograms were missclassified as seizures, while 2,089 were
correctly classified.

Error analysis revealed that the most common explanation
for the seizure and non-seizure misclassification in the TUH

EEG dataset was the presence of various types of noise in the
raw EEG data, with the classification performance generally
degrading with increased levels of noise in the EEG spectrograms.
A few examples of correctly and incorrectly classified EEG
spectrograms from the TUH EEG Seizure Corpus are shown in
Supplementary Figure 2.

ESC Classification Performance as a
Function of Amount of Training Data
Trends in F1 scores and class-balanced accuracies vs amount
of training data are shown in Figure 10 and Table 3. Models
were tested on expert labeled ECoG records from 80 patients.
The results show that training data from a minimum of 30
patients is required to achieve > 90% generalizability in new
patients. With the 6 layer CNN model, none of the 8 patient
splits achieved > 90% accuracy or F1 score. Training data from
50 patients were required to achieve F1 scores and accuracies
of over 90% with the 12 layer CNN models. On the other
hand, the deeper ResNet18 and ResNet50 models performed
better, requiring training data from fewer patients i.e., 40 and 30
patients respectively, to achieve ECoG record-level classification
accuracies of >90% in new patients. Deeper training models and
larger training datasets produced lower fold to fold variation in
performance metrics (see standard deviation values in Table 3
and Supplementary Table 3), compared to shallow models and
smaller training datasets.

DISCUSSION AND CONCLUSION

The work in this paper is novel and significant for several reasons.
First, it describes a semi-supervised technique for labeling large
ECoG datasets. This can be an important step for building
supervised machine learning models on large datasets, which
is becoming increasingly common in the heathcare domain.
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FIGURE 8 | (A,B) Example type 1 and type 2 errors by a trained ResNet50 model. Type 1 errors typically included short faint electrographic seizures, while type 2
errors typically included long trains of high amplitude interictal events, noise and repeated crops created during pre-processing electrocorticographic (ECoG)
channels in cases where length was shorter than 80 s.

FIGURE 9 | Saliency maps of a few correctly classified seizure and non-seizure class ECoG channels by the ResNet50 ESC model. The number on the top left
corner in each spectrogram image is the prediction probability of the model for the respective class.
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TABLE 2 | Test performance on held-out ECoG channels and expert labeled ECoG records.

Model Fold Performance on ECoG channels from 20%
held-out patients

Performance on ECoG records from 80 expert
labeled held-out patients

Test accuracy % F1 score Test accuracy % F1 score

Overall NSZ Class SZ Class Overall NSZ Class SZ Class

6 layer LR: 10−6 Opt: Nadam 1 90.16 93.59 86.74 89.37 86.32 92.49 80.15 84.51

2 88.62 94.48 82.76 85.10 84.21 93.99 74.43 81.76

3 83.03 93.91 72.14 77.72 81.00 89.49 72.52 78.03

4 89.79 92.62 86.97 84.08 83.68 97.90 69.47 80.71

5 87.80 89.93 85.66 84.15 89.85 94.59 85.11 88.67

Avg 87.88 92.90 82.86 84.08 85.01 93.69 76.34 82.73

7 layer LR: 10−6 Opt: Nadam 1 91.84 95.20 88.48 91.22 90.35 95.20 85.50 89.24

2 92.37 96.88 87.85 90.34 90.60 87.69 93.51 89.42

3 89.65 97.55 81.75 87.34 90.15 95.20 85.11 89.02

4 93.61 95.24 91.98 89.83 91.97 97.30 86.64 91.16

5 90.89 93.21 88.58 88.28 92.64 95.20 90.08 91.83

Avg 91.67 95.62 87.73 89.40 91.14 94.11 88.17 90.13

12 Layer LR: 10−6 Opt: Nadam 1 95.15 96.51 93.79 94.84 95.68 96.70 94.66 95.20

2 94.34 95.71 92.96 92.00 93.48 94.59 92.37 92.72

3 94.28 97.12 91.46 92.44 94.19 92.19 96.18 93.33

4 95.62 97.29 93.95 93.37 95.13 93.69 96.56 94.40

5 95.24 98.27 92.20 94.43 95.19 96.10 94.27 94.64

Avg 94.93 96.98 92.87 93.41 94.73 94.65 94.81 94.06

RN18 LR: 10−7 Opt: Nadam 1 96.05 97.03 95.07 95.79 93.82 90.69 96.95 92.87

2 95.19 96.71 93.68 93.35 91.88 85.29 98.47 90.69

3 95.13 97.98 92.27 93.79 93.97 90.99 96.95 93.04

4 95.07 95.67 94.47 91.66 94.99 91.89 98.09 94.14

5 95.76 97.22 94.30 94.65 95.52 92.19 98.85 94.70

Avg 95.44 96.92 93.96 93.85 94.04 90.21 97.86 93.09

RN50 LR: 10−7 Opt: Nadam 1 96.07 97.09 95.04 95.81 94.57 92.19 96.95 93.73

2 95.86 96.63 95.08 94.02 91.91 90.69 93.13 90.88

3 95.14 98.04 92.24 93.84 92.89 91.89 93.89 91.96

4 95.57 96.32 94.82 92.63 95.00 95.50 94.66 94.48

5 95.94 97.74 94.14 95.01 93.26 89.19 97.33 92.22

Avg 95.72 97.17 94.26 94.26 93.54 91.89 95.19 92.65

ECoG = electrocorticographic; NSZ = non-seizure; SZ = seizure. Bold values are average of 5 folds.

Second, it shows that despite the heterogeneous nature of
electrographic seizures, robust electrographic seizure detection
models can be built that classify ambulatory ECoG channels
in new patients with over 95% classification accuracy. Third,
it validates the method of converting time-series ECoG data
to spectrogram images for the purpose of CNN-based ECoG
classification models. Finally, it shows that with good CNN
architecture selection, data from as few as 10 patients can produce
cross-patient electrographic seizure classification accuracies of
88% (F1 score 87%), while a minimum of 30 patient’s labeled
ECoG records may be required for achieving a classification
accuracy of over 90%.

The prohibitive task of labeling a large ECoG dataset was
made manageable with the aid of an ECoG record clustering tool.
This tool enabled the manual labeling of ∼138,000 ECoG records
in 320 h. Using only 2 labels instead of 6 (as was the case in
this study) would have resulted in even faster labeling. It should

be emphasized that the unsupervised ECoG record custering
step was followed by a manual label validation step in which
pre-assigned labels given to every ECoG record were manually
verified, and corrections were made as necessary. However,
without the use of such an ECoG clustering tool for pre-labeling
ECoG records, a conservative estimate for labeling ∼138,000 4-
channel ECoG records is around 1533 h (at ∼10 s on average for
labeling each ECoG channel), not accounting for delays caused
by labeler-fatigue. Thus, use of the ECoG record clustering tool to
speed-up labeling of a large ECoG dataset was key to the success
of this project.

A goal of this study was to manually label the large NeuroPace
ECoG dataset for the purpose of building an electrographic
seizure classifier. A simple, ‘out-of-the-box’ technique that
produced reasonably good within-patient ECoG clustering was
desired, and hence the pre-trained GoogLeNet Inception-V3
model which can be applied to 3-color channel image data
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FIGURE 10 | F1 score and test accuracy of CNN and ResNet models trained with data from increasing numbers of patients. Convolutional neural networks (CNN)
and ResNet models were tested on expert labeled electrocorticographic (ECoG) records from 80 patients. A dotted line is drawn at F1 score value of 90% for
reference.

TABLE 3 | F1scores (mean ± standard deviation) as a function of number of patient’s data used for training.

Model Number of patients’ data used for training mean (standard deviation)

10 20 30 40 50 60 70 80

6 layer CNN 72.7 (3.7) 73.9 (3.7) 77.8 (5.2) 78.9 (5.3) 78.7 (5.7) 82.0 (6.4) 85.0 (2.7) 84.5 (1.1)

7 layer CNN 73.8 (5.0) 81.4 (2.5) 84.1 (4.1) 83.3 (6.5) 89.2 (1.7) 89.5 (1.8) 89.5 (1.3) 88.6 (1.8)

12 layer CNN 75.4 (5.7) 83.7 (2.3) 84.8 (3.1) 88.6 (1.6) 90.9 (2.0) 91.2 (2.3) 92.5 (0.6) 92.7 (0.9)

ResNet18 84.8 (5.1) 88.8 (2.0) 89.2 (1.3) 90.1 (0.7) 90.1 (0.8) 91.3 (1.4) 91.6 (0.9) 92.7 (0.8)

ResNet50 87.3 (2.3) 88.7 (2.0) 90.2 (1.6) 90.1 (0.7) 91.4 (1.6) 92.0 (1.3) 92.3 (1.1) 92.7 (0.7)

CNN = convolutional neural networks. Cells with F1 scores ≥ 90% are filled with green color.

was chosen as feature extractor, after experimenting with a few
different pre-trained CNN models. Dimensionality reduction was
then performed with PCA and t-SNE. Even though t-SNE is
a technique not known for preserving intercluster distances,
in our case, where ECoG labeling was done on a per-cluster
basis, preserving intercluster distances was not a priority
and did not negatively impact the manual labeling process.
In applications where preserving inter-cluster distances is of
importance, other more recently developed techniques such as
UMAP could be used instead (McInnes et al., 2018).In future
studies, models specifically trained on ECoG records, such
as autoencoders trained on unlabeled ECoG records (Tsinalis
et al., 2016), or CNN models trained on auxiliary tasks such
ECoG classification (i.e., similar to the ESC models trained
in this study) may be used as feature extractors to improve
ECoG record clustering performance. Alternatively, deep ranking
models trained using the triplet loss function with the goal of
learning optimal embedding functions, may be used (Wang et al.,
2014). Nevertheless, as shown in this present study, the use

of pre-trained CNN models for feature extraction followed by
dimensionally reduction proved to be adequately useful, and as
far as we know this is the first study to demonstrate the usefulness
of transferring pre-trained CNN weights to spectrogram images
of brain recordings for clustering brain data. Such a transfer
learning technique is likely to translate effectively to other types
of physiological data (Salem et al., 2018).

Long episode ECoG records make up over 50% of all ECoG
records captured by the NeuroPace RNS System and contain a
mix of baseline, interictal and ictal activity. Out of the 414,933
manually labeled channels from 137,985 long episode ECoG
records, 140,183 were given the seizure label, and 274,750 were
given one of five non-seizure labels. Since a sufficient number
of ECoG channels with the non-seizure label was available from
only labeling the long episode ECoG records, in the interest of
minimizing manual labeling time, it was deemed unnecessary
to label other types of ECoG records captured by the RNS
System (such as scheduled records and records triggered by
a patient applied magnet) for the purpose of training ESC
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models. The other types of ECoG records contain a much lower
proportion of seizures and many more non-seizure records. Since
balanced numbers of seizure and non-seizure ECoGs were used
for training, it is unlikely that including these ECoGs in the
training sets would have improved performance.

Five types of model architectures were trained and tested.
Three of them involved convolutional layers, max pooling, and
dense layers, connected linearly, and two of them involved
residual connections, as shown in Figure 5. Increasing the depth
of CNNs from 6 to 7 layers, and from 6 to 12 layers resulted
in improvements in ECoG channel-level accuracies of 3.8%
and 7.1%, respectively, with an accompanying decrease in fold-
to-fold performance variability. Since issues such as vanishing
and exploding gradients can manifest from pushing a neural
network too deep, the ResNet architectures, which have residual
connections to mitigate the above mentioned problems, were
used when expanding beyond 12 layers. Modest improvements
in accuracy were observed between the 12 layer CNN and
the 18 layer ResNet-based (0.51% improvement), and between
the 12 layer CNN and 50 layer ResNet-based models (0.79%
improvement) suggesting that the point of diminishing returns
with respect to model depth/complexity may be around 12
layers. When selecting a model for incorporation of an ESC in
embedded systems, the 12 layer CNN may be a better choice
compared to the ResNet-based models because of its substantially
smaller computational demands while having only slightly worse
classification performance. It should be noted, however, that since
the models described here were optimized for classifying 90-s
ECoG records, pipeline modifications and model revisions may
be necessary to identify seizures in a continuous data stream.
Additionally, the trained models may need to be converted to
compressed, lighter formats (the Tensorflow Lite format, for
example) for real-time model inference in embedded systems
with limited compute capability.

The classification performance of the ESC trained models were
only slightly worse on short (ResNet50 model accuracy: 92.7%,
12 layer CNN model accuracy: 91.1%) and long (94.1%, 93.3%)
ECoG channels compared to the classification performance on
90-s ECoG channels (96.4%, 95.4%). This small discrepancy in
performance was expected given that ∼67% of the data used in
this study were the regular-length (i.e., 90-s) ECoG channels.
Even though the trained ESC models performed best on regular-
length EcoG channels, the classification performances on short
and long EcoG channels were still very impressive making the
trained models applicable to EcoG channels of all durations
captured with the RNS System (maximum EcoG storage length
is 240 s, minimum is 30 s).

A few different hyperparameters such as the initial learning
rate, the learning rate decay factor, the optimizer type were tuned
empirically. Preliminary tests showed that initial learning rates
of 10−6 for the shallower (6,7, and 12 layer) CNNs, and 10−7

for the deeper ResNet-based architectures, with a learning rate
decay of 0, produced the best training and validation accuracies
among the parameter values tested, so these values were used
for all experiments reported in this paper. The choice of weight
initialization method (Xavier vs ImageNet weights) did not
make a difference on the model’s final training performance,

so ImageNet weight initialization was used where available (i.e.,
for the ResNet models), and Xavier initialization was used
in other cases. Additionally, the choice of gradient descent
optimization algorithm, i.e., Adam vs Nadam, did not make a
substantial difference to the models’ performance, although the
Nadam (which is Adam with Nesterov Momentum) optimizer
produced slightly better results. Overall, model training and
testing performance seemed to be robust to small variations in
hyperparameter selections.

Gradient-based saliency maps were examined to confirm that
the features learned by the trained ESC models are relevant
to the classification task. Saliency maps associated with seizure
classifications, generally had pixels associated with horizontal and
diagonal seizure power bands highlighted, while saliency maps
associated with non-seizure classifications had pixels associated
with any interictal spiking activity occasionally highlighted.
Finally, tests were run to confirm that the choice of training
platform (virtual machines on the Google Cloud Platform
vs on-premise machines) did not affect model training and
testing performances.

Although model architectures and hyperparameters such
as the learning rate, optimizers and spectrogram colormaps
(which are often considered to be among the most important
hyperparameters) were experimented with, the hyperparameter
search space is enormous. In future experiments, neural
architecture search methods such as AutoML on Google Cloud
Platform will be used to further improve classification accuracies.
Additionally, data from only 113 patients were used for training,
validation and testing in this study. Manually labeling data from
all 256 RNS study patients and using data from additional
patients for training may lead to further improvements in
model performance.

The trained ESC models performed substantially better than
chance (70.1%; chance level is 50%) in classifying spectrogram
images of EEG data in the TUH EEG Seizure Corpus (an
EEG dataset not captured with the RNS System). Error analysis
revealed that the most common explanation for misclassification
was various types of noise present in the raw EEG data, with
the classification performance generally being much better on
EEG datasets with little/no noise, compared to nosier datasets.
This was expected given that the RNS System ECoG data used
to train the CNN models were practically noise-free. The only
type of denoising applied by us to the TUH EEG data was
a 60 Hz notch filter. The addition of other denoising steps,
while outside the scope of this paper, could potentially lead to
substantially better classification outcomes. The fact that the ESC
models trained on ECoG data captured with the RNS System
could classify seizures in EEG datasets captured with markedly
different lead types, electrode configurations and recording
electronics demonstrates the transferability of preprocessing
methods and trained models across different types of time-
series brain recording datasets. Fine-tuning weights and biases
in final layers of neural networks trained on large ECoG/EEG
datasets (such as the RNS System data used in this study)
with smaller labeled time-series brain datasets from a different
source could be a potential strategy for applying deep learning
classification/regression models to datasets with limited training
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data. Such a technique is frequently used for solving computer
vision problems (Shin et al., 2016).

As expected, the performance of trained models continued to
improve with the amount of training data used. In all patient-
level splits the deepest model (ResNet50 model) produced the
best results while shallowest model (CNN 6 layer) produced
the worst. Class-balanced accuracies were >90% when the
ResNet50 model was trained with labeled ECoG records from
30 patients. Surprisingly, training ResNet50-based models with
labeled spectrogram images from just 10 patients produced
a mean ECoG record classification accuracy of ∼88% in
new patients suggesting that the deeper ResNet50 models can
effectively learn electrographic seizure signatures even with
limited training examples, and can successfully generalize the
learnings to ECoG records from new patients. The shallow 6 layer
CNN, on the other hand, only produced a classification accuracy
of 73% with 10 patient’s training data. These findings suggest that
for EEG/ECoG classification tasks, it may be beneficial to train
deep CNN architectures (such as the ResNet50 architecture) even
in cases where data from only a limited number of subjects are
available, and that training experiments should not be limited
to shallow CNN models as has mostly been the case in the past
(Roy et al., 2019).

Future experiments are needed to study the relationship
between the distinct number of electrographic seizure patterns
used for training and cross-patient classification accuracy. In our
experiments to characterize model performance as a function of
number of patient’s data used for training, a substantial number
(∼14,500 per class or ∼29,000 in total) of seizure and non-seizure
spectrogram images were available from just 10 patients. Since
some patients have multiple seizure foci and seizure waveforms
can change over time, each patient likely contributed a few
different seizure patterns for training. This is because seizures
may originate in different brain areas with different seizure
waveforms, and because ECoG records used in this study cover
an average of 7.5 years per patient. This variety could explain
why models built with just 10 patients’ data generalized to new
patients with > 88% accuracy. Repeat analyses with data captured
from small numbers of patients over shorter periods will provide
additional insight into the minimum number of seizure examples
required for good performance.

About 34% of labeled ECoG channels used in this paper
belonged to the seizure class, while the remaining 66% of ECoG
channels belonged to the non-seizure class. Class balancing of
seizure and non-seizure class ECoG channels was performed only
in the training datasets and not in the test datasets. This was
done to compute the test performance on realistic distributions
of ECoG records captured with the RNS System. Hence, the
precision (positive predictive value), recall (sensitivity) and F1
scores (harmonic mean of precision and recall) reported in
this paper were computed on imbalanced datasets with about
twice the number of non-seizure examples as seizure examples
(see Table 1). However, these metrics do not reflect model
performance on continuous ECoG records. The RNS System
captures data intermittently with data capture biased toward
abnormal ECoG activity. In this paper, a training approach
that produced high cross-patient test classification performance

on such intermittently captured ECoG records was chosen.
Although training was not performed with the goal of applying
the models to continuous ECoG records, extrapolating the results
(97.17% non-seizure accuracy and 94.26% seizure accuracy on
90 s ECoG records; see Table 2) to continuous ECoG records
would result in a false positive rate of ∼1.1/h per ECoG
channel (with the sensitivity still being high at 94.26%). This
is assuming that the continuous ECoG records are cut into
90 s non-overlapping segments and fed into the model for
inference. If a patient only has a few seizures per month, this
could produce a large number of false positives relative to
true positives. Nevertheless, such a generic cross-patient model
could still be used in an offline setting to filter out ∼97% of
data and present the remaining 3% for further human review.
A better strategy, however, might be to alter the training approach
to optimize model classification performance on continuous
ECoG records. For example, data augmentation techniques
could be used to mimic continuous data capture by enriching
scheduled ECoGs in a training set of all ECoG record types,
and custom loss functions with additional penalties could be
used for minority class misclassifications. Such experiments
are outside the scope of this paper but certainty warrant
further studies.

Error analysis revealed some shortcomings in model
performance. In general, seizure ECoG channels with
very subtle seizure signals in spectrogram images were
sometimes misclassified as non-seizures. Conversely, non-
seizure spectrogram images with noise artifact or long trains of
high amplitude interictal activity were occasionally misclassified
as seizures. Several approaches may be taken to further improve
the classification performance of the electrographic seizure
detection models. Training ECoG channel classification models
with greater spatial context such as including spectrogram images
of ECoG activity from adjacent ECoG channels could lead to
higher classification accuracy for the primary channel. This
would mimic the behavior of a human labeler evaluating faint
seizure activity by using activity on adjacent ECoG channels.
Additionally, separate CNN or ResNet models could be trained
on shorter and longer ECoGs to improve the classification
performance of ECoG channels that are outside the typical
length range of 90 s. Since relatively few ECoG channels fall
outside the typical length range, one way to achieve this could
be to fine-tune the final layer(s) parameters of a base CNN or
ResNet model trained with 90-s ECoGs for the shorter and
longer ECoGs respectively. Alternatively, recurrent neural
networks architectures (RNN) or combined CNN and RNN
architectures which do not require the input data to be of fixed
dimensions may be trained.

In summary, this study demonstrates that converting time-
series ECoG records into spectrogram images and using them as
input to CNN models can be used to effectively train robust cross-
patient seizure classification models. Healthcare tools built using
these models may facilitate the physician’s review of EEG data
for epilepsy patients, and have the potential to improve clinical
outcomes due to improved diagnostic assessments. Additionally,
by characterizing the performance of various CNN models as
a function of amount of training data, this research provides
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ECoG/EEG data collection guidance for researchers interested in
solving similar ECoG classification problems.
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