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Severe cerebrovascular disease is an acute cerebrovascular event that causes severe
neurological damage in patients, and is often accompanied by severe dysfunction of
multiple systems such as breathing and circulation. Patients with severe cerebrovascular
disease are in critical condition, have many complications, and are prone to deterioration
of neurological function. Therefore, they need closer monitoring and treatment. The
treatment strategy in the acute phase directly determines the prognosis of the patient.
The case of this article selected 90 patients with severe cerebrovascular disease who
were hospitalized in four wards of the Department of Neurology and the Department of
Critical Care Medicine in a university hospital. The included cases were in accordance
with the guidelines for the prevention and treatment of cerebrovascular diseases.
Patients with cerebral infarction are given routine treatments such as improving cerebral
circulation, protecting nutrient brain cells, dehydration, and anti-platelet; patients with
cerebral hemorrhage are treated within the corresponding safe time window. We
use Statistical Product and Service Solutions (SPSS) Statistics21 software to perform
statistical analysis on the results. Based on the study of the feature extraction process
of convolutional neural network, according to the hierarchical principle of convolutional
neural network, a backbone neural network MF (Multi-Features)—Dense Net that can
realize the fusion, and extraction of multi-scale features is designed. The network
combines the characteristics of densely connected network and feature pyramid
network structure, and combines strong feature extraction ability, high robustness
and relatively small parameter amount. An end-to-end monitoring algorithm for severe
cerebrovascular diseases based on MF-Dense Net is proposed. In the experiment,
the algorithm showed high monitoring accuracy, and at the same time reached the
speed of real-time monitoring on the experimental platform. An improved spatial pyramid
pooling structure is designed to strengthen the network’s ability to merge and extract
local features at the same level and at multiple scales, which can further improve the
accuracy of algorithm monitoring by paying a small amount of additional computational
cost. At the same time, a method is designed to strengthen the use of low-level
features by improving the network structure, which improves the algorithm’s monitoring
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performance on small-scale severe cerebrovascular diseases. For patients with severe
cerebrovascular disease in general, APACHEII1, APACHEII2, APACHEII3 and the trend
of APACHEII score change are divided into high-risk group and low-risk group. The
overall severe cerebrovascular disease, severe cerebral hemorrhage and severe cerebral
infarction are analyzed, respectively. The differences are statistically significant.

Keywords: severe cerebrovascular disease, dynamic brain imaging, multi-scale features, ApacheII score,
monitoring and prognostic analysis

INTRODUCTION

Severe cerebrovascular disease is a critical type of acute
cerebrovascular disease, which causes severe neurological
damage in patients, and is often accompanied by severe
dysfunction of multiple systems such as breathing and
circulation (Conzen et al., 2019). Because patients with
severe cerebrovascular disease are critically ill, have many
complications, and are prone to deterioration of neurological
function, they often need to be transferred to the intensive
care unit for closer monitoring and treatment (Zafar et al.,
2019; Xu et al., 2020). The activation of the neuroendocrine
system, the increase in intracranial pressure, and a history of
previous hypertension after acute stroke often lead to increased
blood pressure (Václavů et al., 2019). Therefore, blood pressure
management is one of the basic links and one of the crucial links
in the acute treatment of patients with severe cerebrovascular
disease (Rosenberg et al., 2020). Elevated blood pressure can
lead to encephalopathy, cardiac complications, and kidney
damage. In patients with spontaneous cerebral hemorrhage, it
can also cause hematoma enlargement, aggravate the edema of
the tissue around the hematoma, and cause rebleeding (Savić
et al., 2019). However, excessive reduction in blood pressure can
increase the degree of cerebral ischemia in patients with acute
ischemic stroke by reducing cerebral perfusion pressure, and will
also significantly increase the risk of hematoma enlargement,
rebleeding, death, and disability in patients with spontaneous
cerebral hemorrhage (Rocha and Singhal, 2020).

In the neurological intensive care unit, the second injury in the
course of most patients with acute brain injury will significantly
increase the rate of deterioration and mortality (Robertson
et al., 2019). Early detection and early prevention of these
complications are necessary. Before the general neurological
examination is positive, the brain function or structure has
undergone irreversible changes. The brain function monitoring
will provide effective information during the reversible period of
neurological dysfunction, early detection of the second injury,
help clinicians to intervene in time to prevent continuous
brain damage, and continuous evaluation of the treatment effect
(Mathieu et al., 2020). EEG (Electroencephalogram) is more
sensitive to abnormal brain metabolism, ischemia, hypoxia and
abnormal nerve function, and can be used as one of the methods
to monitor brain function in the NICU (Neonatal Intensive Care
Unit) (Merikangas et al., 2019). It can determine non-convulsive
seizures (NCS), non-convulsive status epilepticus (NCSE), guide
the drug treatment of epilepsy, predict and detect cerebral
ischemia, monitor cerebral edema and intracranial pressure, and

help predict the outcome of coma patients (Quon et al., 2019).
EEG is closely related to the metabolism of brain nerve cells.
It is sensitive to brain damage caused by ischemia and hypoxia.
Nervous system dysfunction can be found in the reversible phase
of brain damage, and the recovery of nerve function can be found
when other clinical examinations have failed (Rahmim et al.,
2019). It is the most effective means to discover epileptic activity.
In addition, CEEG (Clinical Electroencephalogram) monitoring
can provide dynamic information about brain function, which
is conducive to real-time monitoring of brain function changes.
The rapid development of computer and computer network
technology makes the implementation and wide application of
CEEG monitoring possible (Tanaka et al., 2020). Digital EEG
(DEEG) has become the preferred technology of CEEG. It makes
it easy to store a large amount of EEG information, which can be
edited, quantitatively analyzed, automatically removed artifacts,
and automatically identified abnormal waveforms (Marini et al.,
2020). CEEG accurately arranges disk electrodes in accordance
with international standards. Monitoring requires good scalp
electrode fixation. Generally, electrode paste is adhered to the
scalp surface and fixed with collodion, which is feasible for long-
term monitoring (Lohith et al., 2019; Malas et al., 2019). The
standard EEG recorder records CEEG in the storage medium
in digital format. In NICU, DEEG sampling frequency of 128–
256/channel/s can provide enough information. The detailed
EEG data of each patient every day can be stored up to
2GB. After obtaining the EEG data, the NICU staff needs to
review and summarize, and the EEG technicians and EEG
experts will observe and analyze, and draw conclusions (Taneja
et al., 2019; Maïer et al., 2020). Although NICU nurses can
recognize some typical EEG after training, some complicated
CEEG records still require detailed explanation by EEG experts
(Waddle et al., 2020). This has always been a problem that
restricts the widespread use of CEEG for NICU monitoring and
needs to be further studied. The original EEG is converted into
QEEG (Quantified Electroencephalogram). It mainly includes
power spectrum analysis, time domain analysis, formation of
compressed spectrum array and EEG topographic map (Khalil
et al., 2020). QEEG can quickly display important EEG changes,
such as epileptic waves, slow wave, general suppression, lack of
fast wave, increase and decrease of EEG variability, etc. But at
present, QEEG still cannot be used in clinic separately from the
original EEG (Koskinen et al., 2019).

Nerve cells are very sensitive to ischemic damage, and the
pyramidal cells of the third and fifth layers of the cerebral cortex,
which are closely related to the production of EEG, are most
vulnerable to ischemic damage (Wang C. et al., 2019). Ischemia
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damage causes changes in the posterior potential of cerebral
cortex neurons, and abnormal information can be recorded in
the scalp EEG. When the cerebral blood flow (CBF) drops to
25–30 ml/100 g/min, the neuronal dysfunction is in a reversible
phase, and the EEG changes (Wang Y. et al., 2019). It is
often manifested as a lack of α and β activities, and theta
waves and delta waves appear one after another. When CBF
drops below 10–12 ml/100 g/min, nerve cells will be irreversibly
damaged, and EEG will also be abnormal (Li et al., 2020).
Therefore, EEG is very sensitive to cerebral ischemia during the
reversible period of neuronal dysfunction, and there are general
changes. Clinical timely intervention can prevent continuous
brain damage. On the other hand, EEG is also very sensitive to the
recovery of cerebral ischemia, and it is found earlier than clinical
examination. Cerebral edema and increased intracranial pressure
in the course of cerebral hemorrhage patients are the main
reasons for the deterioration and death of the disease. Monitoring
it is the key to prevention and treatment (Wardlaw et al.,
2019). In patients with cerebral edema and increased intracranial
pressure, EEG shows continuous diffuse wave activity, and EEG
is significantly improved after using dehydrating agents such
as mannitol (Zeiler et al., 2020). CEEG monitoring can not
only be used to monitor and reflect dehydration of dehydrating
agents in treatment of cerebral edema, but also can provide early
effects of drug treatment. Compared with CT, MRI, and other
examinations, CEEG has the advantage of continuous, dynamic
and real-time bedside monitoring (Liu et al., 2019). Transcranial
Doppler (TCD) ultrasound can evaluate the cerebral perfusion
and intracranial pressure of patients with severe cerebrovascular
disease by monitoring the changes of hemodynamic parameters,
such as blood flow direction, blood flow velocity, spectrum shape,
pulsation index, etc. After severe cerebrovascular disease occurs,
intracranial pressure changes sharply, and brain herniation
often occurs (Forti et al., 2019; Dumitrascu and Koronyo-
Hamaoui, 2020). The initial manifestation of TCD changes when
the intracranial pressure increases, the systolic peak becomes
sharp, and the diastolic blood flow signal disappears when the
intracranial pressure approaches the diastolic pressure, leaving
only the systolic sharp wave; the intracranial pressure continues
to increase, when the diastolic blood pressure is exceeded, the
diastolic blood flow reappears, but the direction is negative, which
is a “shock wave,” indicates that the compensation mechanism
of cerebrovascular is not enough to counter the increase in
intracranial pressure. It shows needle-like blood flow in the early
stage of contraction, that is, “nail wave.” At this time, it is
difficult for peripheral blood flow to enter the cerebral circulation,
which is a characteristic manifestation of cerebral circulation stop
(Dehkharghani and Qiu, 2020). The flow is getting smaller and
smaller, and eventually the blood flow stops.

In this experimental study, the EEG patterns of severe
brain patients were also analyzed and studied, and it was
pointed out that the prognosis of patients with a-wave coma
was relatively poor. In severe patients without a wake-sleep
cycle, if some sleep spindle components are added to the slow
wave or a wave background, it indicates that the patient has
a better prognosis, especially the long-term EEG monitoring
in the diagnosis, treatment and evaluation of acute and

severe cerebrovascular diseases. Aiming at the monitoring
problem of severe cerebrovascular disease in multi-scale dynamic
brain imaging, the bottleneck of the existing convolutional
neural network for monitoring severe cerebrovascular disease
in the multi-scale feature extraction is analyzed, and the
dense connection network structure and the feature pyramid
network structure are combined to design a convolutional
neural network MF-Desne Net that can realize multi-scale
feature fusion extraction. Based on this network, an end-to-
end multi-scale dynamic brain imaging monitoring algorithm
for severe cerebrovascular disease MDRD (Multi-scale Dense
ResNet Detector) was designed. Experiments show that the
MDRD algorithm not only achieves high monitoring accuracy,
but also has a fast monitoring speed, which can meet the
needs of real-time monitoring. At the same time, on the
basis of the above work, the multi-scale feature extraction
of convolutional neural network is further studied. A three-
dimensional spatial pyramid pooling method is proposed to
improve the network’s ability to fuse and extract local multi-scale
features of the image; a method to strengthen the use of low-
level features based on reconstruction operations is proposed,
which improves the network’s ability to use low-level extraction
capacity. APACHEII1, APACHEII2, and APACHEII3 are related
to prognosis. The higher the score, the higher the risk of death.
The APACHEII1, APACHEII2, and APACHEII3 of the death
group are higher than those of the survival group. The scores of
APACHEII1, APACHEII2, and APACHEII3 according to Youden
index are 19, 19, and 17 points, respectively. It shows that the
score of patients with severe cerebrovascular disease is higher
than 19 in the first 24 h after admission to the NICU, the score
is still higher than 19 in the second 24 h, and the score does not
fall below 17 in the third 24 h.

The rest of this article is organized as follows. Section
“Data and Methods for Monitoring Severe Cerebrovascular
Disease” discusses the data and methods of monitoring severe
cerebrovascular diseases. In section “Multi-Scale Dynamic
Brain Imaging Monitoring Model for Severe Cerebrovascular
Disease Based on Feature Fusion”, a multi-scale dynamic
brain imaging monitoring model of severe cerebrovascular
disease based on feature fusion is constructed. In section
“Analysis of the Results of Monitoring and Prognosis of Severe
Cerebrovascular Disease”, the results of the surveillance and
prognosis experiments of severe cerebrovascular disease were
analyzed. Section “Conclusion” summarizes the full text.

DATA AND METHODS FOR MONITORING
SEVERE CEREBROVASCULAR DISEASE

Clinical Features of Severe
Cerebrovascular Disease
In clinical practice, patients with severe cerebrovascular diseases
have varying degrees of consciousness disturbance, and the
prognosis is poor. Patients with severe cerebrovascular diseases
are often prone to hospital-acquired pneumonia due to the age
of the patient, poor patient awareness, poor cough and sputum
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FIGURE 1 | Flow chart of emergency care for patients with severe cerebrovascular disease.

expectoration, and the use of multiple medical equipment, which
will seriously affect the prognosis of the patient. In addition,
it is neurogenic. Pulmonary edema can also aggravate the
progression of pneumonia. Severe cerebrovascular disease is
accompanied by multiple complications, such as pneumonia,
electrolyte imbalance and concurrent seizures, and it is found
that patients with concurrent pulmonary infection and internal
environmental disorders indicate a higher mortality rate. Half of
the patients included in the study also developed pneumonia to
varying degrees, and the patients developed severe pneumonia
and were infected with multi-drug resistant bacteria. The
patient underwent tracheotomy, confirming that pneumonia is a
common complication of severe cerebrovascular disease.

More than half of the surviving patients with severe
cerebrovascular disease will have different degrees of disability,
such as paralysis of the lateral limbs, various types of aphasia,
etc. This type of disease brings heavy economic pressure to
the patient’s family and the entire society. The most common
cause of stroke is cerebrovascular disease, of which hypertensive
arteriosclerosis and atherosclerosis lead to vascular disease.
The overall prognosis of patients with cerebrovascular disease
with mild consciousness disorder is relatively good, and the
survival rate is higher; the prognosis of patients with moderate
consciousness disorder is poor, and most of them will have

different degrees of sequelae. Patients with severe disturbance
of consciousness have the highest mortality rate and the worst
prognosis. Surviving patients have serious sequelae, which
seriously affect the quality of life of patients. Figure 1 shows
the flow chart of emergency care for patients with severe
cerebrovascular disease.

Patients with severe cerebrovascular disease often have
varying degrees of consciousness disturbance. In clinical practice,
consciousness refers to the degree of awakening of the brain,
which is the ability of the cerebral nervous system to respond
to various internal and external stimuli in a timely manner. The
subject of Consciousness Disorder is divided into the decline
in the degree of arousal and the changes in the content of
consciousness. The content of consciousness refers to the high-
level neural activities of the cerebral cortex, including the mental
activities of human perception, thinking, memory, orientation,
emotion, and will activity. Consciousness content is manifested
as confusion or delirium. The brainstem ascending activation
system plays an important role in the maintenance of human
consciousness. It receives various sensory signals and transmits
them to the non-specific nucleus of the thalamus, and then
projects to the extensive cerebral cortex, making the central
nervous system in a state of excitement. Once a patient develops a
disturbance of consciousness, indicating a critical condition, the
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prognosis of the patient is often poor. In clinical work, being able
to recognize various types of consciousness disorders in patients
in a timely and accurate manner, and be able to fully evaluate
the patient’s condition and make correct treatments can enable
patients with severe cerebrovascular disease to be rescued in time,
and even turn the crisis into peace.

EEG Physiological Monitoring for Brain
Function Assessment
The cerebral cortex cells have spontaneous electrophysiological
activities. When the brain is damaged by various reasons, it will
show abnormal discharges, including changes in frequency and
amplitude. EEG technology is to record these brain electrical
activities through brain electrodes, and through the processing
of computer technology, these brain electrical activities are
turned into readable graphics that can more accurately reflect
brain electrical activities. The potential on the EEG reflects the
postsynaptic potential of the gray matter vertebral body cells, and
the rhythm of the EEG is maintained by the brainstem network
ascending activation system.

Electroencephalography technology uses sophisticated
instruments to measure the rhythmic and spontaneous
bioelectric activity of the cerebral cortex, and amplifies the
recorded bioelectric signals by millions of times to understand
the functional state of the brain. It is often used in the diagnosis
and treatment of epilepsy in clinical practice. It is an important
method for the diagnosis and classification of epilepsy. It can
conveniently, objectively, safely, non-invasively and accurately
evaluate the brain function of patients.

The placement of the EEG electrodes adopts the 10–20 system
electrode placement method recommended by the International
Electroencephalography Society. Its characteristic is that the
arrangement of each brain electrode is proportional to the size
and shape of the head, and the electrode name matches the brain
anatomy zone. With the apex as the center of the circle, you draw
straight lines to the temporal halves (divided into 10), and then
make concentric circles with the halves of the sagittal line as the
radius, and determine the electrode placement position according
to the intersection point.

The condition of EEG is closely related to the metabolism
of brain cells, and it is more sensitive to brain tissue damage
caused by various causes. When brain cells undergo hypoxia and
other pathological changes such as brain cell edema and necrosis,
the EEG will show amplitude. The frequency changes, and the
location of the lesion can be roughly located according to the
position of the electrode, which plays an important role in the
basic diagnosis process. For patients with severe cerebrovascular
disease in clinic, an ordinary and short EEG cannot better reflect
the patient’s brain function status. Long-term EEG can monitor
the EEG physiological activities of severe patients for a long time
at the bedside and provide long-term dynamic information.

Clinical Analysis of Long-Term EEG
Severe cerebrovascular diseases are often caused by important
responsible vascular lesions. In patients with common large-area
cerebral infarctions, due to ischemia, edema, and necrosis of

brain cells in the infarct focus, the brain cell potential in this part
will change. Generally, the brain cells in the central area of the
infarct focus have been necrotic, and the EEG generally shows a
flat waveform with low amplitude. The brain cells adjacent to the
peripheral edema zone of the lesion will also experience varying
degrees of hypoxia. Generally, the EEG shows a low amplitude
slow wave (θ wave or δ wave). Clinically, the severity of the
patient’s condition can be judged based on the flat and slow wave
range and amplitude.

In the early stage of the onset, some patients with
cerebrovascular accidents, especially acute cerebral ischemic
diseases, cannot find positive signs in time by neuroimaging
examination alone. EEG is closely related to brain bio-
metabolism and more accurately reflects the cerebral cortex.
Brain bioelectrical activity can provide timely and accurate
information on the state of brain functions closely related
to abnormal brain metabolism. EEG is a more sensitive
indicator for monitoring acute ischemic diseases. Infarction
has important clinical diagnostic value and is worthy of
promotion and application. When the local CBF is reduced
to 20–30 ml/100 g/min, the EEG monitoring will appear
abnormal. High amplitude waves can be seen to replace the
background waves of the EEG. When the blood flow is reduced
to 17 ml/(100 g min), synaptic activity will drop and the
wave will disappear. When the blood flow is reduced to
10 ml/100 g/min, brain cells will be irreversibly damaged.
Continuous EEG monitoring is of great significance for the early
diagnosis of patients with acute vascular accidents. As patients
with severe cerebrovascular diseases will have varying degrees
of consciousness disturbances, physical examinations are poorly
coordinated, and it is more subjective to judge the severity of the
disease through neurological examinations, and EEG monitoring
is extremely important. The human body intention perception
based on brain muscle multi-source perception needs to judge the
movement intention of brain electrical signals, so as to realize the
active and passive coordinated control of brain muscle signals, as
shown in Figure 2.

Abnormal EEG and brain topography show that the absolute
power value of the fast-wave frequency band decreases, and
the absolute power value of the slow-wave frequency band
increases. Therefore, the EEG examination can more sensitively
reflect the changes in brain function of patients before
cerebral hemorrhage. The reason may be that brain damage
has occurred in the early stage of hypertensive intracerebral
hemorrhage. This examination provides reference and basis for
early prediction and preventive treatment of the occurrence of
intracerebral hemorrhage. Therefore, long-term EEG monitoring
for patients with hypertension, especially the extremely high-
risk group, is of clinical significance for the timely detection of
cerebral hemorrhage.

The brain damage caused by non-convulsive epilepsy and
NCSE and the damage of primary cerebrovascular disease are
not only simply superimposed, but can make the condition
further worse. After initial treatment of convulsive status
epilepticus, if the interictal EEG shows epileptic discharges,
periodic discharges, and persistent micro-seizure patterns, the
risk of recurrence of convulsive status epilepticus increases by 5,
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FIGURE 2 | Schematic diagram of information fusion control of human body intention EEG and EMG multi-source sensing system.

18, and 18, respectively. As we all know, electroencephalogram is
an important auxiliary examination for the diagnosis of epilepsy,
and it will not be described here. However, due to conditions
and time constraints, the positive rate of diagnosis of epilepsy is
not high. Some patients with severe encephalopathy have NCS in
clinical practice. If there is no long-term EEG monitoring, it is
difficult to find non-convulsive epilepsy in clinical work. Among
the 90 patients in this study, there were 24 cases of epilepsy,
and the incidence rate was 26.67%. However, only six cases had
spastic seizures, the positive rate was only 6.6%, and the incidence
of non-convulsive epilepsy was 20%, so non-convulsive epilepsy
occurred in 20%. The incidence of convulsive epilepsy in patients
with severe cerebrovascular disease is much higher than that of
convulsive epilepsy. Long-term EEG is an important means to
find non-convulsive epilepsy.

Long-term EEG monitoring can also be applied to the
monitoring of epilepsy drug treatment. Insufficient dose of
antiepileptic drugs cannot control epilepsy well. Excessive
medication will increase the patient’s respiratory and
cardiovascular diseases. Therefore, long-term EEG monitoring is
extremely important.

Research Objects for Surveillance of
Severe Cerebrovascular Disease
The cases were selected from 90 patients with severe
cerebrovascular disease in the Department of Neurology
and Critical Care Medicine of the affiliated hospital of a medical
university, including 42 male patients and 48 female patients,
including 34 patients with cerebral hemorrhage and 56 patients
with cerebral infarction. The exclusion criteria are shown in
Table 1.

Telephone follow-up was uniformly used for 90 days.
Among them, the patients who died within 90 days completed
the follow-up, and the rest continued to follow-up until

the patient was discharged 3 months later to understand
the prognosis. Statistics of general conditions include age,
gender, hypertension, blood lipids, type of cerebrovascular
disease, GCS (Glasgow Coma Scale) score, EEG classification
and typical EEG, etc., to analyze their relationship with the
patient’s prognosis.

Patients with large-area cerebral infarction are limited to
hospital emergency diagnosis by brain imaging examination as
internal carotid artery or middle cerebral artery main trunk
occlusion and unclassified cerebral vascular infarction. The
cerebral infarction area exceeds a single lobe and the lesion area
is more than 5 cm.

TABLE 1 | Exclusion criteria.

Exclusion
criteria
number

Exclusion criteria description

1 Does not meet the basic standards

2 The patient’s family members ask to give up treatment after
admission

3 Rectal body temperature < 32◦C

4 Use drugs that significantly affect the determination of brain
electrical activity before the experiment

5 Combined with serious diseases or factors that affect the
judgment of brain function (such as hepatic encephalopathy,
pulmonary encephalopathy, renal encephalopathy, toxic
encephalopathy, autoimmune diseases, infectious diseases,
brain tumors, etc.)

6 Nervous system examination is highly suspected of cerebral
infarction but not confirmed by brain MRI

7 The patient does not breathe spontaneously and requires a
ventilator to assist breathing

8 The patient’s limb jitter affects EEG acquisition

9 Past history of mental disorders
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Intracerebral hemorrhage patients were admitted to the
hospital by CT craniocerebral hemorrhage (mainly near
the basal ganglia).

Based on brain imaging data, the computer calculates the
area of the infarct lesions at each level (in cm2), multiplying the
thickness of the septal layer of the image data (in cm) to calculate
the volume of the infarct lesion. The brain blood volume of the
patient is calculated according to the head MRI or CT, according
to the maximum hematoma volume formula proposed by Tada’s.

Research Methods for Monitoring Severe
Cerebrovascular Disease
After admission, blood pressure was monitored repeatedly
(measured by mercury sphygmomanometer). According to the
diagnostic criteria for hypertension, patients with systolic blood
pressure higher than 140 mmHg and diastolic blood pressure
higher than 90 mmHg were defined as hypertensive patients.

According to the latest “Guidelines for the Prevention of
Dyslipidemia in Adults in China,” each patient’s blood lipid level
is divided: all blood samples were collected on an empty stomach,
and the cholesterol (TC, TotalCholesterol) was 5.18–6.22 mmol/L
for marginal increase, and cholesterol (TC) d is higher than
6.22 mmol/L; triglycerides (TG, TriGlycerides) higher than or
equal to 2.26 mmol/L is higher. High density lipoprotein is
(HDL, High Density Lipoprotein) < 1.04 mmol/L; low density
lipoprotein is (LDL, Low Density Lipoprotein) ≥ 4.14 mmol/L.

All cases used the EEG monitoring system (SP3000)
tendered from Shanghai Shijia Medical Equipment Co., Ltd.
for continuous bedside EEG monitoring, and L-EEG (Low
Electroencephalogram) tracing used FP1, FP2, C3, C4, T3, T4,
O1, O2. The lead electrode is connected, and the lead is placed
according to the international 10/20 system. The silver plate
electrode is uniformly used. After the head is cleaned, the surface
is degreased with an alcohol cotton ball, the electrode is glued
with conductive paste, and then fixed with a medical mesh cap.
We set the paper speed to 3 cm/s, the filter channel to 0.5–35 Hz,
and record 12–24 h, and save for reading.

The included cases are in accordance with the Chinese
guidelines for the prevention and treatment of cerebrovascular
diseases, and try to maintain consistent treatment methods
without affecting the efficacy. Patients with cerebral infarction are
treated with conventional antiplatelet, improvement of cerebral
circulation, lipid reduction, protection of nutrient brain cells,
and dehydration; patients with intracerebral hemorrhage will
undergo minimally invasive removal of intracerebral hematoma
within the corresponding safe time window, followed by routine
irrigation and drainage to the removal of needles.

Strictly follow the inclusion and exclusion criteria of the
research objects, we communicate with the EEG physicians, and
pay close attention to the EEG conditions of the patients during
treatment to obtain comprehensive and reliable information.
The discharged patients are followed up regularly every month
according to the discharge time, and the recovery situation
is investigated in detail according to the rehabilitation. Data
collation and data processing are strictly proofread to prevent
data errors from affecting the experimental results.

MULTI-SCALE DYNAMIC BRAIN
IMAGING MONITORING MODEL FOR
SEVERE CEREBROVASCULAR DISEASE
BASED ON FEATURE FUSION

Densely Connected Backbone Network
Res Net and VGGNet (Visual Geometry Group Network)
are currently popular backbone network types in the field of
severe cerebrovascular disease monitoring, but the types of
networks are difficult to meet our requirements for backbone
network performance. Among them, due to the limitation of
the number of network layers, VGGNet has relatively weak
feature extraction capabilities and a large amount of network
parameters; while the deep Res Net exhibits excellent feature
extraction capabilities, it also has a large network scale and
computational complexity. It is difficult to meet the requirements
of real-time monitoring.

In the traditional convolutional neural network design
philosophy, deepening the network depth is an effective method
to improve the network feature extraction ability, but as
the convolutional neural network deepens, the probability of
information loss after passing through the multilayer network
will also increase. The network is difficult to train. This is also
the main reason for limiting the depth of traditional networks
such as VGGNet. Res Net uses Skip Connection to establish a
direct connection path from the low-level to the high-level of the
network to improve this problem and increase the network depth.
However, research has shown that in the process of training
the residual network, if some layers are randomly discarded,
the generalization ability of the network can be improved.
This shows that the residual network structure has a certain
degree of redundancy. Each layer in the network only learns
few features, so fewer parameters can be used for learning
in each layer. This also points out that a strict progressive
hierarchical structure is not necessary for neural networks.
Each layer in the network does not completely depend on the
features of the immediately preceding layer, and it can also be
learned from the features obtained by the previous layer. Dense
Net (Densely Connected Convolutional Networks) is based on
the above research.

Through its Dense Connectivity (Dense Connectivity)
structure brings the characteristics of feature reuse, at the same
depth, the number of network parameters and the amount of
calculation are greatly reduced compared with other types of
convolutional neural networks. The low-level information of the
network using this structure can be effectively transmitted to
the high-level, and the network depth can be deepened. Dense
connections and residual connections have similarities, but there
are also essential differences. The difference between the feature
transfer of the residual network and the densely connected
network will be explained below. Suppose there is an image y0
with an L-layer convolutional neural network. Each layer of the
image must undergo a non-linear conversion operation Hl(.),
Hl(.) is the representative function of the network operation set
of this layer, where l refers to the current number of network
layers, and the output of the first layer is defined as yl, then the
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feature transfer of the traditional feedforward convolutional
network can be expressed by the following formula:

yl = Hl · (yl−1) (1)

After adding the residual connection in Res Net, it can be
expressed by the following formula:

yl = Hl · (yl−1)+ yl−1 (2)

In Dense Net, dense connections are used to further improve the
transfer of information between layers. When the network joins
the dense connection, the output of layer l can be expressed by
the following formula:

yl = Hl ·
[
y0, y1, ..., yl−1

]
(3)

Residual connection is to add the feature maps of the previous
layer and the feature maps of the latter layer together, while dense
connection is to splice the feature maps of the two together in
a cascading manner, completely retaining the features output by
the previous node.

The dense connection block is a special module in Dense
Net. Figure 3 shows the internal structure of a typical densely
connected block. In Dense Block, a basic structure is formed
by a combination of several basic network operators such as
convolution operations and activation functions. Each basic
structure is fed forward through dense connections. The form
of connection is connected to every other basic structure. This
feature makes each convolutional layer in the densely connected
block only need to use a small number of convolution kernels
to learn a small number of features, and the final layer will
summarize and output the features learned by each layer of the
network in the block. This feature allows Dense Net to learn
rich features with a small number of parameters and calculations.
Therefore, we can add densely connected blocks to the design
of the backbone network to achieve the need to reduce the
number of parameters.

In order to avoid the inconsistency of the feature map size
during splicing, a densely connected network usually consists of
several densely connected blocks. The size of the feature map
output by each layer within each densely connected block is
the same. Downsampling is performed to change the size of the
feature map. Figure 4 shows the structure of a typical densely
connected network.

Backbone Network Design
In view of the advantages of the densely connected network, the
network has excellent feature extraction capabilities while the
network parameters and calculations are small. This paper uses
the design of dense connection blocks in the basic architecture
of the algorithm backbone network, and builds a fast dense
connection network F-Dense Net for the monitoring task of
severe cerebrovascular disease in dynamic brain imaging in
this paper. The main structure of F-Dense Net includes a
simplified Stem block, four densely connected blocks and three
conversion layers. In ordinary Dense Net, after the input layer,
a convolutional layer with a convolution kernel size of 7 and a

step size of 2 and a pooling kernel size of 3 and a maximum
value pooling with a step size of 2 are connected. The structural
Stem block can replace the initial two layers in the ordinary Desne
Net, thereby reducing the loss of the original information of the
input image. Compared with the structure of ordinary Dense Net,
although the Stem block retains more original information, it will
introduce a lot of extra calculations. Through further analysis,
we combined a 7 × 7 cross-convolution with a step size of 2 in
the traditional Desne Net and a 2 × 2 maximum pooling with
a step size of 2 in the Stem block. This structure can calculate
and reduce the loss of original information compared with the
traditional structure.

We add a conversion layer between every two densely
connected blocks instead of simply pooling down sampling. The
conversion layer consists of a 1 × 1 convolutional layer and a
2 × 2 maximum pooling. Among them, the number of channels
of the 1× 1 convolutional layer is lower than the dimension of the
feature map output by the previous densely connected block. This
is to fuse the features of different channels while compressing
network parameters. Maximum pooling is used to down-sample
the feature map, and at the same time, it can better retain some
local pattern features than average pooling.

In the traditional densely connected network, Re LU (Rectified
Linear Unit) is used as the activation function. Re LU has many
advantages over traditional activation functions such as Sigmoid
function and Tanh function. However, the Re LU activation
function itself has another problem, that is, the problem of dying
Re LUs. In a network that uses Re LU as the activation function,
suppose that some neural nodes learn a relatively large negative
deviation term in the back propagation process, so that their
input becomes less than or equal to 0, then Re LU will always be
in a suppressed state. Their gradient is always 0, and the network
cannot learn the features on these nodes. When there are many
such nodes, many nodes in the network cannot learn effectively,
and the actual feature extraction ability of the network is lower
than the theoretical feature expression ability of the network.
The Scaled Exponential Linear Units (SELU) activation function
is an activation function with self-stabilizing characteristics. The
formula of SELU is:

selu(y) = λ ·

{
y y > 0

a · ey − a y ≤ 0
(4)

The self-stabilization characteristic of SELU has an inhibitory
effect on the gradient dispersion and gradient disappearance of
the network. At the same time, the gradient of SELU is not
0 when the input is equal to 0, which avoids the node death
problem of Re LU. In our research, we found that using SELU
as the activation function in F-Dense Net has better performance
than activation functions such as Re LU and Leaky Re LU, so
we chose SELU as the activation function of F-Dense Net. In
general, SELU has the following advantages: SELU suppresses
the problems of gradient disappearance and gradient dispersion,
making it very suitable for deep convolutional neural networks;
SELU also avoids the dead zone problem of Re LU, and can give
full play to the advantages of deep convolutional neural networks.
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Multi-Scale Network Structure
The feature image pyramid method improves the monitoring
accuracy of severe cerebrovascular diseases at different scales by
calculating features on each independent image scale. Therefore,
this method introduces a lot of repetitive calculations in
the training process, which brings a lot of extra time and

computational resource overhead. If the feature image pyramid
is used only during testing, it will lead to inconsistency between
testing and training. The pyramid feature hierarchical structure
method extracts features of different scales from different layers
of the network for prediction, and does not bring additional
calculations. However, the pyramid feature hierarchy method
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does not realize the fusion of multi-level features. The lack
of high-level features on the feature map for small-scale
severe cerebrovascular disease monitoring makes the semantic
information insufficient and prone to misdetection of small-scale
severe cerebrovascular disease.

This paper adopts a new multi-scale feature extraction
method, Feature Pyramid Networks (FPN) as a method to
achieve multi-scale feature extraction. The FPN structure only
brings a small amount of additional computational overhead
on the premise of multi-level feature fusion. We improve the
network architecture of F-Dense Net through the FPN structure
to obtain a convolutional neural network with multi-scale feature
expression capabilities. The FPN structure mainly consists of
three parts: bottom-up path, top-down path and horizontal
connection. The network that joins the FPN structure can solve
the problem of multi-level feature fusion and extraction through
the combination of these three feature transmission paths.
Through the horizontal connection, the network can merge the
high-level feature map with less low-level feature information
and more semantic information in the top-down path and the
low-level feature map with more low-level feature information
and less semantic information in the bottom-up path, and this
structure also provides the network with the ability to predict on
multiple scale feature maps.

This paper introduces FPN on the basis of F-Dense Net
to improve the network structure, and designs a network
structure that supports three-scale prediction. The specific
structure is shown in Figure 5. The bottom-up path is the
forward propagation process of F-Dense Net, and the top-down
path is through the last layer of F-Dense Net. The semantic
information output is the richest. High-level feature maps are
sampled and then followed by the bottom-up path mesoscale. The
matched feature maps are combined by horizontal and horizontal
connections. In the feature pyramid network, those layers whose
output feature map size can be said to be at the same stage of the
network, and each stage can output an independent feature map
for monitoring. In F-Dense Net, the output feature map size of
each densely connected block is the same, which means that all
layers in a densely connected block can be regarded as the same
stage in the feature pyramid. Therefore, we choose the output of
the last layer of the second, third, and fourth densely connected
blocks as the reference for the feature map. This is considering
that the last layer of each densely connected block has the learned
features of all layers in the block, and at the same time has the
richest semantic information.

In the network designed in this paper, the nearest neighbor
method is used for the up-sampling of the feature map, and
the up-sampling multiple is 2. In addition, we have made
some improvements to the FPN method. The traditional feature
pyramid horizontal connection needs to adjust the number of
channels of the two feature maps to the same, and then add
pixels on each channel to generate the final feature map. In this
paper, combining the characteristics of the densely connected
network, different horizontal connection methods are adopted.
The two feature maps are merged into a new one with the same
size and the same dimension as the sum of the dimensions of
the two original feature maps using the feature map cascade

method in the dense connection. The feature map better retains
the information of the two feature maps. Finally, a 1 × 1
convolutional layer is added after the new feature map. On
the one hand, it is to alleviate the aliasing effect caused by
upsampling. It can strengthen the fusion of different channel
features, while compressing the number of parameters and
reducing the amount of network calculations.

Spatial Pyramid Pooling
Through research, we found that the multi-scale feature fusion in
MF-Dense Net mainly focuses on the fusion between the global
features of different levels of convolutional layers, and there is
no effective fusion and extraction of multi-scale local features
on the same convolutional layer. In response to this problem,
we propose an improved spatial pyramid pooling structure to
improve this problem.

The spatial pyramid pooling structure can generate fixed-
size outputs from all sizes of inputs. Spatial pyramid pooling
is generally connected between the last convolutional layer
of the convolutional neural network and the fully connected
layer to meet the requirements of the fully connected layer for
the dimensionality of the input data. The convolutional layer
produces an output of w∗h∗d, where w∗h is the size of the feature
map, and d is the dimension, which is determined by the number
of filters in the convolutional layer. After inputting this feature
map into the spatial pyramid pooling structure, after pooling
with different core sizes and step lengths, three feature maps of
4∗4∗d, 2∗2∗d, and 1∗1∗d are obtained, and then the feature map is
converted into a 1-dimensional vector and stitched together, then
no matter what the size of the input feature map is, the output of
the same size will be generated after the spatial pyramid pooling,
that is, 1× 1× 21d.

The spatial pooling pyramid merges the features pooled by
different pooling core sizes during the operation process, and
realizes the fusion of multi-scale local area features on the same
layer of feature maps. However, the traditional spatial pyramid
converts multiple feature map information into one-dimensional
vectors and outputs them to the fully connected layer, which
is not applicable in our method. Therefore, a spatial pyramid
method of outputting three-dimensional feature maps is used
in this article.

In the improved spatial pyramid pooling of feature maps,
the input spatial pyramid pooling feature maps are pooled with
multiple different pooling core sizes. In ordinary spatial pyramid
pooling, the pooling step size is generally greater than 1, which
plays the role of downsampling the feature map; and in this
improved method, the step size of the three pooling layers used
is all 1. The pooling core size can be set to 1, 1/2, and 1/3 times
the edge length of the feature map (rounded up for non-integer
cases). The pooling form uses maximum value pooling, and after
pooling, a new feature map with the same size is the input feature
map (w × h × d), and then cascades these three feature maps
together in the dimension direction to obtain a w × h × 3d
feature map, which is obtained by cascading fusion of multi-scale
local area features.

In terms of specific implementation, we added a spatial
pooling pyramid module after the last densely connected block
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FIGURE 6 | Schematic diagram of reconstruction operation.
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FIGURE 7 | ROC curve of APACHEII1, APACHEII2, and APACHEII3 predicting the risk of death.
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FIGURE 8 | Image performance of severe cerebrovascular disease based on multi-scale dynamic brain imaging. (A) Imaging manifestation of severe cerebrovascular
disease in 18 h brain imaging; (B) Imaging manifestation of severe cerebrovascular disease in 36 h brain imaging; (C) Imaging manifestation of severe
cerebrovascular disease in 54 h brain imaging; (D) Imaging manifestation of severe cerebrovascular disease in 72 h brain imaging.

of MF-Desne Net. We first use 1 × 1 convolution to reduce
the dimensionality of the feature map output by the last layer
of MF-Desne Net, and then input it into the improved spatial
pyramid pooling structure to obtain a new feature map that
incorporates multi-scale local features. Subsequently, the real

parameter compression and multi-channel feature fusion of the
new feature map are performed by 1 × 1 convolution. Finally,
the feature map is cascaded with the original feature map output
by MF-Dense Net, and the 1 × 1 convolution is used to reduce
the dimension to 512 dimensions and input into the monitoring
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FIGURE 9 | APAHCEII1 score predicts overall mortality and actual mortality.
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FIGURE 10 | APAHCEII2 score predicts overall mortality and actual mortality.

sub-network. By adding a spatial pooling pyramid structure, the
improved backbone network can not only achieve multi-level
feature fusion, but also multi-scale local feature fusion in the
same dimension, and improve the accuracy of object monitoring
through richer feature information.

Enhanced Utilization of Low-Level
Features
Through the observation of the structure of MF-Dense Net,
we found that the feature map output by the first densely
connected block is not fully utilized in the feature extraction
process. Because dynamic brain images often contain a large
number of small-scale severe cerebrovascular diseases, the
information of these severe cerebrovascular diseases is likely to
be lost after multi-layer convolution operations, which makes it
difficult to accurately monitor; compared to high-level feature
maps, the feature map output by a densely connected block

contains more low-level features and detailed information, which
retains more feature patterns that can reflect small-scale severe
cerebrovascular diseases and location information of some severe
cerebrovascular diseases. Therefore, strengthening the use of low-
level features can improve the monitoring effect of small-scale
severe cerebrovascular diseases, and at the same time improve
the positioning accuracy of some severe cerebrovascular diseases
to be monitored. In order to make full use of the information
of the feature map, we tried from different directions. The
method of adding a new feature map to the top-down path
increases the amount of calculation greatly and has a great
impact on the monitoring speed; while the third feature map
continues to be up-sampled. The method of feature fusion
will also bring more extra calculations, and the aliasing effect
caused by continuous up-sampling of the feature map will
affect the effectiveness of the information on the high-level
feature map to a certain extent. Therefore, we choose to
merge the feature maps output by the first densely connected
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FIGURE 11 | The relationship between APAHCEII3 score predicting overall mortality rate and actual mortality rate.
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FIGURE 12 | The ROC curve of APACHEII1, APACHEII2, APACHEII3 predicting the risk of death from severe cerebral hemorrhage.
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FIGURE 13 | The relationship between APACHEII1 and the mortality of patients with severe cerebral hemorrhage.
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block through horizontal connection without up-sampling the
third feature map.

Due to the different sizes of the two feature maps, the area of
the feature map output by the first densely connected block is four
times that of the third feature map in the top-down path, and
the horizontal connection needs to be on several feature maps
of the same size. Therefore, it is necessary to convert the larger
feature map to the size of the smaller feature map to merge the
two feature maps. Generally speaking, downsampling methods
such as pooling can be used to reduce the size of the feature map,
but this will cause a lot of loss of low-level detail information. In
order to better preserve the low-level information of the feature
map output by the first densely connected block, we use the Reorg
Layer to reconstruct the feature map to change the feature map
size, and then perform the fusion of the feature map through
horizontal connections.

The reconstruction operation can change the size of the
feature map without losing data. The reconstruction process
is shown in Figure 6. Assuming that the reconstruction layer
obtains a feature map input of 2w∗2h∗d, if the step size of the
reconstruction operation is set to 2, then the reconstruction
layer can convert the input feature map into a feature map
output of size w∗h∗4d. Compared with using the pooling layer
to down-sample the feature map, changing the size of the feature
map through the reconstruction layer retains more low-level
features, which is more conducive to the monitoring of small-
scale severe cerebrovascular diseases. At the same time, these
low-level features also contain more location information.

ANALYSIS OF THE RESULTS OF
MONITORING AND PROGNOSIS OF
SEVERE CEREBROVASCULAR DISEASE

The Relationship Between APACHEII
Score and Overall Severe
Cerebrovascular Disease
APACHEII1, APACHEII2, and APACHEII3 in the death group
were higher than those in the survival group, and the difference
between the two was statistically significant (p < 0.01). The
change rate of APACHEII in the survival group was higher than
that in the death group, and the difference between the two
was statistically significant (p < 0.01). The area under the curve
(AUR) of the ROC (Receiver Operating Curve) of APACHEII1 is
0.22; the AUR of the ROC curve of APACHEII2 is 0.83; the AUR
of the ROC curve of APACHEII3 is 0.54, as shown in Figure 7.
The accuracy of APACHEII1, APACHEII2, and APACHEII3 on
the overall prognosis of patients is better, and APACHEII2 has
the best accuracy.

The APACHEII1, APACHEII2, and APACHEII3 of the overall
patients were divided into cut-off values of 19, 19, and 17,
respectively. The score ≥ the cut-off value is the high-risk group,
and the score < cut-off value is the low-risk group. The fatality
rate of the high-risk group is significantly higher than that in
the low-risk group, the difference between the two groups was
statistically significant.

The APACHE II that showed an upward trend within 72 h
was divided into high-risk group, and those with a downward
trend were divided into low-risk group. The fatality rate of the
high-risk group was 67.86%, the fatality rate of the low-risk
group was 17.70%, and the fatality rate of the high-risk group
was significantly higher than that of the low-risk group. The
difference between the two groups was statistically significant.
The imaging manifestations of severe cerebrovascular diseases
based on multi-scale dynamic brain imaging are shown in
Figure 8.

The APACHEII1 score is correlated with the patient’s
prognosis (r = −0.47, p < 0.01). The predictive value of
the APACHEII1 score for the overall mortality of severe
cerebrovascular disease is generally higher than the actual
mortality, as shown in Figure 9. APACHEII2 is correlated with
prognosis (r = −0.63, p < 0.01), as shown in Figure 10.
APACHEII3 is correlated with prognosis (r = −0.54, p < 0.01).
The higher the score, the higher the mortality rate. The predicted
value of APACHEII3 for the overall mortality rate is higher than
the actual mortality rate, as shown in Figure 11.

The Relationship Between APACHEII
Score and Severe Cerebral Hemorrhage
The APACHEII1, APACHEII2, and APACHEII3 scores of
patients in the death group were higher than those in the survival
group, and the difference between the two was statistically
significant (p < 0.01). The change rate of APACHEII in the
survival group was higher than that in the death group, and the
difference between the two was statistically significant (p < 0.01).

The AUR of the ROC curve of APACHEII1 is 0.81; the
AUR of the ROC curve of APACHEII2 is 0.88; the AUR of the
ROC curve of APACHEII3 is 0.85. This shows that APACHEII1,
APACHEII2, and APACHEII3 have good prognostic accuracy,
and APACHEII2 has the best accuracy, as shown in Figure 12.

The scores corresponding to the Youden index of
APACHEII1, APACHEII2, and APACHEII3 are 18, 19, and
18 points, respectively, indicating that for patients with severe
cerebral hemorrhage, the first 24 h after admission to the NICU
are higher than 18 points, and the internal score was higher than
19 points, and the score did not drop below 18 points in the third
24 h, and the mortality rate was high.

The APACHEII1, APACHEII2, and APACHEII3 of the overall
patients were divided into cut-off values of 18, 19, and 18,
respectively. The score ≥ the cut-off value is the high-risk group,
and the score < cut-off value is the low-risk group, and the
fatality rate of the high-risk group is significantly higher. In
the low-risk group, the difference between the two groups was
statistically significant. The APACHE II that showed an upward
trend within 72 h was divided into a high-risk group, and those
with a downward trend were divided into a low-risk group. The
fatality rate of the high-risk group was significantly higher than
that of the low-risk group, and the difference between the two
groups was statistically significant.

The score of APACHEII1 is correlated with the prognosis of
patients (r = -0.65, p < 0.01). The higher the score, the higher
the risk of death. Overall, the predictive value of the APACHEII1
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FIGURE 14 | APAHCEII2 predicts the relationship between mortality and actual mortality in patients with severe cerebral hemorrhage.
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score for the fatality rate of severe cerebral hemorrhage is lower
than the actual value of the fatality rate, as shown in Figure 13.

The APACHEII2 score is correlated with the patient’s
prognosis (r = -0.78, p< 0.01). The higher the APACHEII2 score,
the higher the risk of death. The predicted value of the fatality
rate for severe cerebral hemorrhage with APACHEII2 score below
30 points is always lower than the actual fatality rate. The actual
mortality rate is lower than the predicted mortality rate above 30
points, as shown in Figure 14.

The score of APACHEII3 was correlated with the prognosis of
patients (r =−0.72, p < 0.01). The APACHEII3 score is less than
24 points, and the predicted value of the fatality rate of severe
cerebral hemorrhage is always lower than the actual fatality rate.
The actual mortality rate is lower than the predicted mortality
rate at 24–26 points, as shown in Figure 15.

Logistic Regression Analysis and
Comparison of Evaluation Methods and
Prognosis
Logistic regression analysis was performed on the aEEG
(Ambulatory Electroencephalogram) classification and
prognosis, and the χ2 test was performed on the fit of the
regression equation model, P = 0.004, indicating that the model
was well fit and the regression equation was significant. Logistic
regression analysis showed that a EEG classification had an
accuracy rate of 100% for survival prognosis, an accuracy rate
of 42.5% for death prognosis, and an accuracy rate of 87.1%
for comprehensive prognosis. Logistic regression analysis was
performed on the Young grading and prognosis of EEG, and
the χ2 test was performed on the fit of the regression equation
model, P = 0.003, indicating that the fit of the model was
good and the regression equation was significant. Logistic
regression analysis showed that the accuracy of EEG Young
classification for survival prognosis judgment was 97.7%, the
accuracy of death prognosis judgment was 58.9%, and the
accuracy of comprehensive prognosis judgment was 89.1%.
Logistic regression analysis was performed on the GCS score
and prognosis, and the fit of the regression equation model was
tested by χ2, P = 0.016, indicating that the model fit is acceptable
and the regression equation is meaningful. Logistic regression
analysis showed that the accuracy of GCS score for survival
prognosis judgment was 97.2%, the accuracy of death prognosis
judgment was 13.9%, and the accuracy of comprehensive
prognosis judgment was 79%, as shown in Figure 16. The results
show that aEEG classification and EEG Young classification
are more accurate in prognostic judgment than GCS score; and
aEEG classification combined with EEG Young classification can
improve the prediction accuracy.

CONCLUSION

Severe cerebrovascular disease has an extremely high disability
rate and mortality rate, and correct assessment of its prognosis is
of great help to adopt correct treatments and reduce the disability
rate and mortality rate. In today’s era of highly developed
imaging, the majority of patients with cerebrovascular disease
are the first choice for cranial computed tomography (CT)

or magnetic resonance imaging (MRI) to assess the patient’s
prognosis through objective images. This article studies the
correlation between long-term EEG classification and typical
EEG configuration and patient prognosis, in order to find a
more objective clinical method for evaluating the condition and
prognosis of patients with severe cerebrovascular disease. In this
paper, a study on the feature extraction of critical cerebrovascular
disease monitoring tasks based on multi-scale dynamic brain
imaging is carried out. In view of the large-scale changes
and diverse characteristics of severe cerebrovascular diseases in
dynamic brain images, the idea of improving the monitoring
effect through multi-scale fusion of the characteristics of
severe cerebrovascular diseases is proposed. We designed a
fast and robust dense connection network F-Desne Net with
excellent feature extraction capabilities, and combined with
the feature gold tower network architecture, we built a severe
cerebrovascular disease that can extract multi-layer fusion
features and output multi-scale feature maps. Based on MF-
Desne Net, a fast and accurate end-to-end dynamic brain imaging
monitoring algorithm for severe cerebrovascular disease MDRD
is designed. In addition, we designed an improved method on
the basis of MDRD. Improved feature pyramid pooling is added
to improve the network’s multi-scale local feature fusion ability;
the use of low-level features of the network is enhanced to
improve the network’s ability to extract basic feature patterns and
detailed information of the image. The improved method can
effectively improve the monitoring performance of the MDRD
method. This study found that APACHEII1, APACHEII2, and
APACHEII3 in the death group were higher than those in the
survival group. The change rate of APACHEII in the survival
group was higher than that in the death group (p < 0.01).
APACHEII in different periods was correlated with prognosis.
APACHEII has a good predictive value for the prognosis
of severe cerebrovascular disease, and has clinical practice
value for predicting the risk of death. Dynamic observation
of the changes in APACHEII score is of significance for the
prediction and prognostic evaluation of severe cerebrovascular
disease in neurology.
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