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Brain functional networks (BFNs) constructed via manifold regularization (MR) have
emerged as a powerful tool in finding new biomarkers for brain disease diagnosis.
However, they only describe the pair-wise relationship between two brain regions,
and cannot describe the functional interaction between multiple brain regions, or the
high-order relationship, well. To solve this issue, we propose a method to construct
dynamic BFNs (DBFNs) via hyper-graph MR (HMR) and employ it to classify mild
cognitive impairment (MCI) subjects. First, we construct DBFNs via Pearson’s correlation
(PC) method and remodel the PC method as an optimization model. Then, we use
k-nearest neighbor (KNN) algorithm to construct the hyper-graph and obtain the
hyper-graph manifold regularizer based on the hyper-graph. We introduce the hyper-
graph manifold regularizer and the L1-norm regularizer into the PC-based optimization
model to optimize DBFNs and obtain the final sparse DBFNs (SDBFNs). Finally, we
conduct classification experiments to classify MCI subjects from normal subjects to
verify the effectiveness of our method. Experimental results show that the proposed
method achieves better classification performance compared with other state-of-
the-art methods, and the classification accuracy (ACC), the sensitivity (SEN), the
specificity (SPE), and the area under the curve (AUC) reach 82.4946 ± 0.2827%,
77.2473 ± 0.5747%, 87.7419 ± 0.2286%, and 0.9021 ± 0.0007, respectively. This
method expands the MR method and DBFNs with more biological significance. It can
effectively improve the classification performance of DBFNs for MCI, and has certain
reference value for the research and auxiliary diagnosis of Alzheimer’s disease (AD).

Keywords: mild cognitive impairment, Alzheimer’s disease, dynamic brain functional network, manifold
regularization, hyper-graph
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INTRODUCTION

Alzheimer’s disease (AD) is a primary degenerative brain
disease that occurs in senectitude and presenium (Lu et al.,
2019; Bi et al., 2021). AD creates issues in memory, thinking,
analysis, judgment, visual and spatial recognition, and emotional
regulation. However, there are currently no specific treatments or
therapeutic drugs to reverse disease progression. Mild cognitive
impairment (MCI) is also a type of dementia, and is an
intermediate stage between normal people and AD patients.
In clinical practice, MCI is mostly manifested as a decline in
cognitive function and memory, but it does not affect the daily
life of patients (Muldoon and Bassett, 2016). Related research
has shown that the annual conversion rate of MCI to AD is
about 10–15% (Jiao et al., 2014; Zhang et al., 2015b). MCI
due to AD provides a potential window to detect and diagnose
AD before significant neurodegeneration has begun. Early active
intervention treatment for MCI can improve or delay its
cognitive decline and even the development of AD (Alzheimer’s
Association, 2012). Therefore, the accurate identification of
MCI and the intervention of MCI through drug and non-drug
pathways to reduce the AD conversion rate have attracted great
attention from researchers (Gauthier et al., 2006; Tobia et al.,
2017). It is important to explore which subjects will progress
from MCI to AD, as there are predictors of progression that will
indicate a more rapid rate of progression in MCI subjects.

Nowadays, neuroimaging technology is widely used in the
detection and research of brain diseases. Some existing brain
imaging techniques include magnetic resonance imaging (MRI)
technology (Zhang et al., 2015a), functional MRI (fMRI) (Zhang
Y. D. et al., 2016), and diffusion MRI (Basser and Pierpaoli, 2011).
Electrophysiology techniques, including electroencephalogram
(EEG) (Jung et al., 2000), magnetoencephalography (MEG)
(Smythies et al., 2005), and positron emission technology (PET)
(Mourik et al., 2009), provide effective and non-invasive methods
to explore the brain and its connection patterns, revealing
brain functions and brain structures that could not be revealed
before. Many medical and biological studies have shown that
human cognitive processes usually rely on pair-wise relationships
between different neurons and brain regions (Ou et al., 2015).
The brain functional network (BFN) can describe the function or
structural interaction of the brain at the entire brain connection
level (Rubinov and Sporns, 2010); thus, it provides a new tool for
exploring the function and structure of the brain. In the research
based on resting-state fMRI, the BFN is generally constructed
through the full time series of resting state. Most recent studies
have shown that brain neural activity changes dynamically over
time, and this dynamic change will contain more abundant
information (Chang and Glover, 2010). Therefore, research on
dynamic BFN (DBFN) will help us further explore the operation
mode of the whole brain, and it is conducive to the auxiliary
diagnosis of brain diseases.

In research based on BFNs, how to construct BFNs is a
very important procedure. Researchers have proposed many
methods for constructing BFNs, from the simplest method for
constructing BFNs based on Pearson’s correlation (PC) (Jiang
et al., 2019), to the partial correlation method (Jiang et al., 2019),

to the dynamic causal model method (Roebroeck et al., 2005), etc.
However, these methods have their shortcomings. For example,
the PC method can only calculate the full correlation, and it
cannot remove the redundant effects of other brain regions.
The BFN construction method based on partial correlation
may lead to ill-posed problems (Li et al., 2019). Now, adding
regularizers to the PC method or the partial method can result in
better BFNs. Regularizers mainly reflect some prior information
of the brain, such as sparsity (Qiao et al., 2016), modularity
(Qiao et al., 2016), group sparsity (Wee et al., 2014), scale-free
property (Li et al., 2017), etc. These properties are transformed
into corresponding regularizers embedded in the construction of
BFNs through certain transformations to obtain BFNs containing
more prior information.

Recently, BFNs via manifold regularization (MR) have
been widely used in studies. About MR, Li et al. (2020c)
proposed a hypothesis: if two brain regions are very close
in space, then the functional connections between them and
other brain regions may share similar connection patterns.
It means that these brain regions have similar topological
properties. Li et al. (2020c) transformed this similarity into a
manifold regularizer and introduced it to construct BFNs. Xue
et al. (2020) constructed BFNs based on the same idea, and
introduced the distance information between brain regions into
the manifold regularizers. However, most studies just consider
the pair correlation between brain regions, but ignore the
high-order relationship which reflects interactive information
between multiple brain regions. This could be a drawback
because the BFN itself is a complex network. Recent studies
have shown that a brain region usually directly interacts with
several neighboring brain regions, forming a complex interactive
relationship. Therefore, the high-order relationship between
brain regions may contain some discriminative information to
improve the classification performance. Hyper-graph is a good
choice to describe the high-order relationship between multiple
nodes in a graph (Yu et al., 2014), and has been successfully
applied in many fields. In traditional graphs, one edge of the
graph can only connect two related vertices. In practice, the
relationship between objects is much more complicated than the
pairwise relationship. Hyper-graph is an extension of traditional
graphs. In a hyper-graph, a hyper-edge is a collection of any
number of nodes, which can connect any number of nodes, so it
is natural to use hyper-graphs to model high-order relationships.
Zhou et al. (2007) proposed a hyper-graph learning method
for clustering, classification, and embedding learning, and the
hyper-graph Laplacian operator was used to describe the complex
relationship between multiple samples. Jie et al. (2016) used
sparse representation (SR) method to construct hyper-graph and
applied it to the diagnosis of AD and MCI patients.

Most of the above studies performed feature extraction,
feature selection, and classification for hyper-graph directly.
But few studies convert the hyper-graph into a regularizer and
introduce it into the construction of BFNs. To solve these
problems, we propose a method for constructing DBFNs via
hyper-graph MR (HMR) and apply this method to differentiate
MCI subjects from normal subjects. First, we construct DBFNs
and transform the PC method into an optimization model.
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FIGURE 1 | The framework of constructing SDBFNs via SHMR for MCI classification. The area marked in red box is the key research part. (a) Preprocessing the
obtained resting-state fMRI data of two types of subjects; (b) registering the preprocessed resting-state fMRI data to 90 brain regions according to the AAL
template, and obtaining the time series of all brain regions; (c) dividing the entire time series into multiple overlapping sub-sequence segments by sliding window
method; (d) constructing DBFNs based on the PC method and transforming it into an optimized model; (e) constructing hyper-graphs based on DBFNs and
obtaining hyper-graph Laplacian matrices; (f) constructing the manifold regularizer by hyper-graph Laplacian matrices, and introducing the manifold regularizer and
L1-norm regularizer into the optimization model of the PC method to obtain SDBFNs; (g) extracting the weighted-graph local clustering coefficient of each brain
region in SDBFNs, and using the t-test for feature selection; and (h) training a linear kernel SVM classifier to classify the SDBFNs of all subjects and analyzing the
classification performance.

Next, we construct hyper-graphs based on DBFNs and obtain
the hyper-graph manifold regularizer. Then, we introduce the
hyper-graph manifold regularizer and L1-norm regularizer into
the optimization model of the PC method to obtain the sparse
DBFNs (SDBFNs). After that, we extract the weighted-graph local
clustering coefficient of each brain region in two types of subjects’
SDBFNs as an effective feature and use t-test for feature selection
from SDBFNs. Finally, we train a linear kernel support vector
machine (SVM) to classify the SDBFNs of all subjects and analyze
the classification performance. Furthermore, we also investigate
the parameter sensitivities on classification performance and
some discriminative brain regions.

MATERIALS AND METHODS

Data Acquisition and Processing
The subjects were recruited through local newspapers and media
in North Carolina1 (Qiao et al., 2016; Li et al., 2020b). They

1http://www.nitrc.org/projects/modularbrain/

are all right-handed and have no history of neurological or
mental illness, and no history of alcohol or drug abuse. Excluding
these who frequently use psychotropic drugs, stimulants, and
β-blockers, all subjects received standard neuropsychological
assessments and responses.

Raw fMRI images are scanned by the 3T Siemens TRIO
scanner. The image size is 74 × 74 × 45, the voxel size
is 2.97 × 2.97 × 3 mm3, and the repetition time (TR) is
3000 ms with 180 volumes. The raw resting-state fMRI data are
preprocessed by using the SPM toolbox2 and DPARSFA3 toolbox
of Matlab R2012a software. In order to avoid signals dithering,
the first 10 fMRI images are discarded. The remaining images
are first corrected in time layer and head motion, and then the
images are spatially normalized and linear drift removed. Band-
pass filtering is performed with 0.01–0.08 Hz to remove the
interference of blood flow and power frequency. In addition,
the generalized linear model is used to remove covariates such
as head movement parameters, white matter, gray matter, and

2http://www.fil.ion.ucl.ac.uk/spm/
3http://rfmri.org/dparsf/
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TABLE 1 | The specific group characteristics of the subjects.

Group characteristic MCI Normal

Gender (male/female) 25M / 20F 14M / 32F

Age (mean ± SD) 74.13 ± 6.68 73.5 ± 3.50

MMSE (mean ± SD) 27.71 ± 1.73 28.10 ± 1.35

cerebrospinal fluid. Finally, we clean the data with frame-wise
displacements (FD) > 0.5. Data are registered through the
Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002), and blood oxygenation level-dependent (BOLD)
signals in each brain region are extracted by means of mean
value. Screened by data time points are greater than 80,
and BOLD signals of 91 subjects (45 MCI subjects and 46
normal subjects) are retained. Table 1 shows the specific group
characteristics of the subjects, including their Mini-Mental State
Examination (MMSE) scores.

Conventional DBFN Construction
Suppose X =

[
x1, x2, ..., xp

]
∈ RQ×P is a time series matrix, Q

is the total number of time points, P is the number of brain
regions, and xi, xj ∈ RQ×1 are the time series vectors of the ith
brain region and the jth brain region. We use the sliding window
method to divide the entire time series into several overlapping
time sub-segments (Chen et al., 2016). Assuming that the window

width is N and the step size is S, defining x(l)i
(
k
)
∈ RN×1 as the

k-th sub-segment extracted from the time series of the lth subject.
The total number of windows K is expressed as:

K =
Q− N

S
+ 1, 1 ≤ k ≤ K (1)

Then we calculate the PC coefficient between each sub-segment
and construct DBFNs. xki ∈ RN,

(
k = 1, ...,K

)
denotes the time

series of the ith brain region in the kth window, and the time
series matrix X(k) =

[
xk1, x

k
2, ..., x

k
P

]
∈ RN×P in the kth window

concatenate xki in series. The correlation coefficient matrix of BFN

W(k) in the kth window is W(k) =
(
X(k)

)T
X(k). Convert this

formula to the optimized form as:

min
W(k)
||W(k) − X(k)TX(k)||

2

F (2)

BFN Construction Based on MR
Li et al. (2020c) were inspired by the existence of similar
connection patterns (i.e., similar internal structures) in BFNs
and proposed a method for constructing sparse BFNs via MR.
Li et al. (2020c) also extended MR, embedded the sparse prior
information, and obtained the extended method SMR. The
objective function of SMR can be formulated as:

minW ||X-XW||2F + λ||W||1 + βtr
(
WTLW

)
(3)

where ||.||2F represents the square of the F-norm, ||.||1 represents
the L1-norm, λ is a regularization parameter of L1-norm

regularizer, and β is the regularization parameter of manifold
regularizer. tr(.) represents the trace of the matrix, L is the
Laplacian matrix, and its solution method is L = I − D−

1
2 SD−

1
2 .

I is the identity matrix and D is a diagonal matrix. The
diagonal elements in D are expressed as Dii =

∑N
j=1 Wij. S is the

correlation coefficient matrix of the BFN constructed based on
the PC method. When λ = 0, this method changes into the BFN
construction method based on MR.

DBFN Construction Based on HMR
Hyper-graph is an extension of conventional graph. Denote a
hyper-graph as G (V , E, A), where V represents the set of vertices,
E represents the set of hyper-edges, and A represents the set
of weights of each hyper-edge. For the hyper-graph G, we use
the correlation matrix H∈R|V|×|E| to describe the relationship
between vertices and hyper-edges; it can be formulated as:

H (v, e) =
{

1, if v ∈ e
0, if v /∈ e

(4)

where v ∈ V is a node in G and e ∈ E is a hyper-edge in G.
For the correlation matrix H, the node degree of each node

and the edge degree of each hyper-edge can be formulated as:

d (v) =
∑
e∈E

a (eb) h (v, eb) , b = 1, ...,M (5)

δ (eb) =
∑
v∈V

h (v, eb) , b= 1, ...,M (6)

where eb (b = 1,..., M and M represents the number of hyper-
edges) represents the bth hyper-edge and a(eb) represents the
weight of eb. MR explores the internal geometric structure of the
graph by means of the Laplacian matrix. Similarly, the Laplacian
matrix of the hyper-graph can better reflect the high-order
relationship between multiple samples for HMR. Many methods
of calculating the Laplacian matrix of the hyper-graph can be
roughly divided into two categories: one category is to construct
a simple graph based on the original hyper-graph, and then
calculate the Laplacian matrix on the simple graph (Zien et al.,
1999); another category is to directly derive the Laplacian matrix
of the hyper-graph based on the Laplacian matrix of the simple
graph (Zhou et al., 2007). By comparison, we use the second
method to calculate the Laplacian matrix of the hyper-graph:

Lh = I −2 (7)

where Lh is the Laplacian matrix of the hyper-graph, I is the

identity matrix, and 2 = D
−

1
2

v HAD−1
e HTD

−
1
2

v , Dv represents
the diagonal matrix and its diagonal elements are d(v), and De
represents the diagonal matrix and its diagonal elements are
δ (eb). A represents the diagonal matrix and its diagonal elements
are hyper-edge weights. Referring to the methods of Zhou et al.
(2007) and Shao et al. (2019), we adopt k-nearest neighbor (KNN)
algorithm to construct the hyper-graph based on DBFNs.

Inspired by the research of Li et al. (2017), we propose a
method for constructing DBFNs based on HMR, and add the
L1-norm regularizer based on HMR, and obtain a new DBFN
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TABLE 2 | Classification performance of different window widths and step sizes.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

V = 1,S = 50 81.0570 ± 0.2551 77.2975 ± 0.3529 86.4165 ± 0.3682 0.8986 ± 0.0026

V = 2,S = 50 76.4275 ± 0.4389 66.9583 ± 0.5456 85.8976 ± 0.5863 0.8409 ± 0.0023

V = 1,S = 60 80.7219 ± 0.4070 71.1746 ± 0.4867 90.2692 ± 0.4831 0.9025 ± 0.0021

V = 2,S = 60 73.4818 ± 0.7597 59.4141 ± 1.0188 87.5494 ± 0.8488 0.8191 ± 0.0039

V = 1,S = 70 77.0553 ± 0.6533 66.3636 ± 1.1438 87.7470 ± 1.1023 0.8409 ± 0.0059

V = 2,S = 70 65.7299 ± 0.8631 43.8148 ± 1.7895 87.6449 ± 0.5250 0.7483 ± 0.0062

V = 1,S = 80 48.7391 ± 4.2414 14.0000 ± 3.1514 83.4783 ± 7.6827 0.5307 ± 0.0493

V = 2,S = 80 47.2440 ± 2.4217 16.4444 ± 2.3888 78.0435 ± 3.8956 0.5053 ± 0.0221

TABLE 3 | Classification performance of different neighbor numbers.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

k = 1 81.5969 ± 0.2353 77.2330 ± 0.2969 85.9607 ± 0.4100 0.8984 ± 0.0018

k = 3 82.1424 ± 0.3034 76.7742 ± 0.3528 87.5105 ± 0.4055 0.8988 ± 0.0011

k = 5 82.2696 ± 0.2158 77.1900 ± 0.4619 87.3492 ± 0.2770 0.8984 ± 0.0010

k = 6 81.9266 ± 0.3825 76.2796 ± 0.6879 87.5736 ± 0.2972 0.9001 ± 0.0015

k = 7 82.4946 ± 0.2827 77.2473 ± 0.5747 87.7419 ± 0.2286 0.9021 ± 0.0007

k = 8 82.2076 ± 0.1873 76.9677 ± 0.4484 87.4474 ± 0.2582 0.9003 ± 0.0013

k = 9 81.9021 ± 0.2479 76.2867 ± 0.3729 87.5175 ± 0.2706 0.8997 ± 0.0015

k = 10 81.6502 ± 0.3456 76.0143 ± 0.3929 87.2861 ± 0.4948 0.8977 ± 0.0014

k = 15 81.5525 ± 0.2362 75.7348 ± 0.2989 87.3703 ± 0.2506 0.8954 ± 0.0011

construction method, namely, SHMR. The objective function of
SHMR is as follows:

minW(k) ||W(k) − X(k)T
X

(k)
||

2

F + λ||W(k)||1

+βtr
(
W(k)TLhW(k)

)
(8)

where X(k) represents the time series matrix of the kth window,
λ represents the regularization parameter of L1-norm, and β

represents the regularization parameter of manifold regularizer.
When λ = 0, the method changes into the DBFN construction
method based on HMR.

In Formula (8), the derivable part is the fitting term and
the manifold regularizer and the non-derivable part is the L1-
norm regularizer. We use the proximal operator method (Yan
et al., 2013) to optimize and solve the non-derivable part. Then

the gradient of the fitting term f = ||W(k) − X(k)T
X

(k)
||

2

F is
calculated as:

∇W(k) f
(
X(k),W(k)

)
= 2

(
W(k) − X(k)T

X
(k)
)

(9)

Then we update W(k) m times:

W(k)
m =W(k)

m−1 − αm

(
∇W(k) f

(
X(k),W(k)

m−1

)
+ βLhW(k)

)
(10)

where αm represents the step size in gradient descent.

Then we calculate the proximal operator of the L1-norm
regularizer which can be formulated as:

proximalλ||.||1
(
W(k)

m

)
=

[
sgn

(
W(k)

ij

)
(11)

×max
(
abs

(
W(k)

ij

)
− λ

)
, 0
]
N×N

The intention of Formula (11) is to apply a soft threshold

operation to the elements in W(k)
m . After each gradient descent

calculation is completed, we use the proximal operator to solve
the constraint of W(k).

Accordingly, we adopt the same strategy as in the study of
Elhamifar and Vidal (2013) and symmetrize W(k); finally, we

obtain W∗(
k)
=

W(k)+W(k)T

2 . We use W∗(
k) to represent the DBFN

constructed by SHMR, namely, SDBFN.

Feature Extraction, Feature Selection,
and Classification via SDBFN
The weighted-graph local clustering coefficient has been widely
used in the analysis of BFN, and related studies have also
shown that the clustering properties of BFN have changed in
neurological diseases (such as AD and MCI) (Jiao et al., 2019).
Giving a network of N nodes, the weighted-graph local clustering
coefficient of node i can be formulated as:

Ci =
2
∑

i,j∈vi

(
ωij
) 1

3

|vi| (|vi| − 1)
(12)

where ωij represents the weight of the connection edge between
node i and node j, vi represents the set of nodes directly
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FIGURE 2 | Classification performance of SDBFNs obtained by different regularization parameters: (A) ACC, (B) SEN, (C) SPE, and (D) AUC.

connected to node i, and |vi| represents the number of
elements in vi.

The generalization ability of SVM is excellent, and the process
of transformation from non-linear problem to linear problem
can be realized by kernel function. SVM solves the local optimal
problem and curse of dimensionality problem in small sample
non-linear space. In order to avoid the confusing effect of
feature extraction and the selection of the classifier on the
classification performance, we calculate the weighted-graph local
clustering coefficients in SDBFNs as effective features and use
the t-test method for feature selection, and finally we train a
linear kernel SVM to classify the SDBFNs of all subjects. We use
four metrics to evaluate the classification performance: accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under the
curve (AUC) (Li et al., 2018).

EXPERIMENTAL RESULTS

Parameter Sensitivity on Classification
Performance
In this section, we discuss the sensitivities of different parameters
on MCI classification performance. Since there are multiple
parameters in our method, the grid search method cannot be
used directly to find the optimal parameter. Our strategy is to
find the optimal parameter separately, that is, to find each optimal
parameter step by step.

Sensitivity of Different Window Width and Step Size
The window width S and step size V have an important influence
on constructing DBFNs and SDBFNs. Since SDBFN is optimized
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TABLE 4 | Classification performance of different regularization parameter values.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

λ = 2−4, β = 2−4 81.7265 ± 0.2902 76.5806 ± 0.3397 86.8724 ± 0.4542 0.8980 ± 0.0013

λ = 2−4, β = 2−3 82.4946 ± 0.2827 77.2473 ± 0.5747 87.7419 ± 0.2286 0.9021 ± 0.0007

λ = 2−4, β = 2−2 82.1426 ± 0.2041 76.7957 ± 0.2552 87.4895 ± 0.2789 0.9008 ± 0.0018

λ = 2−4, β = 2−1 82.1063 ± 0.2744 77.0036 ± 0.4272 87.2090 ± 0.2886 0.9016 ± 0.0007

λ = 2−3, β = 2−4 79.5965 ± 0.3622 76.4301 ± 0.3820 82.7630 ± 0.5875 0.8818 ± 0.0022

λ = 2−3, β = 2−3 79.7052 ± 0.4198 76.4229 ± 0.7407 82.9874 ± 0.5474 0.8796 ± 0.0021

λ = 2−3, β = 2−2 79.7154 ± 0.3038 75.4265 ± 0.4231 84.0042 ± 0.4187 0.8770 ± 0.0024

λ = 2−3, β = 2−1 80.0542 ± 0.2779 75.6344 ± 0.5218 84.4741 ± 0.5414 0.8768 ± 0.0027

λ = 2−2, β = 2−4 81.5949 ± 0.3644 80.9247 ± 0.6929 82.2651 ± 0.4942 0.8930 ± 0.0018

λ = 2−2, β = 2−3 81.3470 ± 0.2691 81.0251 ± 0.3718 81.6690 ± 0.7053 0.8910 ± 0.0019

λ = 2−2, β = 2−2 81.7879 ± 0.2006 81.9068 ± 0.4611 81.6690 ± 0.3105 0.8918 ± 0.0014

λ = 2−2, β = 2−1 80.8248 ± 0.5051 81.6918 ± 0.5472 79.9579 ± 0.7180 0.8821 ± 0.0037

λ = 2−1, β = 2−4 76.2415 ± 0.2577 71.9570 ± 0.2883 80.5259 ± 0.4664 0.8321 ± 0.0015

λ = 2−1, β = 2−3 76.4409 ± 0.3330 71.2688 ± 0.3996 81.6129 ± 0.4470 0.8312 ± 0.0021

λ = 2−1, β = 2−2 75.7620 ± 0.4170 69.4552 ± 0.5639 82.0687 ± 0.5143 0.8283 ± 0.0017

λ = 2−1, β = 2−1 76.4985 ± 0.2997 71.4122 ± 0.3636 81.5849 ± 0.3956 0.8313 ± 0.0018

based on DBFN, we first classify DBFN of all subjects based
on different window widths and step sizes to determine the
optimal window width and step size. The specific process of
classification is as follows. First, we extract the weighted-graph
local clustering coefficients in DBFNs of all subjects, which are
constructed with different window widths and step sizes. Then we
use the t-test method for feature selection, with the significance
level of 0.05. Finally, we choose linear kernel SVM classifier
to classify all subjects, and the linear kernel SVM classifier is
implemented using the LIBSVM toolbox (Chang and Lin, 2011).
In classification, MCI subjects are generally regarded as positive
samples, and normal subjects are regarded as negative samples.
We use ACC, SEN, SPE, and AUC to measure the classification
performance of different methods, and we also use 10-fold cross
validation to verify the classification results (Li et al., 2020a; Xu
et al., 2020) by taking the mean value of each classification index
after 10 times of 10-fold cross-validation as the final results.
We analyze the classification performance of multiple groups of
window widths and step sizes to find the optimal parameter. The
classification performance of different window widths and step
sizes and the standard deviation (STD) of each index are shown
in Table 2. The best classification performance is highlighted in
black. Among them, the step size varies from 1 to 2 with an
interval of 1 and the window width varies from 50 to 80 with
an interval of 10.

From Table 2, we can see that the ACC and SEN are
better when the window length is 50 and the step size is 1.
As the window width and step size increase, the classification
performance becomes worse gradually. This is consistent with
the conclusions in the research of Jiao et al. (2019) and Li
et al. (2018). The reason may be that using a larger window
width and larger step size will ignore the functional connections
between some brain regions and part of the dynamic information
that changes over time, so that the classification performance
starts to decrease.

Sensitivity of the Number of Neighbors
We use the KNN algorithm to construct the hyper-graph. The
specific process is to use the KNN algorithm to select the k
nearest vertices to the center vertex to form a hyper-edge. The
classification results of different neighbor numbers are shown
in Table 3, and the values of k are set as 1, 3, 5, 7, 8, 9, 10,
and 15 (Shao et al., 2019). When k = 1, it does not construct
a hyper-graph. We can find that ACC, SEN, SPE, and AUC are
the best when the value of k is 7, which is consistent with the
conclusion in the study of Shao et al. (2019). When the value
of k is larger than 7, the classification performance begins to
decline. The possible reason for this is that when the value of k is
larger, it describes the global structure information of the sample
rather than the local distribution information. When the value
of k is larger, the hyper-edge may contain many different types
of samples, so it cannot reflect the real data structure well. In
addition, when k = 1, the classification performance is slightly
lower, indicating that the introduction of hyper-graph helps to
improve the classification performance.

Sensitivity of Regularization Parameters
The role of L1-norm regularizer is mainly to remove redundant
features and make DBFNs sparser. The hyper-graph manifold
regularizer retains the discriminative information of each
subject, thereby inducing more discriminative features. The
regularization parameters λ and β are used to adjust the
complexity of constructing DBFNs. We test the values of
various classification indices for Normal and MCI subjects
under different regularization parameters. The classification
performance of SDBFNs obtained by different regularization
parameters are shown in Figure 2, and the specific results
are shown in Table 4, where the ranges of λ and β are both
{2−4,2−3,2−2,2−1}.

From Figure 2 and Table 4, we can find that the ACC, SEN,
SPE, and AUC are best when λ = 2−4 and β = 2−3. With
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FIGURE 3 | Visualization results of constructing the BFN in the same time window by different methods. (A) PC, (B) SR, (C) MR, (D) SMR, (E) HMR, and (F) SHMR.

TABLE 5 | Classification performance of different methods.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

PC (Jiang et al., 2019) 81.0570 ± 0.2551 77.2975 ± 0.3529 86.4165 ± 0.3682 0.8986 ± 0.0026

SR (Jiang et al., 2019) 73.9135 ± 0.2756 68.7518 ± 0.3423 79.0753 ± 0.5537 0.8237 ± 0.0009

MR (Li et al., 2020c) 49.8402 ± 1.1050 96.3184 ± 5.3426 3.3620 ± 4.3518 0.8291 ± 0.0404

SMR (Li et al., 2020c) 74.3410 ± 0.3876 68.9902 ± 0.4506 79.6918 ± 0.5397 0.8275 ± 0.0022

HMR 81.4570 ± 0.2727 76.6237 ± 0.3087 86.2903 ± 0.3670 0.9005 ± 0.0017

SHMR 82.4946 ± 0.2827 77.2473 ± 0.5747 87.7419 ± 0.2286 0.9021 ± 0.0007
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the increase of λ and β, the classification performance starts to
decrease. According to the above experiments, we set the window
width to 50, the step size to 1, the number of neighbors to 7, and
λ = 2−4 and β = 2−3 to construct SDBFNs.

Visualization of BFNs
We randomly select a subject, then we use different methods
to construct DBFNs, and visualize the BFN in the same time
window. These comparison methods are related to our method,
as shown in Figure 3. The compared methods that we employ
include the PC method (Jiang et al., 2019), the SR method
(the regularization parameter corresponding to the optimal
classification performance is 24) (Jiang et al., 2019), the MR
method (the regularization parameter corresponding to the
optimal classification performance is 2−4) (Li et al., 2020c), the
SMR method (the regularization parameters corresponding to
the optimal classification performance are 24 and 2−1), and the
HMR method (the regularization parameter corresponding to
the optimal classification performance is 2−3). Figures 3A–F are
the visualized results of constructing the BFN in the same time
window by different methods.

Figure 3 shows the visualization results of constructing the
BFN in the same time window by different methods. From these
visualization results, we can find that the BFN constructed based
on the PC method in the same time window is often dense, while
the BFN constructed based on the SR method in the same time
window is sparse. Figure 3D is sparser than Figure 3A and the
topological structure is clearer, while Figures 3B,C have stronger
functional connection strength.

Classification Performance for MCI by
Different Methods
We compare the classification performance of different DBFN
construction methods for MCI identification, where the best
classification performance is highlighted. As shown in Table 5,
the classification performance of SHMR for MCI is better
than other methods, expect SEN. In particular, its ACC, SEN,
SPE, and AUC are 82.4946 ± 0.2827%, 77.2473 ± 0.5747%,
87.7419 ± 0.2286%, and 0.9021 ± 0.0007, respectively. The
best classification performance among the compared methods
is the HMR method, and its ACC, SEN, SPE, and AUC are
81.4570 ± 0.2727%, 76.6237 ± 0.3087%, 86.2903 ± 0.3670%,
and 0.9005± 0.0017, respectively. The classification performance
of the SMR method is better than that of the SR method,
but the classification performance of MR is worse than that of
the SR method. It shows that the simultaneous introduction
of L1-norm regularizer and manifold regularizer based on the
SR method can effectively improve the quality of DBFNs and
enhance the classification ACC effectively, while the introduction
of L1-norm regularizer alone cannot improve the classification
performance. This result is similar to the research of Li et al.
(2020c). The classification performances of the SHMR method
and the HMR method are all better than that of the PC method;
it indicates the effectiveness of introducing the hyper-graph
manifold regularizer.

Discriminative Brain Regions
In each 10-fold cross-validation, the number of selected
features determines the quality of the DBFN. If the number
of selected features is larger, the DBFN constructed by the
corresponding method may contain more potential information.
Therefore, in 10-fold cross-validation, we counted the number
of selected features in different methods, that is, the number of
selected weighted-graph local clustering coefficients, as shown in
Figure 4. We can find that the SHMR method has more features
selected in the 10-fold cross-validation than other methods, so the
SHMR method can select more stable features.

In order to find some biomarkers for MCI diagnosis, we
search for discriminative features and consider that features with
higher frequency in 10-fold cross-validation are discriminative
features. Therefore, we count features with high frequency in 10-
fold cross-validation. There are 21 brain regions corresponding to
these features, which are called discriminative brain regions. The
details of the discriminative brain regions are shown in Table 6.
Then we use the BrainNet Viewer toolbox4 (Xia et al., 2013) to
visualize the discriminative brain regions. These discriminative
brain regions are mapped to the ICBML52 template, and we use
the JET template for color marking. The visualization results are
shown in Figure 5.

From Table 6 and Figure 5, we can find that some
selected discriminative brain regions, including the left posterior
cingulate gyrus (PCG.L), right posterior cingulate gyrus (PCG.R),
left hippocampus (HIP.L), left inferior parietal, supramarginal,
and angular gyri (IPL.L), right inferior parietal, supramarginal,
and angular gyri (IPL.R), right precuneus (PCUN.R), left inferior
temporal gyrus (ITG.L), and right inferior temporal gyrus
(ITG.R), belong to the regions in the default mode network
(DMN) (Bi et al., 2020a,b; Jiao et al., 2020). Most of the selected
brain regions have been widely considered to be related to
AD and MCI, which is consistent with the results of previous
related research. Take the PCG.L, PCG.R, HIP.L, PCUN.R, ITG.L,

4https://www.nitrc.org/projects/bnv/

FIGURE 4 | Number of features selected by different methods in 10-fold
cross-validation.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 669345

https://www.nitrc.org/projects/bnv/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-669345 March 29, 2021 Time: 10:53 # 10

Ji et al. Constructing DBFNs for MCI Classification

TABLE 6 | Discriminative brain regions.

ID Regions Abbreviations (L:left R:right) MNI coordinates References

X(mm) Y(mm) Z(mm)

1 Precentral_L PreCG.L −38.65 −5.68 50.94

2 Precentral_R PreCG.R 41.37 −8.21 52.09 Zhang H. et al., 2016

9 Frontal_Mid_Orb_L ORBmid.L −30.65 50.43 −9.62 Zhang et al., 2018

12 Frontal_Inf_Oper_R IFGoperc.R 50.20 14.98 21.41 Chen et al., 2016

14 Frontal_Inf_Tri_R IFGtriang.R 50.33 30.16 14.17 Salvatore et al., 2015

16 Frontal_Inf_Orb_R ORBinf.R 41.22 32.23 −11.91 Salvatore et al., 2015

22 Olfactory_R OLF.R 10.43 15.91 −11.26 Sun et al., 2012

28 Rectus_R REC.R 8.35 35.64 −18.04

35 Cingulum_Post_L PCG.L −4.85 −42.92 24.67 Zhang et al., 2018

36 Cingulum_Post_R PCG.R 7.44 −41.81 21.87 Wee et al., 2012

37 Hippocampus_L HIP.L −25.03 −20.74 −10.13 Salvatore et al., 2015

43 Calcarine_L CAL.L −7.14 −78.67 6.44 Xu et al., 2016

44 Calcarine_R CAL.R 15.99 −73.15 9.40

47 Lingual_L LING.L −14.62 −67.56 −4.63

57 Postcentral_L PoCG.L −31.16 −40.30 −20.23 Xu et al., 2016

61 Parietal_Inf_L IPL.L −42.80 −45.82 46.74

62 Parietal_Inf_R IPL.R 46.46 −46.29 49.54 Salvatore et al., 2015

68 Precuneus_R PCUN.R 9.98 −56.05 43.77

71 Caudate_L CAU.L −11.46 11.00 9.24 Salvatore et al., 2015

89 Temporal_Inf_L ITG.L −49.77 −28.05 −23.17 Zhang et al., 2018

90 Temporal_Inf_R ITG.R 53.69 −31.07 −22.32

and ITG.R as examples. Both PCG.L and PCG.R are involved
in the formation of memory, and HIP.L is responsible for
the storage, conversion, and orientation of long-term memory.
PCUN.R is associated with many high-level cognitive functions,
such as episodic memory, self-related information processing,
and consciousness generation. ITG.L and ITG.R belong to the
temporal lobe, which have the function of processing auditory
information, and they are also related to memory and emotion. If
ITG.L and ITG.R are damaged, it will cause personality changes.
PCUN.R, ITG.L, and ITG.R demonstrate that DMN plays an
important role in cognitive function and neuromodulation (Jiao
et al., 2017a,b). In addition, some brain regions belonging to the
prefrontal and occipital lobes are extracted, such as ORBmid.L,
IFGoperc.R, and LING.L. It indicates that the language, vision,
and motor perception of MCI patients have changed compared
with people without MCI (Wee et al., 2011).

DISCUSSION

In recent years, researchers have shown an increased interest
in the epidemiology, clinical characteristics, neuroimaging,
biomarkers, mechanism of disease, neuropathology, and clinical
trials of MCI. The challenges remain around the borders of
the condition, i.e., between normal aging and early MCI and
between MCI and clinical AD. However, with the development
new neuroimaging techniques, these transitional states may be
clarified. A major study indicates an annual rate of progression

from cognitively healthy to the aMCI state of 3% per year.
In addition, 26% of aMCI subjects have progressed to AD
over 12 months, while another 4% of the aMCI subjects have
reverted to a cognitively healthy status (Petrella and Doraiswamy,
2005). To date, relatively little research has been carried out
on the MCI classification. Herein, our study proposes a DBFN
construction method via HMR. We then apply this method
to MCI classification. In this method, the DBFN construction
method based on PC method is first transformed into an
optimization model, and we construct SDBFNs by adding a
hyper-graph manifold regularizer into the optimization model.
The classification performance of SDBFNs for MCI patients and
normal subjects outperforms other comparable methods.

Most research only considers the pair-wise relationship
between brain regions and ignores the high-order relationship
between multiple brain regions. This high-order relationship
can also be regarded as the relationship between functional
connections, which is important prior information. Nowadays,
related research has explored this high-order relationship. For
example, Chen et al. (2016) used correlation’s correlation
to construct high-order functional networks, and reduced
the dimensionality of high-order functional networks through
k-means clustering method. The effectiveness of this method is
verified in identifying MCI. Zhou et al. (2018) proposed a high-
order functional network construction method based on matrix
variate normal distribution (MVND). This method uses BFNs
as samples and assumes that features in these samples follow
MVND. Then, the maximum-likelihood estimation (MLE) for
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FIGURE 5 | The layouts of discriminative brain regions. (A) Coronary figure. (B) Axis figure. (C) Sagittal figure.

MVND is calculated to obtain the final high-order functional
networks. However, these two methods have some shortcomings.
The method of Chen et al. (2016) involves many parameters,
which may easily lead to overfitting when the number of
training data is limited, and this method is not supported
by a mathematical model. The method of Zhou et al. (2018)
requires strict assumptions before the subsequent conclusions
can be established, so describing this complex relationship is very
important. In a hyper-graph, a hyper-edge can connect more
than two vertices, so the hyper-graph can naturally model this
high-order relationship well.

However, our method also has issues which need to be
improved. First, it is a very important step to construct the hyper-
graph. Hence, we use the KNN method to construct the hyper-
graph, which is not interpretable in the field of neuroimaging.
Inspired by the work of Jie et al. (2016), we can use the SR method
to construct the hyper-graph in future. Second, the main work
of this study focuses on the DBFN construction method and
we use the t-test method to select features. The improvement

strategies for feature selection include simple improvement of
feature selection method. The training set is combined with
the test set to iteratively select the features which improve the
classification performance step by step.

In summary, our method makes up for the problem that
most methods for BFN construction cannot reflect the pair-
wise relationship between multiple brain regions well. We
apply this method to MCI classification, and have achieved
the best classification ACC which outperforms the compared
methods. Moreover, the discriminative brain regions obtained
by our method can better reflect the pathogenic mechanism
of MCI. Our future work will solve the following problems.
First, we only classify Normal subjects and MCI subjects,
and consider the binary problem. In the future, we can set
up multi-class classifications, such as adding AD subjects
to form a three-class problem and verifying our method.
In addition, the dataset we used is relatively small, which
may affect the promotion performance of the classifier. In
practical applications, we will try to use other methods,
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such as transfer learning, to design specific methods for BFNs and
further improve classification performance.
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