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Neural Network Training Acceleration
With RRAM-Based Hybrid Synapses

Wooseok Choi, Myonghoon Kwak, Seyoung Kim and Hyunsang Hwang*

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Hardware neural network (HNN) based on analog synapse array excels in accelerating
parallel computations. To implement an energy-efficient HNN with high accuracy, high-
precision synaptic devices and fully-parallel array operations are essential. However,
existing resistive memory (RRAM) devices can represent only a finite number of
conductance states. Recently, there have been attempts to compensate device
nonidealities using multiple devices per weight. While there is a benefit, it is difficult to
apply the existing parallel updating scheme to the synaptic units, which significantly
increases updating process’s cost in terms of computation speed, energy, and
complexity. Here, we propose an RRAM-based hybrid synaptic unit consisting of a
“big” synapse and a “small” synapse, and a related training method. Unlike previous
attempts, array-wise fully-parallel learning is possible with our proposed architecture
with a simple array selection logic. To experimentally verify the hybrid synapse,
we exploit Mo/TiOx RRAM, which shows promising synaptic properties and areal
dependency of conductance precision. By realizing the intrinsic gain via proportionally
scaled device area, we show that the big and small synapse can be implemented
at the device-level without modifications to the operational scheme. Through neural
network simulations, we confirm that RRAM-based hybrid synapse with the proposed
learning method achieves maximum accuracy of 97 %, comparable to floating-point
implementation (97.92%) of the software even with only 50 conductance states in each
device. Our results promise training efficiency and inference accuracy by using existing
RRAM devices.

Keywords: hardware neural networks, online training, resistive memory, hybrid synapse, crossbar array

INTRODUCTION

Artificial intelligence (AI) technology is becoming increasingly advanced and widespread in real-
world applications, such as computer vision, natural language recognition, healthcare, and pattern
classification (Ghahramani, 2015; Mnih et al., 2015; Silver et al., 2016; Guo et al., 2020; McKinney
et al., 2020). Advances in Al technology have been achieved through the unprecedented success of
deep-learning algorithms. However, based on the von Neumann architecture, conventional digital
computers cannot withstand the ever-increasing sizes and complexities of neural networks and
tasks, thereby facing barriers in terms of energy efficiency (Merkel et al., 2016; Yan et al., 2019; Ankit
et al., 2020). This has necessitated the development of brain-inspired neuromorphic computing,
e.g., hardware neural networks (HNNs). In particular, resistive memory (RRAM) is considered
a strong candidate for synaptic primitives capable of storing multilevel weights as conductance
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values (Woo et al.,, 2016; Yu et al., 2016; Wu et al., 2019; Yin
et al., 2020). Especially in an RRAM array, fully-parallel array
operations provide the excellent potential to accelerate neural
network computations. However, as existing RRAMs can only
represent a finite number of conductance states, it poses a
significant challenge to achieving high accuracy of HNNs during
online training (Li et al., 2015; Gokmen and Vlasov, 2016; Kim
etal., 2017; Mohanty et al., 2017; Nandakumar et al., 2020).

To store a higher number of bits per weight, several studies
have used multiple cells for a synapse in analog neuromorphic
systems (Agarwal et al., 2017; Song et al., 2017; Boybat et al,,
2018; Liao et al.,, 2018; Hsieh et al., 2019; Zhu et al., 2019).
While there is a benefit, the synaptic unit architecture cannot
adopt the conventional parallel updating scheme since multiple
devices operate one synapse. The system must determine the
device to be updated for each synaptic unit and calculate the
weight updates’ corresponding amounts. As a result, the synaptic
unit architecture’s update process requires additional expenses in
terms of time and energy. In positional number systems, carry
operations must be performed between the combined devices
in every synaptic unit (Agarwal et al., 2017; Song et al., 2017),
which is not compatible with the parallel updating scheme. Liao
et al. proposed a synaptic unit with sign-based stochastic gradient
descent training to implement the parallel updating (Liao et al,,
2018). However, ignoring the magnitude information of the
weight updates decreases the classification accuracy. Thus, for
fast and accurate HNN learning, it is crucial to be able to train
the synaptic unit architecture using the parallel update method
without losing the amount of the feedback information.

Therefore, we propose a hybrid synaptic unit using Mo/TiOx
RRAMs with a cooperative training method that can accelerate
the learning of neural networks with increased precision of
the synaptic weight. The remainder of this paper is organized
as follows. (1) We explain the importance of high precision
of the synaptic element and the parallel updating scheme,
which are essential for accelerating neural network training
with high accuracy. (2) We present the hybrid synaptic unit
consisting of “big” and “small” synapses. We also present the
training method to simplify the updating process by separating
the role of each synapse in the unit. We train the HNN in
two phases wherein, first, a dynamic-tuning phase that only
updates the big synapses is followed by a fine-tuning phase
that only updates the small synapses in detail. Hence, the HNN
can accelerate learning process by using a parallel updating
scheme to the target array with simple array selection logic. (3)
To implement the hybrid synapse experimentally, we exploit
Mo/TiOx RRAM that exhibits promising synaptic properties
and the areal dependency of the conductance precision. By
realizing the intrinsic gain via proportionally scaled device area,
we show that the big and small synapse can be implemented
at the device-level without modifications to the operational
scheme. (4) By considering realistic device parameters, we
conduct neural network simulations to confirm the feasibility of
the proposed method. We also analyze the optimal gain ratio
between the synapses to achieve the highest accuracy. The results
demonstrate that hybrid synapse-based HNN with the proposed
learning method significantly improves accuracy for handwritten

digit datasets, which is 99.66% for training and 97% for the
tests. We believe that this work is a meaningful step toward
a high-performance RRAM-based neuromorphic system using
existing RRAM devices.

HARDWARE NEURAL NETWORK

Synaptic Device

The working principle of an HNN is based on parallel signal
propagations in crossbar array architecture. For the synaptic
weights (Wj), the conductance values of the resistive device are
the weights indicating the strength of the synaptic connection.
Herein, a synapse (G;}' — Gj;) typically consists of two devices,
where G and G represent the conductance states of the positive
and negative devices, and the subscripts i and j are the crossbar
array indexes. After the pre-neurons express voltage signals, these
signals are naturally multiplied by the conductance values of the
synapses using Ohm’s law. Thus, the signals from the pre-neurons
are computed in the current form and can propagate parallelly
through all synapses to the post-neurons. From the perspective
of the post-neuron, all the currents from the connected synapses
are accumulated by Kirchhoff’s law, and the neuron fires output
signals based on the nonlinear activation function for consecutive
propagation in multilayer neural networks as follows.

Xl+1 — f(Wle) (1)

where W' represents the weight matrix in the lth layer, and X/
is a vector of neuron activations that is applied to the rows of
the crossbar array; f() is a nonlinear activation function of the
neuron. Thus, a crossbar array that stores multiple bit weights
in each RRAM accurately computes the analog-based VMM in
a single step. When the inputs are applied to the first neuron
layer, the final layer’s output determines the winner neuron after
the forward propagation, as shown in Figure 1A. To reduce
classification errors between the desired and computed outputs,
the calculated errors propagate backward, adjusting each weight
to minimize the energy function by gradient descent of the
backpropagation algorithm (Figure 1B).

81 :f/(Wllelfl) * (WZ)T61+1 (2)

AWH = —q -8 (XZ)T 3)

where 8/ is the backpropagating error vector of the 1th neuron
layer and 1) is the learning rate parameter. x denotes element-wise
product. The amount of weight updates in the 1th layer, AW/,
becomes the outer product of the two vectors. Therefore, for
synaptic devices, the conductance states’ high precision is critical
to ensure optimum neural network convergence by adjusting the
weights precisely.

Parallel Update Scheme
When the weights are updated element-wise or row-wise in
the crossbar array, the time complexity proportionally increases
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FIGURE 1 | Computational models and arrays of hardware neural networks for the (A) inference process and (B) error calculation process.
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with an increase in the array size. Crossbar-compatible and fully
parallel update schemes have thus been proposed to accelerate
neural network training (Burr et al., 2015; Gao et al, 2015;
Kadetotad et al., 2015; Gokmen and Vlasov, 2016; Xiao et al,,
2020). For the target crossbar array, by applying update pulses
simultaneously to all rows and columns based on the neuron’s
local knowledge of X and 8, respectively, the parallel updates in
each cross point can be executed by the number of pulse overlaps.
Therefore, the outer product updates in Eq. (3) are conducted
in parallel, as shown in Figure 1B. The pulse encoding method
can be implemented in various ways, such as the temporal length,
voltage amplitude, and repetition rate. Also, as the update rules
can be flexibly adjusted to each system, a parallel updating scheme
has been demonstrated in unidirectional phase-change memory
(PRAM) arrays (Burr et al., 2015). Therefore, it is vital to employ
parallel updating schemes to accelerate neural network training.

RRAM-BASED HYBRID SYNAPSE

This section explains the concept of a hybrid synapse using the
RRAMs and their training method to significantly improve the

weight resolution and training efficiency of a neural network even
with device imperfections. Here, each device that makes up a
hybrid synapse is assumed to be implemented in a different array
to increase the crossbar’s controllability (Zhu et al., 2019).

Hybrid Synapse

To investigate the ideal synapse behaviors, we first analyzed the
weight changes during the software neural network training.
Figure 2A shows the weight changes in all synapses in the
hidden-output layer as a function of the training epoch. The
weight tuning of the software synapses can be mainly divided
into two phases: the dynamic-tuning phase, where the weights
are largely updated, and fine-tuning phase, where the weights
are slightly updated with high precision. Such tendencies are
also observed in the training accuracy, which increases rapidly
at the initial stage and is then gradually adjusted to the optimum
condition, as shown in the inset of Figure 2A. Inspired by this
progressive weight update, we present a hybrid synaptic unit with

an additional small synapse (gl']" - gij_) to finely tune the weights

after the dynamic tuning phase in the big synapse (Figures 2B,C).
Here, g represents conductance states of the small synapse, scaled
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FIGURE 2 | (A) Weight changes of ideal synapses as a function of epoch during software training. The inset shows training and test accuracy (B) A hybrid synapse
is implemented with four different RRAMs. Each RRAM (C) Weight states of the big and small synapse for the dynamic-tuning and fine-tuning phases. (D) Flow chart
and corresponding working principles of the proposed neural network. Here, the subscript (t) indicates the time index of the sequence of actions.

by k times (§ = G/k). The larger the scale factor (k), the
higher the precision of weights that can be expressed. Hence,
four devices with different state precisions serve as a synapse, as
follows:

Wy = G -G+ (g —g5) (4)
where G and g represent the conductance states of the low- and
high-precision devices, respectively.

Learning Method

Figure 2D shows a flow chart and the working principle of
the proposed neural network. The learning method is mainly
composed of three cycles: inference, error calculation, and weight
update. During the forward and backward propagations, all
big- and small synapses are used to perform VMM operations.
In contrast, weight updates are conducted only with specific
synapses depending on the training phase. Initially, training starts
from the dynamic tuning phase, which only updates the big
synapses by switching off the small synapse arrays. Thus, update
pulse vectors of X(;12) and 8(+42) corresponding to the neuron’s
local knowledge of X(;) and 841y are applied to each row and
column of the big synapse array, respectively. As the training
proceeds, the increase in accuracy may saturate owing to the
limited weight resolution of a single synapse. If the accuracy
improvement between epochs is below a certain threshold value

(the value of 0.5 is adopted for this operation), the update target
is switched to a small synapse. Hence, the small synapse’s higher
conductance granularity enables finer weight adjustments while
the big synapse’s weights are fixed. Therefore, a hybrid synapse
with the proposed learning method can overcome the physical
limitations of an individual device and accelerate neural network
training with only simple switching logic.

Mo/TiOx-Based RRAM

To implement the hybrid synapse, the scale factor k can be
realized in various ways by scaling the input voltage signal or
adjusting the peripheral circuit’s gain. In this work, however, we
exploit the switching mechanism of the Mo/TiO-based RRAM,
i.e., area-dependent conductance scaling, to implement the gain
at the device level. Previously, we reported a microstructural
engineered Mo/TiOx RRAM for electronic synapse applications
(Park et al., 2019); the study presented some promising synaptic
features of the Mo/TiOx RRAM, such as gradual and linear
conductance programming. However, the present expanded
work adds significantly more explanatory details regarding the
areal dependency of the conductance precision, which is utilized
to construct a hybrid synapse.

The TiOx-based RRAM was fabricated on TiN bottom
electrodes with various active diameters from 30 nm to 1 pum.
First, we deposited a 15 nm thick TiOx layer through RF
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FIGURE 3 | (A) Transmission electron microscopy (TEM) image showing the cross section of the Mo/TiOx-based RRAM. EDS line profiles are indicated with different
colors depending on the materials. (B) DC I-V curve and corresponding current density at 0.5 readout voltages of devices with different dimensions. (C) AC pulse
responses of RRAMs with different dimensions. (D) Conductance scaling as a function of active device area. (E) Gradual and linear potentiation characteristics of the
Mo/TiOx-based RRAM for 30 cycling operations. A pulse-train that consists of five =4 /100 ps pulses is used for strong depression process. (F) Heat map showing
the cumulative probability to achieve a particular conductance change as a function of the total conductance.

sputtering process by using a ceramic Ti4O7 target at room
temperature. Then, 50 nm thick Mo top electrode was deposited
by the sputtering system (Park et al., 2019). The device structure
and composition of each layer are shown in Figure 3A via
transmission electron microscopy (TEM) image and its energy
dispersive X-ray spectroscopy (EDS) line profile. The switching
mechanism of the RRAM is based on gradual oxygen migration
and chemical reactions at the interface between the Mo top
electrode and the TiOy layer under an electric field (Park et al.,
2019). As shown in Figure 3B, the areal conduction contributes
to a gradual increase (or decrease) in the conductance states
when a positive (or negative) bias is applied, which are called
potentiation and depression, respectively. In Figure 3B, 30 mV
step voltage was used for the DC I-V sweep measurement such
that 100 sampling points in a single sweep from 0 to 3 voltages.
The uniform current density, regardless of device dimensions,
demonstrates the interfacial switching of the RRAM.

We also confirmed the areal conduction of the Mo/TiOy
RRAM using AC pulse measurements. Figure 3C shows five
cycling operations for devices with different dimensions, with
100 pulses each for the potentiation and depression processes.
Interestingly, as the effective switching area is scaled down, the
entire conductance range of the device decreases proportionally.
As shown in Figure 3D, the precision in conductance changes
per pulse proportionally increases with device scaling, even with

an identical operating scheme. Hence, without modifying the
operational scheme, high-precision weights can be represented
by scaling the device area k times. For example, when the
value of k is 10, the small synapse device area is scaled down
by a factor of 10 compared to the big synapse. Following the
optimization of the operating scheme, we obtained near-ideal
programming linearity during 30 cycles; each cycle included
50 potentiation and one reset process, as shown in Figure 3E.
Here, we used the linear potentiation process with a strong
reset to maximize the online training accuracy, as a pair
device with an occasional reset process allows implementation
of the depression as well as negative weights (Burr et al,
2015). The probability distribution shows the excellent state
uniformities of 10 representative states, whereas the inset shows
the programming variability (3/p) with standard deviation (3)
and mean () values. In Figure 3F, the heat map shows the
cumulative probability of achieving a particular conductance
change as a function of the total conductance to demonstrate
linear conductance programming. However, a finite number of
conductance states (i.e., 50) in a single device cannot accomplish
accurate neural network training comparable to floating-point
(FP) implementations. In the next section, we demonstrate the
improved training accuracy of the proposed learning method
using Mo/TiOx RRAM-based hybrid synapse through neural
network simulations.
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FIGURE 4 | (A) Evolution of training and test accuracies, (B) weight update frequency response, and (C) mean squared error (MSE) of the neural networks as a
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RESULTS AND DISCUSSION

Simulations were conducted on fully connected neural networks
(784-250-10) for pattern recognition of handwritten digits using
the Modified National Institute of Standards and Technology
(MNIST) dataset. We used 60,000 training and 10,000 test images
for the simulations. Also, the mini-batch size was one, and the
learning rate was 0.1.

Simulation Analysis

As shown in Figure 4A, the performance of the proposed
neural network is compared with other types of synapse
implementations. First, a single synapse with 50 intermediate
states of resistive devices is used to show the saturation of the
training accuracy. Although the device has good programming
linearity, the finite number of states hinders convergence of
the entire network to the optimum condition. However, the
software network with FP synaptic weights gradually increases
up to 99.98% training accuracy, with 97.92% test accuracy. For
the proposed method, the results show 99.66% training accuracy
and 97.00% test accuracy, even with the device imperfections.
Importantly, unlike the case before switching, where the accuracy
remains the same as that of the single-synapse implementation,
the accuracy after switching improves gradually. To observe the
collaboration of big and small synapses, Figure 4B shows the
normalized weight update frequency as a function of the epoch.
While the update frequency of the single synapse consistently
decreases, the update frequency of the proposed synapse abruptly

increases when the target synapse is switched to a small synapse.
Then, the number of weight updates decrease again as the
synaptic weights are adjusted with high precision during the fine-
tuning phase. The convergence of the mean squared error (MSE)
of the neural network is analyzed as shown in Figure 4C. After the
target update synapse is changed to a small synapse, the stopped
MSE reduction starts decreasing gradually.

Figure 4D shows the weight history of a single synapse
implementation with 50 states of electronic devices and software
synapse implementations with FP weights. In contrast to a
single synapse with a finite number of states, the FP synapse
converges to its optimum state through the fine-tuning process.
Figure 4E shows the case of the hybrid synapse for three
representatives. In addition, Figure 4F shows the weight history
of the behavior of each low-precision and small synapse. It is seen
that dynamic weight tuning is conducted on only the big synapses
before switching, whereas fine tuning is conducted on only the
small synapses after switching. The results thus demonstrate the
successful performance of the proposed method using only 50
intermediate states for each device and a simple array selection
logic for the update process.

Scale Factor (k)

The gain of the small synapse plays an important role in
determining the performance of the neural network, which
controls the granularity of the synaptic update. To analyze
the optimal value of k, we evaluated the errors in the weight
updates for different k values. As shown in Figure 5A, a
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synapse with a limited number of states cannot be adjusted
to the exact target weight, resulting in weight errors (Werror)-
Figure 5B shows the precision of the g states relative to those
of the G states for three different cases (k = 1, 10, and 100).
When k is 1, the precision of g is as low as that of G. If k
increases to 10, the precision of g increases proportionally by
10 times the precision of G, such that each state of G can
be expressed as 10 states of g. As a result, after completion
of the big synapse training in the proposed neural network,
the small synapse can be tuned precisely more than 10 times,
thereby further reducing Weror. However, when k increases to
100, the weight changes may become unnoticeable owing to
the excessively scaled precisions of the g states. The 50 finite
states of g can only express as little as half of the G states.
Figures 5C-E are histograms for different values of the scale
factor showing the distribution of absolute Werror values for
all synapses in the hidden output layer. As seen in Figure 5D,
Werror gradually decreases when k is a moderate value of 10
compared to k values of 1 and 100. A low k cannot reduce
Werror owing to the low precision of the g states (Figure 5C),
while an extremely high k renders the weight updates of the
g states unnoticeable (Figure 5E). Therefore, a moderate gain
value is important for accurate online training of the network.
Figure 5F summarizes the results showing the error rates of
the neural networks as functions of k. Notably, the increase
in error rate due to excessive scaling of k can be reduced
by a higher number of g states. It is seen that the error

increases to 5.02% at 100 k and decreases to 3.42% when
the number of conductance states of the high-precision device
increase to 400.

Performance

In addition to analysis of the optimal k, we investigated the
performance of the neural network reflecting programming
variations of the electronic device as well as the number
of conductance states. As can be seen from Figure 6A,
the hybrid neural network achieves an accuracy of over
93.69% even when the device’s conductance levels are reduced
to 10. However, the neural network with single-synapse
implementation shows a dramatic decrease to 9.8%. Therefore,
the proposed hybrid synaptic unit remarkably reduces the
required number of states in the electronic device to obtain the
target accuracy.

Moreover, we simulated the impact of programming
variations (8/)L) on the neural network performance for
each synapse implementation (Figure 6B). The amount of
conductance change (AG) is unpredictable, as shown in
Figure 3E. To represent the variation of AG during the weight
update process, we modeled the programming variability by
using the mean () and standard deviation (8) of the AG. In
the simulation, the variation is assumed to be a random variable
with a Gaussian distribution and added to the AG in each
device during updates. Therefore, we can evaluate the impact
of the conductance variation on classification accuracy. Based
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FIGURE 6 | (A) Test accuracy as a function of the number of states in an electronic device for each synapse implementation. The hybrid synapse can further
improve accuracy even with a finite number of states in a device. (B) Test accuracies concerning variations in conductance changes. The proposed neural network
with a hybrid synapse has good resistance to variations and enough margin for the variations of our device. (C) Test accuracies with various device-to-device
variations. (D) With the proposed hybrid scheme, neural networks can yield a high accuracy of 97% with only 50 states of the electronic device. When the number of
conductance states in the device increases to 400, the neural network accuracy can be improved up to 97.34%.

Hybrid
synapse

on the experimental data, variations in our device (0.34) are
indicated by the dotted line, where high accuracy of the neural
network is still guaranteed. The results show that the neural
networks have variational immunity up to one and significantly
decrease for variations greater than one. In addition to the
programming variation, mean G values can also vary between
RRAM devices. In this case, the mean values of large synapses
differ so much that there is no overlap between the synapses.
Consequently, there would be a limit to the complementary
actions between the synapses, leading to severe accuracy loss.
Thus, device-to-device variations can play an important role.
We have evaluated the impact of device-to-device variations on
recognition accuracy in Figure 6C. The network is robust against
the variation (8/Gmin) with up to one. It is worth noting that a
large ratio of Gpax/Gmin is essential to improve the immunity to
device-to-device variability.

The performances of the different neural networks are
summarized in Figure 6D. Compared to the single-synapse
implementations with imperfect devices, the hybrid neural
networks with the proposed learning method achieve online
training accuracies of 97%, which are comparable to FP synapse
implementations (97.92%). In particular, the highest accuracy

Hybrid Synapse for Spiking Neural
Networks

We further discuss how the hybrid synapse and learning method
that we proposed can be extended to spiking neural networks
(SNNs). Same as the multilayer perceptron model, SNNs can
also benefit from dense crossbar array using nanoelectronics
devices (Prezioso et al., 2018). The SNN operates by data-
driven event-based activations, which makes it promising for
energy-efficient neuromorphic hardware. In particular, RRAM
has been regarded as a strong candidate with the advantages
of high scalability and low power operation, showing spike-
timing dependent plasticity (STDP) functionality (Lashkare et al.,
2017). Recently, several groups have reported SNNs utilizing
multiple devices as a single synapse to secure a higher multi-
level conductance state (Werner et al., 2016; Shukla et al., 2018;
Valentian et al., 2019).

Meanwhile, SNN has suffered from poor learning
performance due to the lack of adequate training algorithms.
Many efforts have been made to apply the gradient descent-
based backpropagation algorithm to the SNN’s learning
to compensate for this issue (Lee et al., 2016). Also,
using analog resistive devices, on-chip training SNNs with

of 97.34% can be achieved when the number of g states backpropagation algorithms has been recently reported
increases to 400. (Kwon et al., 2020).
Frontiers in Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 690418


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Choi et al.

RRAM-Based Hybrid Synapses

Although the SNN model was not covered in this paper, the
proposed multi-element-based synapse and backpropagation-
based learning methods are the parts that have been studied
in SNN application as well. Our work, therefore, strongly
encourages studies on online trainable, fast, and high-accuracy
SNN hardware with RRAM synapses.

CONCLUSION

To achieve accurate and fast HNN training using RRAM devices,
we presented hybrid synaptic unit and the learning method. The
hybrid synapse consists of two synapses with different gains;
one for dynamic-tuning by large quantities and the other for
fine-tuning in detail. By only updating a specific synapse in
the synaptic unit depending on the training phase, the weight
update process is simplified and we can accelerate the HNN
training with a multi-RRAM synaptic architecture. Moreover,
we exploited Mo/TiOx RRAM to experimentally demonstrate
the hybrid synapse, implementing internal gain at the device
level with proportionally scaled areas. Therefore, the granularity
of the synaptic weights significantly increased even with the
finite number of conductance states in the device. Through
neural network simulations, we confirmed it could achieve
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