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The brain is the central nervous system that governs human activities. However, in
modern society, more and more diseases threaten the health of the brain and nerves and
spinal cord, making the human brain unable to conduct normal information interaction
with the outside world. The rehabilitation training of the brain-computer interface can
promote the nerve repair of the sensorimotor cortex in patients with brain diseases.
Therefore, the research of brain-computer interface for motor imaging is of great
significance for patients with brain diseases to restore motor function. Due to the
characteristics of non-stationary, nonlinear, and individual differences of EEG signals,
there are still many difficulties in the analysis and classification of EEG signals at this
stage. In this study, the Extreme Learning Machine (ELM) model was used to classify
motor-imaging EEG signals, identify the user’s intention, and control external devices.
Considering that single-modal features cannot represent the core information, this study
uses a fusion feature that combines temporal and spatial features as the final feature
data. The fusion features are input to the trained ELM classifier, and the final classification
result is obtained. Two sets of BCI competition data in the BCI competition public
database are used to verify the validity of the model. The experimental results show that
the ELM model has achieved a classification accuracy of 0.7832 in the classification
task of Data Sets IIb, which is higher than other comparison algorithms, and shows
universal applicability among different subjects. In addition, the average recognition rate
of this model in the Data Sets IIIa classification task reaches 0.8347, which has obvious
advantages compared with the comparative classification algorithm. The classification
effect is smaller than the classification effect obtained by the champion algorithm of the
same project, which has certain reference value.

Keywords: human-computer interaction model, ELM, motor imagery, EEG signals, BCI data set

INTRODUCTION

The brain is the central nervous system that governs human activities. However, in modern society,
more and more diseases threaten the health of the brain and nerves and spinal cord, making
the human brain unable to conduct normal information interaction with the outside world. In
recent years, with the rapid development of computer science and people’s continuous in-depth
exploration of brain science, brain-computer interface (BCI) technology has been attracting
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attention as a new type of human-computer interaction system
that directly interacts between brain nerves and peripheral
devices. The BCI system collects EEG by placing sensors on the
surface of the user’s scalp or inside the skin. The EEG signal is
decoded to determine the intention, and then complete a series
of operations such as controlling external equipment. Using BCI
technology can help patients with movement disorders caused
by nerve damage regain the ability to move independently and
smoothly interact with the outside world. This technology will
significantly improve the quality of life of patients and reduce
the burden on families and society. The first international BCI
conference held in 1999 clearly defined the brain-computer
interface, that is, “BCI is a communication control system for
direct communication between the brain and external devices,
and does not rely on brain nerves and peripheral muscle tissue”
(Wolpaw et al., 2000). Nowadays, BCI technology is developing
rapidly at a rapid pace. In the fields of military aviation,
rehabilitation and medical treatment, cognitive enhancement,
games and entertainment, and intelligence are bursting with
strong vitality, the research and application of brain-computer
interface has become a hot spot in the field of scientific research
(Van Dokkum et al., 2015; Qiu et al., 2017; Hammer et al., 2018).

Motor Imagery (MI) EEG has the characteristics of flexibility,
non-invasiveness, low environmental requirements, and high
resolution. Therefore, MI is one of the widely used forms of
BCI. The frequency band power of the EEG signal during the
motion imaging process will vary with the content of the MI task,
which is called event related synchronization/desychronization
(ERS/ERD). The generation of ERS/ERD is related to internal
or external events. When one side of the human limb exercises
or performs motor imagination, the energy of µ rhythm and β

rhythm in the sensory motor area on the opposite side of the
brain decreases, and the energy of µ rhythm and β rhythm in
the ipsilateral motor sensory area increases. This rule makes it
possible for ERS/ERD to control external equipment or perform
motor imagination intention recognition (Lisi et al., 2014). Motor
Imagery Brain-Computer Interface (MI-BCI) is used as a branch
of the brain-computer interface. The patient’s brain imagines
and simulates actions, but there is no actual action output.
MI-BCI is mainly based on the analysis and recognition of
sensorimotor rhythms, which decodes the signals and converts
them into machine instructions. It can establish information
channels between humans and machines, and realize the control
of devices such as wheelchairs, exoskeletons, and prostheses.
According to the theory of neuroplasticity, it also helps to activate
nerve cells in a specific area of activity, helping to repair and
regenerate damaged nerves.

In 1973, the American Jacques Vidal team put forward the
concept of brain-computer interface technology for the first
time in a paper, and pointed out that it is an interdisciplinary
technology covering various disciplines, including biomedicine,
neuroscience, cognitive science, computer science and other
fields (Vidal, 1973). However, due to the immaturity of various
corresponding technologies at that time, the research of brain-
computer interface has always been stagnated at the conceptual
and theoretical stage. The scientific research team led by
Professor Pfurtscheller in Austria is the pioneer and leader of

BCI technology research. The team conducted a lot of research
on the BCI system based on the EEG signal of motor imagery,
and proposed the concepts of ERD and ERS for the first time
(Pfurtscheller, 1992). In 2000, the team developed the Graz-BCI
system based on the left and right hand motor imagery EEG
signals and the motor sensory region mu and beta rhythm signals,
and successfully realized the control of the cursor and the robotic
arm (Pfurtscheller et al., 2002). Matsunaga et al. developed a
wheelchair control system based on the EEG signal of motion
imagination, which can perform basic movement and control
operations (Tanaka et al., 2005). In 2008, the research team of
the University of Tokyo in Japan used VR technology to conduct
feedback training on subjects for the first time, which greatly
improved the recognition rate of the subjects’ motor imagination
EEG signals (Fujisawa et al., 2008). The Birbaumer laboratory
in Germany designed an SCP-based mind converter system. The
user can use the EEG signal to control the input of characters, so
as to achieve communication with the outside world (Birbaumer
et al., 2003). In 2011, a research team from the Technical
University of Berlin, Germany, developed a vehicle emergency
brake assist system based on EEG signals. This system is 130 ms
faster than manual operation and effectively shortens the braking
distance (Haufe et al., 2011). In 2015, the Wadsworth Research
Center in the United States and Karlsruhe Technical Research
Institute in Germany jointly developed the “Brain-to-text” system
(Herff et al., 2015). The system uses automatic speech recognition
technology to convert human brain activity into corresponding
text when speaking. This confirms the possibility of human-
computer interaction based on natural speech-related cortical
activity. In 2019, the team of Professor Bin He from Carnegie
Mellon University in the United States and the University of
Minnesota successfully developed the first “non-invasive mind
control robotic arm” in history (Edelman et al., 2019). This
is a non-invasively connected brain-computer interface system.
Users can control the robotic arm to quickly track the randomly
moving computer cursor through their mind and imagination.
The system has achieved a nearly 60% improvement in learning
performance, and the academic performance has also increased
by more than five times compared with the previous one. In
March 2020, Professor Edward Chang used Recursive Neural
Network technology to learn neural features of EEG signals
generated by epilepsy patients when they read aloud, and decode
them into text sentences. The study achieved 97% accuracy
(Makin et al., 2020).

Although China’s sports imagination BCI technology started
late, it has also made some progress. The BCI team led by
Professor Gao Shangkai of Tsinghua University developed a BCI
system in 2007 that uses left and right hand and foot motion
imaginary EEG signals to control robotic dogs to complete
football kicks (Wang et al., 2007). In 2010, the BCI team of
South China University of Technology developed a hybrid BCI
system that combined P300 and Mu/Beta rhythms to control
the movement of a two-dimensional cursor (Li et al., 2010).
In addition, the team used the same method to implement
a wheelchair control BCI system in 2012 (Long et al., 2012).
In 2015, Xu Baoguo and others from Southeast University
developed an online robot control system based on MI-BCI
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(Xu et al., 2015). On this platform, the feature extraction and
classification of the EEG signal of hand movement imagination
are realized, and the average classification accuracy rate reaches
91.5%. In 2016, Tang Zhichuan of Zhejiang University and
others developed an exoskeleton upper limb rehabilitation robot
based on brain control of motor imagination (Tang et al.,
2016). The research achieved the highest online classification
accuracy rate of 84.29± 2.11%. As an effective method to control
the exoskeleton of the upper limbs, this research provides a
non-invasive brain-controlled active upper limb rehabilitation
strategy for clinical applications.

Many experts and scholars have achieved excellent results in
the research of brain-computer interface systems and various
analysis methods for EEG signals, which has also made a huge
promotion for the scientific and effective analysis of EEG signals.
Juneja et al. proposed an EEG classification method based on the
ELM model, which is characterized by extracting the individual
and mutual features of the data set (Juneja and Rana, 2019). Tan
et al. proposed an improved ELM model for the classification
of synchronous EEG (Tan et al., 2017). Zhang et al. used
the differential entropy and attention model to classify EEG,
so as to realize the automatic recognition of epilepsy (Zhang
et al., 2020). However, the following problems still exist in the
practicality of the brain-computer interface. First, the research
on the classification of EEG signals for motor imaging mainly
focuses on the two-classification problem, which is not enough to
meet the actual needs. Second, the algorithm runs for a long time,
and it is difficult to meet the user’s requirements for timeliness.
Third, the recognition rate needs to be further improved to
improve the accuracy of issuing instructions. In response to these
problems, this article intends to propose a motor imagery EEG
classification method based on ELM algorithm. The main work
of this paper is summarized as follows:

(1) The structure and operation process of the MI-BCI system
are introduced. The system mainly includes three modules:
preprocessing, feature extraction, and classification and
recognition. The preprocessing steps in this article include
data interception and band-pass filtering. Data interception
refers to excluding the preparation and rest phases from
the original EEG signal data segment, and only retains the
motor imagination phase. Feature extraction includes lead
selection, Local Characteristic-scale Decomposition (LCD)
feature extraction, and Common Spatial Pattern (CSP)
feature extraction. The classification recognition method
is the ELM regression model, and the classification is
performed by the regression method.

(2) A feature fusion method is used in the feature extraction
module. The time domain features obtained based on the
LCD feature extraction method and the spatial domain
features obtained based on the CSP feature extraction
method are combined in series to obtain a fusion feature.

(3) The classic ELM model is used for classification and
recognition. The input weight matrix and hidden neuron
bias matrix of ELM’s hidden layer is randomly generated
and obey any continuous probability distribution, so only
the output weight matrix is required to be solved, and the

input weight and hidden layer bias need not be adjusted
iteratively. Therefore, the calculation amount and time
complexity of the algorithm will be much smaller, and
the training speed will be much faster. Recognition based
on this model is more suitable for tasks that require
high response time.

MI-BCI SYSTEM STRUCTURE

The MI-BCI system has different practical applications in
different fields and scenarios, but a complete MI-BCI system is
basically composed of five parts as shown in Figure 1.

(1) EEG signal acquisition. EEG signal acquisition is mainly
responsible for EEG signal acquisition and storage. EEG
signal acquisition methods can be divided into two types:
non-implantable and implantable. In actual research, non-
implantable acquisition methods are used in most cases,
that is, the acquisition electrode is directly placed on the
corresponding position of the subject’s scalp to record the
EEG signal. At the same time, the collected EEG signal
is amplified and processed and A/D converted, and the
processed result is stored.

(2) Pretreatment. The signal-to-noise ratio of the EEG signal
is very low, and it is easily affected by external noise and
other biological signals. It is very necessary to preprocess
the EEG signal before analyzing and processing it, so as to
reduce the artifact interference in the signal and improve
the signal quality.

(3) Feature extraction. Feature extraction is one of the most
important links in the MI-BCI system. Its purpose is to
learn distinguishing features from the preprocessed EEG
data, which is the feature that best reflects the true thinking
activity of the brain. The commonly used methods include

FIGURE 1 | MI-BCI system structure.
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short-time Fourier transform, wavelet packet transform,
common space mode algorithm, etc. (Cheng et al., 2019; Hu
et al., 2019; Liu et al., 2020; Wang et al., 2020).

(4) Classification and identification. The classification and
recognition of EEG signals is one of the key links that
determines the performance of the BCI system. The role of
this link is to integrate the extracted features and build a
classification model. The classification model can establish
a mapping relationship between the signal features and the
subjects’ real consciousness activities, so as to realize the
feature classification of EEG signals. For EEG signals with
different characteristics, commonly used classifiers include
Fisher discriminant classifier, support vector machine,
neural network algorithm, etc. (Rozza et al., 2012; Rubén
et al., 2019; Dib et al., 2020; Ghonchi et al., 2020; Luo et al.,
2020; Srirangan et al., 2020).

(5) Equipment control system. The function realized by the
equipment control system is to convert the classification
and recognition results of EEG signals into control
commands for peripheral equipment. Common peripheral
devices include character input systems, smart wheelchairs,
robotic arms, etc.

ELM-BASED MOTOR IMAGE
RECOGNITION METHOD

Identification Process
The identification process is shown in Figure 2. First, preprocess
the collected motor imaging EEG signals. The preprocessing
methods include data interception and band-pass filtering. Data
interception removes the original EEG signal data segment
from the preparation and rest phases, and only retains the
motor imagination phase. Band-pass filtering retains the effective
components of the EEG signal in the frequency range of 0.5–
30 Hz, and removes irrelevant EMG and ECG components.
Second, feature extraction. The time-frequency energy feature
and spatial domain feature of EEG signal are extracted, and the
features are fused. Third, the extracted features are input into
the trained ELM model to obtain the classification result. Fourth,
the device is controlled by the mapping relationship between the
classification result and the control instruction.

Feature Extraction
It is necessary to select the lead before feature extraction. The pre-
processed signals are calculated and sorted by the contribution
rate, and the four leads with the highest information validity
are distinguished from the remaining 18 leads. LCD (Yang
et al., 2012) is used to decompose four lead EEG signals, 12
intrinsic scale components (ISC) are obtained, and the time-
frequency energy feature vector V1 is obtained. To obtain the
time-frequency energy of 12 ISC components, the expression of
the time-frequency energy is as follows

Eij =
N−1∑
t=0

∣∣ISCij (t)
∣∣2 , i = 1, 2, 3, 4, j = 1, 2, 3 (1)

ISCij(t) refers to the first three layers of ISC components with
length N obtained by decomposing each lead. Through the
above processing, the time-frequency domain feature vector
group V1=[H11,...,H13,...,H43] is obtained. CSP (Dornhege et al.,
2004) decomposes the remaining 18 leads EEG signals to
obtain the spatial domain feature vector V2. A series fusion
strategy is adopted to connect V1 and V2. The multiple features
are normalized first, and then concatenated end to end. The
mathematical expression is as follows:

V1 =
[

H11
|H11|

, . . . , H13
|H13|

, . . . , H43
|H43|

]
V2 =

[
f1
|f1|

,
f2
|f2|

,
f3
|f3|

,
f4
|f4|

]
V = [V1,V2]

(2)

FIGURE 2 | Motion image recognition process based on ELM.

FIGURE 3 | Motion image recognition process based on ELM.
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TABLE 1 | Data set introduction.

Data set Subjects Tasks Channels Rate Experiments Years

Data Sets IIb (Michael et al., 2012) 9 2 (left hand right hand) 3 250 400 2008

Data Sets IIIa (Schlögl et al., 2005) 3 4 (Left hand, right hand, tongue, feet) 60 250 240 2005

TABLE 2 | Classification accuracy of data sets IIb.

Subject Feature extraction SVM Bayesian TSK ELM

1 LCD 0.7374 0.7288 0.7392 0.7408

CSP 0.7286 0.7074 0.7111 0.7394

LCD+CSP 0.7421 0.7320 0.7447 0.7532

2 LCD 0.6879 0.6724 0.6854 0.6858

CSP 0.6580 0.6693 0.6622 0.6741

LCD+CSP 0.7002 0.6798 0.6905 0.6998

3 LCD 0.7896 0.7669 0.7987 0.8008

CSP 0.7744 0.7602 0.7880 0.7983

LCD+CSP 0.7901 0.7754 0.8022 0.8112

4 LCD 0.7417 0.7491 0.7488 0.7504

CSP 0.7289 0.7352 0.7306 0.7422

LCD+CSP 0.7498 0.7594 0.7523 0.7610

5 LCD 0.7835 0.7713 0.7864 0.7915

CSP 0.7749 0.7645 0.7800 0.7798

LCD+CSP 0.7906 0.7802 0.7939 0.8003

6 LCD 0.7965 0.7843 0.7892 0.8002

CSP 0.7893 0.7748 0.7816 0.7918

LCD+CSP 0.7998 0.7841 0.7889 0.7988

7 LCD 0.8117 0.7993 0.7943 0.8016

CSP 0.8023 0.7892 0.7868 0.7994

LCD+CSP 0.8108 0.8034 0.7979 0.8180

8 LCD 0.7952 0.7867 0.8032 0.8128

CSP 0.7794 0.7772 0.7804 0.7950

LCD+CSP 0.7864 0.7893 0.8089 0.8236

Avg LCD 0.7679 0.7574 0.7682 0.7730

CSP 0.7545 0.7472 0.7526 0.7650

LCD+CSP 0.7712 0.7630 0.7724 0.7832

TABLE 3 | Kappa coefficient of Data Sets IIb.

Feature extraction SVM Bayesian TSK ELM

LCD 0.5017 0.4841 0.5208 0.5619

CSP 0.4986 0.4749 0.5004 0.5572

LCD+CSP 0.5135 0.4981 0.5337 0.5897

ELM Classification Model
Single hidden layer feed-forward neural networks (SLFN)
has been widely used because of its very strong nonlinear
approximation ability. The latest research progress on SLFN
learning is the Extreme Learning Machine (ELM) algorithm
(Tamura and Tateishi, 1997; Huang, 2003; Huang et al., 2004,
2006). ELM is a single-layer feed forward network with fast
training. There are only three layers in the network: The Input
Layer, the Hidden Layer and the Output Layer. Figure 3 shows
the three-tier structure of the network.

In the Input Layer, each sample of each training set will have
a corresponding weight and offset. There are two ways in ELM:
one is to manually enter these weights and offsets, and the other
is to automatically generate weights and offsets through ELM
toolbox. Random generation is based on the size of the original
data and the sigmoid neuron function. For a linear Output Layer,
randomly generated weights can better reflect the performance
advantages of ELM. ELM is a regression model, but it is also
suitable for classification. If the different categories are separate
and independent, create a target for each category separately. The
target of the class that can be matched is set to 1, and the target
of the unmatched class is set to 0. This encoding creates a unit-
length vector for each category. This vector is orthogonal to all
other classes of vectors. The distance between the target vectors
of different categories is the same, so the independence of the
categories can be maintained. The prediction category is assigned
based on the target with the largest ELM output.

Literature (Huang et al., 2006) pointed out and proved that
if the activation function g(x) is infinitely differentiable, then,
for a given arbitrarily small approximation error, the input layer
weights and hidden layer thresholds arbitrarily select the number
of hidden nodes N′≤N , where N is the number of training samples.
According to the above theory, when the activation function g(x)
is infinitely differentiable, all network parameters do not need to
be adjusted. The input weight wi and the hidden layer threshold
bi can be randomly assigned during training, and they are fixed
during the training process. For the selected sample data, the
hidden layer output matrix is fixed. Therefore, the parameter
training of ELM is transformed into solving the following linear
regression problem:

f (x) = βTg (3)

Here, β can be obtained by solving the least squares solution of
the linear system Hβ=T . For the multiple-input single-output data
set D={(xn,tn)|xn∈Rp,tn∈R,n=1,2,...,N.}, the following optimization
problems can be solved:

min
β
||Hβ− T| | (4)

where

H=


g(wT

1
x1 + b1) ... g(wT

N′
x1 + bN′)

... ... ...

g(wT
1
xN + b1) ... g(wT

N′
xN + bN′)


N×N′

=


gT (x1)

...

gT (xN)


N×N′

is the hidden output matrix.
β=[β1,β2,...,βN′ ]T

is the output node,

T=[t1,t2,···,tN ]T is the hidden layer connection weight vector. The
least square solution of Eq. (3) is

β̂ = H+T (5)

where H+ is the Moore-Penrose generalized inverse of the hidden
output matrix H . The optimal solution A has the following
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important characteristics (1) The smallest training error can be
obtained through this solution; (2) The weight vector of the
smallest normal form is obtained; (3) The least squares solution
of the paradigm is unique, so the algorithm will not produce a
local optimal solution.

EXPERIMENTAL PROCESS AND
RESULTS ANALYSIS

Experimental Data Set
The data set used in this article is the BCI competition data set
provided by Graz University. The description of the experimental
data is shown in Table 1.

FIGURE 4 | Classification accuracy obtained by each classification model on
the Data Sets IIb.

FIGURE 5 | Kappa coefficient obtained by each classification model on the
Data Sets IIb.

Experimental Setup
To verify the effectiveness of the method used in this paper,
the selected contrast classifiers include support vector machine
SVM (Shahyad et al., 2019), Bayesian classifier (Bayesian) (Zhang
et al., 2016), Takagi–Sugeno–Kang (TSK) (Gu et al., 2017). To
verify the superiority of the fusion features, the individual time-
frequency features and spatial domain features were compared
with the fusion features of the two in the experiment process.
This paper uses the classification accuracy rate acc and the kappa
coefficient to measure the classification accuracy to evaluate
the classification performance of the model. The larger the
kappa coefficient, the better the algorithm performance. The
mathematical expression of the kappa coefficient is as follows:

Kappa =
acc− 1/N
1− 1/N

(6)

where acc represents the classification accuracy rate, and N
represents the number of categories. The value range of kappa
is [0,1]. The larger the value, the stronger the consistency and
the higher the classification accuracy. During the experiment, the
data set was divided into training set and test set. The training
set is used to build the classifier model, and the test set is used to
evaluate the accuracy of the model for predictive classification of
unknown samples. To scientifically test the classification accuracy
rate and avoid misleading the experimental results caused by
a single classification result, this article adopts fivefold cross
validation. Each time, the data set is divided into five parts,
and four of them are used as training data to obtain the model
completely randomly. The remaining one is classified as test data.
The trained classifier model is used to classify the test set. From
the classification results, the accuracy rate acci (i = 1, 2,..., 5) and
the Kappa coefficient Ki (i = 1, 2,..., 5) can be obtained. The above

TABLE 4 | Classification accuracy of data sets IIIa.

Subject Feature extraction SVM Bayesian TSK ELM

1 LCD 0.8257 0.8031 0.8209 0.8286

CSP 0.8135 0.8059 0.8187 0.8145

LCD+CSP 0.8294 0.8202 0.8231 0.8466

2 LCD 0.8121 0.7985 0.8073 0.8252

CSP 0.8093 0.7917 0.8028 0.8565

LCD+CSP 0.8289 0.8123 0.8162 0.8334

3 LCD 0.7982 0.7645 0.8014 0.8105

CSP 0.7819 0.7492 0.7906 0.8067

LCD+CSP 0.7998 0.7685 0.8182 0.8242

Avg LCD 0.8120 0.7887 0.8099 0.8214

CSP 0.8016 0.7823 0.8040 0.8259

LCD+CSP 0.8194 0.8003 0.8192 0.8347

TABLE 5 | Kappa coefficient of data sets IIIa.

Feature extraction SVM Bayesian TSK ELM

LCD 0.7472 0.7022 0.7331 0.7623

CSP 0.7380 0.6958 0.7290 0.7405

LCD+CSP 0.7572 0.7105 0.7412 0.7788
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process is repeated five times, and the average value of five times
is used as the final accuracy of the algorithm. The final calculation
formula of the experimental results is as follows, where F is 5.

Ā =
1
F

F∑
i=1

acci (7)

K̄ =
1
F

F∑
i=1

Ki (8)

Discussion of Experimental Results
(1) Data Sets IIb

In order to demonstrate the effectiveness of the method in
this paper, this paper compares feature extraction and classifier
performance. The experimental results on the Data Sets IIb data
set are shown in Tables 2, 3. Figures 4, 5 show the classification
accuracy and Kappa coefficient obtained by each classification
model on the Data Sets IIb data set. The classification on this data
set is a binary classification problem.

The experimental results on Data Sets II give two feedback
points. (1) The three features are the time domain features
based on the LCD feature extraction method, the spatial domain
features based on the CSP feature extraction method, and
the fusion feature obtained by combining the time domain
feature and the spatial domain feature. The classification results
obtained based on the above three features show that the
classification effect obtained by fusing the features is the best.
Different feature extraction methods perform basically the same
on the four classification algorithms. For each classifier, the
classification effect based on fusion features is the best. This
shows that the information of fusion features is richer and more
comprehensive, which is more conducive to classification tasks.
In most classification algorithms, the classification effect based on
the LCD feature extraction method is better than the classification
effect based on the CSP feature extraction method. This shows
that time domain features have higher information value than
spatial domain features. (2) Comparing the four classification
algorithms, the ELM algorithm used in this article has the best
performance, followed by TSK, third is SVM, and the worst
is Bayesian. For other types of classification algorithms, ELM
can initialize the input weights and biases randomly to get the
corresponding output weights. This algorithm can be faster than
traditional learning algorithms under the premise of ensuring
learning accuracy. This is the reason why this algorithm is chosen
as the classification model in this article.

(2) Data Sets IIIa
The classification results on the Data Sets IIIa data set are

shown in Tables 4, 5. Figures 6, 7 show the classification accuracy
and Kappa coefficient obtained by each classification model on
the Data Sets IIIa data set. The classification of this data set
belongs to four classifications.

The data set on Data Sets IIIa is classified into four categories,
and the experimental results obtained are somewhat different
from the experimental results on Data Sets II. By analyzing
the experimental data in Tables 4, 5, the following conclusions
are obtained. (1) The fusion feature extraction method among

FIGURE 6 | Classification accuracy obtained by each classification model on
the Data Sets IIIa.

FIGURE 7 | Kappa coefficient obtained by each classification model on the
Data Sets IIIa.

the three feature extraction methods has the best classification
effect. On this data set, the classification effect based on the
LCD feature extraction method is better than the classification
effect based on the CSP feature extraction method, but the gap
in classification accuracy is not very large. (2) The classification
effect of the ELM algorithm is still the best, followed by SVM, TSK
third, and Bayesian the worst. Compared with the experimental
results obtained from the Data Sets II data set, the position of
the best classification effect of ELM has not changed, but the
classification effect of SVM classifier surpasses TSK. This fully
demonstrates the feasibility and superiority of selecting ELM
as the classification algorithm in this paper. Compared with
other classification algorithms, the classification performance
of the ELM algorithm is more stable and the advantages
are more obvious.
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CONCLUSION

A novel smart motor imagery intention human-computer
interaction model using extreme learning machine and EEG
signals is proposed. Aiming at the problems of low recognition
accuracy, large individual differences, and feature redundancy
in the current multi-classification problem of motor imagery
EEG, this paper deeply studies the signal recognition methods
of different limb motor imagery to improve the application of
BCI system. The main work of this paper is summarized as
follows: (1) A multi-feature fusion extraction method, namely
the feature extraction method of LCD+CSP, is used. This method
can extract the time-frequency domain and spatial domain
features of the data set. The experimental results show that
the classification result obtained by a single feature is not
as good as the classification result obtained by the fusion
feature. (2) The selected ELM algorithm is a mature and widely
used classification algorithm with relatively high classification
accuracy and fast running speed. ELM can initialize the input
weights and biases randomly to get the corresponding output
weights. This algorithm can be faster than traditional learning
algorithms under the premise of ensuring learning accuracy.
The experimental results verify that the ELM algorithm has
certain classification advantages. The motion image intention
recognition effect based on the method in this paper is close to the
champion algorithm of BCI competition. Therefore, the human-
computer interaction model designed based on the recognition
results of this method is feasible to help patients recover.
However, the data set used in this article is relatively simple,
and they are all data sets in the BCI competition. In the follow-
up, this research plans to use richer data sets for experimental
research to verify the universality of the algorithm in this paper.

The key to the effectiveness of the ELM model is whether it is
necessary to extract features from the data. If feature extraction is
meaningless, ELM can come in handy. If it is for the original data
set, and feature extraction is very important, the classification
effect of ELM is not ideal. In addition, ELM sacrifices too many
meaningful patterns in data for speed. Therefore, how to improve
ELM to determine the balance between classification accuracy
and speed is a future research work.
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