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Objective: To evaluate the utility of nerve magnetic resonance imaging (MRI), diffusion
tensor imaging (DTI), and muscle MRI multi-echo Dixon for assessing lower motor
neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS).

Methods: In this prospective observational cohort study, 14 patients with ALS and 13
healthy controls underwent a multiparametric MRI protocol, including DTI of the sciatic
nerve and assessment of muscle proton density fat fraction of the biceps femoris and
the quadriceps femoris muscles by a multi-echo Dixon sequence.

Results: In ALS patients, mean fractional anisotropy values of the sciatic nerve were
significantly lower than those of healthy controls. The quadriceps femoris, but not the
biceps femoris muscle, showed significantly higher intramuscular fat fractions in ALS.

Interpretation: Our study provides evidence that multiparametric MRI protocols might
help estimate structural nerve damage and neurogenic muscle changes in ALS.

Keywords: amyotrophic lateral sclerosis, diffusion tensor imaging, proton density fat fraction, neurodegeneration,
motor neuron disease

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a variable phenotype that
primarily affects the motor system. Differences in phenotype include deviating affection patterns
of the upper motor neuron (UMN) or lower motor neuron (LMN) and disease progression
differences. This variability causes difficulties in monitoring the course of the disease. Especially
when conducting research (e.g., to evaluate new therapies), the lack of sensitive methods to detect
short-term changes is one of the critical challenges (Turner et al., 2009; Berry and Cudkowicz, 2011;
Simon et al., 2015). Since damage to LMN is decisive for disease progression in ALS (Simon, 2016),
it seems particularly promising to detect its degeneration as precisely as possible. So far, disease
progression has been monitored using electrophysiological and clinical tests [in particular motor
nerve conduction studies (mNCS) and motor unit number estimation (MUNE)] (Carvalho and de
Swash, 2016). However, these clinical tests suffer from several limitations. For example, they depend
on UMN function and the patient’s overall clinical condition (Simon et al., 2014).
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Magnetic resonance imaging (MRI) has the potential
to become a valuable, non-invasive biomarker for
neurodegeneration in ALS. Previously, MRI applications to
ALS mainly focused on structural alterations of the ALS
patients’ brain and spinal cord. Numerous studies using
diffusion tensor imaging (DTI) demonstrated degeneration
of the corticospinal tract and motor-associated brain regions.
Most studies demonstrated a decrease of DTI-based fractional
anisotropy (FA), a marker for axonal degeneration and
demyelinating conditions (Jende et al, 2020, 2021), which
indicates an involvement of the UMN (Ellis et al., 1999; Toosy
et al., 2003; Iwata et al., 2008; Blain et al., 2009; Metwalli et al,,
2010; Cirillo et al., 2012; Bede et al., 2015).

In contrast, data about the MRIs utility to detect LMN
degeneration in ALS are sparse (Grolez et al., 2016; Verber
et al, 2019). Simon and colleagues recently demonstrated in
19 ALS patients reduced FA in tibial and peroneal nerve
segments with subsequent decline at 6-months. These changes
correlated with the ALS revised functional rating scale (ALSFRS-
R) (Simon et al.,, 2017).

There is also only limited information about the MRI utility
to monitor neurogenic muscle atrophy in ALS. T2-weighted
whole-body muscle MRI shows increased relative T2 signal
in most limb muscles of ALS patients, as recently reported
by Jenkins and colleagues (Jenkins et al., 2018). Clinical and
experimental studies indicate that denervated muscles display
a reversible high T2 signal as early as 48 h after nerve injury
(West et al., 1994; Bendszus et al., 2002). However, these
changes are only small and decline with prolonged denervation
(Zhang et al., 2008). Human studies also demonstrated that T2
hyperintensity does not correlate well with MR-neurographic
parameters (Schwarz et al., 2015).

Recently, Klickovic and colleagues demonstrated in a cohort of
20 ALS patients the feasibility of quantifying muscle fat fraction
using the MRI 3-point Dixon technique. They found higher fat
fractions in ALS patients’ calf muscles compared to controls
(3.34 vs. 1.92%), which correlated well with functional scales
(Klickovic et al., 2019).

We have established a multiparametric MRI imaging
paradigm that allows simultaneous quantification of nerve injury
and intramuscular fat fraction in lower limbs (Lichtenstein
et al., 2017). Based on DTI scans of nerves and multi-echo
Dixon MRI of adjacent muscles, this protocol detects structural
nerve damage and neurogenic intramuscular fat accumulation
in different neuropathic conditions. We hypothesized that
this protocol might also be suitable for monitoring LMN
degeneration in ALS and, therefore, conducted this exploratory
study in ALS patients.

MATERIALS AND METHODS

Patients and Healthy Controls

Fourteen patients (6 female, 8 male, mean age 62 £ 6 years)
with ALS and 13 healthy controls (6 female, 7 male, mean
age 56 =+ 9 years) participated in this study. All patients
were diagnosed at the Department of Neurology, University

Hospital of Cologne, Cologne, Germany, based on the El Escorial
Criteria (Ludolph et al, 2015). Patients with neuropathies
and contraindications against MRI were excluded. Healthy
controls were defined as individuals without anamnestic
and clinical signs of polyneuropathy. All patients were on
antiglutamate therapy with riluzole (50 mg twice a day). The
local Ethics Committee approved the study, and all subjects
gave written informed consent before inclusion. All patients
received a standard clinical and electrophysiological assessment.
The clinical investigation included a complete neurological
examination. Besides, the ALSFRS-R was collected for each
patient. Briefly, the ALSFRS-R summarizes physical impairment
in activities of daily living for a patient with ALS and is used
for measuring the progression of the disease (Cedarbaum et al.,
1999). It is a revision of the ALSFRS that includes additional
questions related to respiratory symptoms. The score includes
12 questions concerning physical functions (e.g., speaking,
swallowing, walking) ranging from 0 (severe impairment) to 4
(no impairment) with a maximum score of 40 and a minimum
score of 0. For electrophysiological examinations, standard nerve
conduction studies were performed. The right tibial and peroneal
nerves were used to measure the motor nerve conduction velocity
(mNCV), the proximal and distal compound muscle action
potential (CMAP), and distal motor latencies (DML). The right
sural nerve was used to measure the sensory nerve conduction
velocity (SNCV) and the sensory nerve action potential (SNAP).
Standard electromyography (EMG) of the tibialis anterior,
quadriceps, and biceps femoris muscles was performed using
conventional EMG equipment and concentric needle electrodes.

MRI Protocol

All  subjects examined using an MRI protocol
already established in patients with chronic inflammatory
polyneuropathy for examining the sciatic nerve and the thigh
muscles (Lichtenstein et al., 2017; Schneider et al., 2019). The
examinations were performed on a 3T whole-body MRI system
(Ingenia, Philips Healthcare, Best, Netherlands). As in the other
studies, the patients were positioned in a supine position with
feet first. The subjects’ right thigh was examined deep inside a
knee coil (dStream T/R Knee 16¢h Coil, Philips Healthcare, Best,
Netherlands) so that the coil center was located approx. 5-10 cm
above the upper pole of the patella.

were

Planning Sequence

To delineate the nerve, a special orientation of a SHINKEI-
based three-dimensional T2-weighted turbo spin echo (3D T2
TSE) sequence with fat and vascular signal suppression was used
(Cervantes et al., 2015; Kasper et al., 2015; Kollmer et al., 2015).
The exact parameters were: TR = 2,000, TE = 273, matrix size
216 x 143 x 143, resolution 1.25 x 1.25 x 0.7 mm?, scan
duration 2:30 min.

T2-Weighted, mDixon TSE Sequence

The anatomical assessment was performed in a transversal,
perpendicular to the sciatic nerve, T2-weighted mDixon TSE
(2D T2 TSE) sequence. The parameters were: TR = 2,500 ms,
TE = 60 ms, matrix size 640 x 468, 30 slices with 4 mm slice
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thickness and no interslice gap, resolution 0.3 x 0.4 x 4 mm?,
scan duration 5 min.

DTI

A DTI sequence based on single-shot echo-planar imaging was
planned in the same way as the 2D T2 TSE. Sequence parameters
were: TR = 6500 ms, TE = 62 msec, matrix size 128 x 130,
20 layers with 4 mm layer thickness and without kerf, resolution
1.5 x 1.5 x 4 mm?>, b-values of 0 s/mm? and 800 s/mm?, in
20 directions, SENSE factor of 2, scan duration 9:00 min.

PDFF

A third, transversely recorded sequence, i.e., a six-echo multi-
echo gradient echo sequence (mDixon Quant, Philips Healthcare,
Best, Netherlands) generating proton density fat fraction (PDFF)
maps, was similarly used for intramuscular fat quantification
of the quadriceps femoris (QFM) and biceps femoris muscles
(BFM). The parameters were as follows: TR = 10 ms, 6 echoes
(TE1 = 1.45 ms, ATE = 1.1 ms), matrix 108 x 107 x 4 mm?,
voxel size 1.8 x 1.8 x 4 mm, 20 slices, flip angle 3° (to minimize
T1 bias effects), recording time 1:05 min.

Data Analysis

A senior radiologist (T.L.) evaluated the MR images.
Measurements were validated by a second senior radiologist (N.
G. H.) based on independent assessment of a subset of study
participants. The post-processing of the DTI raw data and the
complete MRI analysis was performed with IntelliSpace Portal
(IntelliSpace Portal 10.0, Philips Healthcare, Best, Netherlands).

To analyze the sciatic nerve in the DTT sequence, six subtotal
freehand ROIs were drawn in six adjacent layers of color-coded
fractional anisotropy images in correlation with the anatomical
information of the b = 0 and 2D T2 TSE images. The average
FA values of the six slices were then remeasured to obtain each
subject’s final FA value. Fiber tracking of the nerve was performed
for illustration.

In the PDFF maps, freehand subtotal ROIs were drawn on
the three most proximal slices into each part of the quadriceps
femoris muscle (vastus lateralis, intermedius, medialis, rectus
femoris) and into the short and long heads of the biceps
femoris muscle for determination of the average intramuscular
fat fraction. The ROIs were drawn within 2 mm of the muscle
boundaries. The differing area sizes (A_i) of the individual ROIs
[ROI_i with individual fat fractions (FF_i)] were taken into
account using the formula FF_mean_over_ROIs = sum (A_i *
FF_i)/sum (A_i), where the sum is the summation over all ROIs.

Statistics

Group comparison and analysis of interrater agreement were
performed. For group comparison, analysis was performed using
the Mann-Whitney U test. Correlations were assessed by non-
parametric Spearman correlation tests. Intraclass correlation
coeflicients (ICC) were considered indicative of interrater
reliability. All tests were performed using dedicated software
(Statistics Package for Social Sciences (SPSS), v26, IBM, Armonk,
NY, United States and Graph Pad Prism, v7, GraphPad Software,
San Diego, CA, United States). A p-value < 0.05 was considered

statistically significant. Statistical analysis of the Graphs depict
mean = standard error of the mean.

RESULTS

Demographics

There were no significant differences between the two cohorts
in terms of the demographic data evaluated [sex, age, weight,
body mass index (BMI)]. For a detailed comparison, see
Table 1.

Clinical Characteristics of ALS Patients

The onset of disease occurred in the upper limbs in 50% of
patients, the lower limbs in 28.57%, and the bulbar region in
21.42%. On average, the disease duration at the time of the
examination was 4.8 £+ 1 months. Mean ALSFRS-R score was
27.1 £ 1.77.

TSE and DTI MRI Scans

The sciatic nerve was identified in all patients and controls
on 3D and 2D T2 TSE MRI scans. DTI scans of the sciatic
nerve in ALS patients showed significantly lower mean FA values
than healthy controls. Mean values in ALS were 0.40 & 0.012
(p = 0.025) compared to controls (0.44 £ 0.012) (Figure 1).
Interrater reliability for DTT was excellent (ICC 0.873).

PDFF Mapping

The quadriceps femoris muscle of ALS patients showed
significantly higher intramuscular fat fractions than in healthy
controls (mean 535 + 1.2% vs. 2.8 = 1.67, p = 0.038,
Figure 2A). Intramuscular fat fractions in the biceps femoris
muscle of ALS patients were also higher than in healthy
controls, but this difference was not statistically different
(mean 7.18 £+ 1.24 vs. 5.03 + 1.58, p = 0.155, Figure 2B).
ROI sizes were between 14 and 2,133 mm?. Even in rather
severely affected patients, the increased intramuscular fat
fraction of the examined muscles is often hardly recognizable
visually compared to healthy controls (Figure 2C). Interrater
reliability for PDFF mapping was excellent (QFM: ICC 0.983,
BFM: ICC 0.984).

No significant correlations were observed between the FA
values of the sciatic nerve and ALSFRS-R (r = 0.12 p = 0.20),
the FA values of the sciatic nerve and CMAP amplitude of the
tibial and peroneal nerves (r = 0.2 and 0.42, p = 0.493 and

TABLE 1 | Clinical data.

ALS Controls p value
Sex (female:male) 6:8 6:7
Age (years) 62.6 (3.5) 56.9 (2.9) 0.06 (n.s.)
Height (cm) 172 (3.9) 179 (2.5) 0.28 (n.s.)
Weight (kg) 71.3 (4.0) 75.3 (4.68) 0.59 (n.s.)
BMI (cm/kg?) 24.1 (1.4) 25.4 (2.6) 0.92 (n.s.)
Therapy (Riluzole) 14/14
Disease duration (years) 0.5 (0.1)

Frontiers in Neuroscience | www.frontiersin.org

August 2021 | Volume 15 | Article 682126


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Lichtenstein et al.

DTl and PDFF in ALS

o
o
N

o
>
L

o
N
1

o
o
I

A
>
Q
o
2
s
o

2
<
<
s
c
o
2
o
©
..
'S
=
<
w

FIGURE 1 | Fractional anisotropy (FA) of the sciatic nerve in ALS patients compared to controls. The sciatic nerves of ALS patients show a lower mean FA than
healthy controls (A). Significant differences are indicated by asterisks (p < 0.05, **p < 0.01, **p < 0.001). In (B), for illustrative purposes, a deterministic fiber
tracking of the sciatic nerve was projected in red color on a coronary reconstruction of the 3D T2 TSE sequence. In (C), an exemplary color-coded FA map of an
ALS patient is shown with the sciatic nerve magnified. The blue color of the nerve corresponds to a head-to-foot directional encoding.

0.228), the FA values of the sciatic nerve and mean fat fraction
of the BFM (r = —0.495 p = 0.072). A significant correlation
was found between the FA values and mean fat fraction of the
QFM in the ALS group (r = —0.578 p = 0.03). In the whole study
population a significant correlation between FA and QFM as well
as BFM could be established (r: —0.533, p = 0.004, r: —0.468,
p = 0.014). Further correlations were found between QFM and
BEM fat fraction all, HC and ALS and the whole study group (r:
0.753, p = 0.003, r: 0.807, p < 0.001, r: 0.835, p < 0.001). For a
detailed list of electrophysiological data, see Table 2. Correlations
between demographic and clinical data and the obtained imaging
parameters are provided in Table 3.

DISCUSSION

Our exploratory study evaluated the utility of a previously
established MRI protocol for monitoring structural nerve damage
in the sciatic nerve and intramuscular fat fraction of mid-
thigh muscles. Our main findings are that ALS patients” sciatic
nerves demonstrate significantly lower FA values than healthy
controls, and the thigh muscles in ALS patients accumulate
more fat than thigh muscles from healthy controls. Although
DTI derived FA in rodent (Takagi et al., 2009; Lehmann et al,,
2010; Morisaki et al., 2011) and human peripheral nerves is

considered a valid measure for axonal integrity and can be used to
monitor axonal loss and regeneration as well as for demyelinating
conditions (Sheikh, 2010; Kakuda et al., 2011; Mathys et al., 2013;
Jende et al,, 2020, 2021), data about FA values in peripheral
nerves of ALS patients are sparse. In line with our findings,
Simon and colleagues reported 8-10% lower FA values in the
tibial and peroneal nerves in ALS patients than controls. We
focused our study on a more proximal nerve segment based
on previous experience (Lichtenstein et al., 2017). The sciatic
nerve’s lower FA values indicate axon loss in our ALS patients
cohort, thereby clearly distinguish them from healthy subjects.
This finding is remarkable since the clinical data and the ALSFRS-
R scores indicate that most patients were primarily affected
in their upper extremities and did not show significant lower
limb weakness. Our study confirms previous electrophysiologic
studies that determined latencies of M- and H-responses in
the lower extremity and found (indirect) evidence for proximal
sciatic nerve damage (Koutlidis et al., 1984).

Compared to our previous findings, the decrease in FA values
in ALS was much less pronounced compared to CIDP. This
finding can be explained by the fact that most sciatic nerve fibers
are sensory (Schmalbruch, 1986). It is tempting to speculate that
changes in the FA values in ALS might be even bigger in motor
nerves (i.e., the femoral nerve). Further studies are warranted to
pursue this issue.
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FIGURE 2 | (A) Mean fat fraction of the quadriceps femoris muscle (QFM) in ALS patients compared to controls. The quadriceps femoris muscle of ALS patients
shows a higher fat fraction compared to healthy controls. Significant differences are indicated by asterisks ("o < 0.05, **p < 0.01, **p < 0.001). (B) Mean fat fraction
of the biceps femoris muscle (BFM) in ALS patients compared to controls. The biceps femoris muscle of ALS patients shows a higher, but not significant higher fat
fraction compared to healthy controls. (C) Two exemplary proton density fat fraction (PDFF) maps: Even in this rather severely affected patient (a), visually the
increased intramuscular fat fraction of the investigated muscles (QFM and BFM) is hardly recognizable compared to a healthy control (b). However, quantitative
evaluation of the Multi-echo Dixon showed increased intramuscular fat fractions for both muscle groups, although the difference was only significant for QFM. Note,
that artifacts surrounding the thigh have been removed by software post-processing.
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Furthermore, we provide additional data about the utility
of PDFF mapping to quantify fatty infiltration in thigh
muscles in ALS. In contrast to the visual impression, which
was often rather subtle, the PDFF mapping showed higher
muscle fatty infiltration in the ALS patients. Thereby, fatty
infiltration was much more obvious in the quadriceps femoris
muscle, but not in the biceps femoris muscle. Remarkably,
there was a significant correlation between the FA values
and the QFM fat fractions. Similar results were recently
reported by Klickovic and colleagues. Our absolute values were
almost twofold higher than those reported by a recent study
that quantified fat accumulation in motor neuron disease,
including ALS (Klickovic et al., 2019). These differences can be

explained by different acquisition parameters, inter-MRI-vendor
variability of PDFF mapping, and a difference in disease severity
between the two examined cohorts. This issue emphasizes the
importance of generating normal values and warrants caution
regarding their interpretation when different acquisition soft-
and hardware are used.

In this study, further correlations of minor relevance between
the clinical or electrophysiological parameters and the measured
image parameters or within the image parameters were also
found. For example, significant correlations were found in
parts between the intramuscular fat fractions of the examined
muscles and the weight/BMI of the participants or in between
the muscle groups.
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TABLE 2 | Electrophysiological data.

Patient Tibial nerve Peroneal nerve Sural nerve

NCV (m/s) CMAP (mV) NCV (m/s) CMAP (mV) NCV (m/s) SNAP (nV)
1 40 1.3 52 2.8 52 10
2 0 0 n.A. n.A. 46 3
3 48 16.5 46 104 40 20
4 37 25 n.A. n.A. 37 3
5 0 0 43 3.1 59 10
6 45 22.7 48 23.7 51 12
7 43 10.1 n.A. n.A. 60 16
8 29 0.3 37 2.3 57 2
9 59 5.3 n.A. n.A. n.A. n.A.
10 43 6.5 61 0.6 54 9
ihl 38.3 0.31 43.9 21 42 2.74
12 58.7 0.9 0 0 39.7 0.9
13 44 8.2 35 6.5 n.A. n.A.
14 44 21 0 0 0 0
TABLE 3 | Correlations between the collected demographic and clinical data and the obtained imaging parameters.

FA QFM BFM

Age HC —0.115 (p = 0.707) 0.5220 (p = 0.067) 0.401 (p =0.174)
Age patients 0.007 (p = 0.982) —0.020 (p = 0.946) 0.055 (p = 0.852)
Age both —0.269 (p = 0.174) 0.342 (p = 0.080) 0.278 (p = 0.160)
Height HC —0.626 (p = 0.022)* —0.094 (p = 0.761) 0.174 (p = 0.570)
Height patients (12/14) 0.028 (p = 0.931) —0.413 (p =0.183) —0.147 (p = 0.649)
Height both —0.134 (p = 0.524) —0.376 (p = 0.064) —0.076 (p =0.718)
Weight HC —0.635 (p = 0.020)* 0.215 (p = 0.481) 0.580 (p = 0.038)*
Weight patients (12/14) —0.615 (p = 0.033)* 0.294 (p = 0.354) 0.559 (p = 0.059)
Weight both —0.547 (p = 0.005)** 0.191 (p = 0.359) 0.531 (p = 0.006)**
BMIHC —0.225 (p = 0.459) 0.187 (p = 0.541) 0.434 (p = 0.138)
BMI patients (12/14) —0.643 (p = 0.024)* 0.587 (p = 0.045)* 0.678 (p = 0.015)*
BMI both —0.445 (p = 0.026)* 0.325 (p = 0.113) 0.555 (p = 0.004)**
NCV tibial nerve 0.265 (p = 0.361) —0.743 (p = 0.002)** —0.606 (p = 0.022)*
CMAP tibial nerve 0.200 (p = 0.493) —0.275 (p = 0.341) —0.231 (p = 0.427)
NCV peroneal nerve (10/14) —0.091 (p = 0.802) 0.559 (p = 0.093) 0.454 (p = 0.089)
CMAP peroneal nerve (10/14) 0.419 (p = 0.228) —0.219 (p = 0.544) —0.103 (p = 0.776)
NCV sural nerve (12/14) —0.448 (p = 0.145) 0.056 (p = 0.863) 0.364 (p = 0.245)
SNAP sural nerve (12/14) 0.126 (p = 0.696) 0.119 (p =0.712) 0.270 (p = 0.396)
Disease duration 0.002 (p > 0.999) 0.134 (p = 0.649) 0.165 (p = 0.573)

Significant differences are in bold and indicated by asterisks (‘p < 0.05, *p < 0.01,

This study has several limitations. First, we only included
a small number of patients. Second, our data lacks follow-
up examinations. Due to the pseudonymization process, a
true blinding to groups (healthy vs. patients) was not feasible;
however, readers were blinded to demographics as well as to
detailed clinical history. Furthermore, we did not do systematic
follow-up examinations. The assessment of multiple nerves,
as mentioned above, especially motor nerves (e.g., femoral
nerve) could provide even more specific results. The healthy
controls tended to be of slightly younger age compared to
the patients without revealing significant relevance; however,
this needs to be considered as some studies showed that
FA of the sciatic nerve is negatively associated with age in

*p < 0.007).

both healthy controls and patients with neuropathies (Kronlage
et al, 2018; Jende et al., 2021). Of note, there was no
significant correlation between age and FA values in our
study cohort. Last, the use of further quantitative methods
(e.g., T2 mapping) was omitted in favor of a time-optimized
examination protocol.

In summary, we here present a multiparametric MRI protocol
that allows non-invasive quantification of proximal structural
nerve damage and muscle changes in ALS. We suggest that MR
imaging of lower proximal limbs could be a valuable tool for
quantifying the subclinical burden of axonal loss and neurogenic
muscle changes in ALS. More extensive studies are justified to
confirm its utility to serve as biomarkers in therapeutic trials.
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