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Spiking neural networks (SNNs) have gained considerable attention in recent years due

to their ability to model temporal event streams, be trained using unsupervised learning

rules, and be realized on low-power event-driven hardware. Notwithstanding the intrinsic

desirable attributes of SNNs, there is a need to further optimize their computational

efficiency to enable their deployment in highly resource-constrained systems. The

complexity of evaluating an SNN is strongly correlated to the spiking activity in the

network, and can be measured in terms of a fundamental unit of computation, viz. spike

propagation along a synapse from a single source neuron to a single target neuron. We

propose probabilistic spike propagation, an approach to optimize rate-coded SNNs by

interpreting synaptic weights as probabilities, and utilizing these probabilities to regulate

spike propagation. The approach results in 2.4–3.69× reduction in spikes propagated,

leading to reduced time and energy consumption. We propose Probabilistic Spiking

Neural Network Application Processor (P-SNNAP), a specialized SNN accelerator with

support for probabilistic spike propagation. Our evaluations across a suite of benchmark

SNNs demonstrate that probabilistic spike propagation results in 1.39–2× energy

reduction with simultaneous speedups of 1.16–1.62× compared to the traditional model

of SNN evaluation.

Keywords: spiking neural networks, hardware acceleration, energy efficiency, memory, probabilistic spike

propagation

1. INTRODUCTION

Spiking Neural Networks (SNNs), often referred to as the third generation of neural networks
(Maass, 1997), are attracting a lot of attention due to several desirable characteristics, including
their ability to model temporal event streams, the possibility of training them using unsupervised,
bio-inspired learning rules such as Spike Timing Dependent Plasticity (STDP) (Bi and Poo, 1998),
and the emergence of low-power SNN hardware platforms such as IBMTrueNorth (Akopyan et al.,
2015) and Intel Loihi (Davies et al., 2018).

SNNs represent information as discrete spike events and follow an event-driven model of
computation, where the work done (and hence, the time or energy consumed) is proportional
to the number of spike events. Further, they do not require multiplication to be performed when
processing a spike, offering the prospect of reduced hardware complexity compared to conventional
Artificial Neural Networks (ANNs). Due to these differences, SNNs are not well-suited to
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commodity hardware platforms like graphics processing units
(GPUs). Further, in contrast to hardware accelerators for ANNs,
which usually focus on exploiting regular data parallelism,
hardware architectures for spiking networks (e.g., Furber et al.,
2014; Neil and Liu, 2014; Akopyan et al., 2015; Roy et al.,
2017) focus more on features that enable efficient event-
driven computation.

Despite being event driven, spiking networks still require
a large number of memory accesses (Neil and Liu, 2014).
When a neuron spikes, it is first necessary to identify its
fanout neurons, i.e., the connectivity information needs to be
fetched along with the weights of the corresponding synapses.
Finally, the membrane potentials of the fanout neurons impacted
by the spike are fetched and updated. Recent data (Pedram
et al., 2017) indicates that fetching data from memory is much
more expensive than arithmetic computations. Consequently,
developing techniques for reducing the number of memory
accesses in SNNs is critical for improving their energy-efficiency.

1.1. Probabilistic Spike Propagation
In this paper, we present a probabilistic method of spike
propagation that can significantly reduce the number of memory
accesses required for the evaluation of a rate-coded spiking neural
network, thus saving both run-time and energy. We realize the
proposed probabilistic spike propagation mechanism through
probabilistic synapses. Conventionally, the weight of a synapse
connecting two neurons in an SNN specifies the amount by which
the membrane potential of the postsynaptic neuron is increased
whenever the presynaptic neuron spikes. Alternatively, inspired
by the ideas in Seung (2003) and Kasabov (2010), we could view
this weight as a measure of how likely it is that a spike will
propagate across the synapse. A probabilistic synapse doesn’t
propagate all spikes generated by its presynaptic neuron to the
postsynaptic neuron. Instead, whenever a neuron spikes, only
a subset of its outgoing synapses with weights above a certain
randomly-chosen threshold propagate the spike. To minimize
the effect of this randomness on a network’s accuracy while
maximizing the time and energy savings, we develop techniques
that generate the random thresholds and perform the synaptic
updates in an optimized manner. To summarize, the specific
contributions of this work are as follows:

• We propose probabilistic spike propagation, an approach
to reduce the cost of spike propagation in rate-coded
SNNs. Probabilistic spike propagation reduces the number
of memory accesses and consequently reduces the time and
energy consumed in evaluating a spiking network.
• We propose techniques that allow probabilistic spike

propagation to be applied to existing SNNs and methods
to optimize the tradeoff between energy and accuracy
degradation.
• We evaluate the approach on a benchmark suite of six SNNs

across five image classification datasets and characterize its
performance. We also develop P-SNNAP, an SNN accelerator
enhanced to support probabilistic spike propagation, on
which we evaluate the reductions in energy consumption
and run-time.

The paper is organized as follows. First, we present a brief
overview of SNN preliminaries in section 2, and motivate the
need to optimize spike propagation. In section 3, we discuss the
key concepts of probabilistic spike propagation and in section
4, we present the P-SNNAP hardware architecture. We present
the results of evaluating the proposed approach in section 6. In
section 7, we present related efforts and highlight the unique
aspects of our work. Finally, section 8 concludes the paper.

2. SNN PRELIMINARIES

The evaluation of a spiking neural network involves three phases,
namely (a) spike injection, (b) spike generation, and (c) spike
propagation, as illustrated in Figure 1. Although the illustration
is for the case of a simple fully connected network here, the
algorithm remains unchanged for arbitrary connectivity patterns.
As shown in the figure, the connection between different neurons
is referred to as a synapse and the neurons on either side of the
connection are referred to as the presynaptic and postsynaptic
neuron, respectively.

A more detailed description of SNN evaluation is presented
in Algorithm 1. The first phase, spike injection, involves
introducing input spikes that initiate activity in the network.
These input spikes can be directly obtained from event-
based sensors, or can be generated from static inputs through
conversion methods. There have been numerous efforts in
developing neuromorphic or spiking sensors (Vanarse et al.,
2016) and spike based benchmark datasets (Orchard et al., 2015;
Hu et al., 2016; Rueckauer and Delbruck, 2016). In many of these
efforts, the inputs are presented as Poisson spike trains (Diehl
and Cook, 2015) or as analog stimuli directly applied to the
membrane potentials of input layer neurons (Rueckauer et al.,
2017).

The second phase, spike generation, is the process of
evaluating each neuron and, based on a mathematical model of
the neuron, determining whether it produces a spike. Neuron
models with varying levels of bio-fidelity have been proposed.
In this work, we use the Integrate-and-Fire (IF) neuron model
for illustration, but the approach is largely independent of
the underlying neuron model. The spike generation step, as
described inAlgorithm 1 (lines 8–15), typically involves fetching
the state variables of the neuron model from memory and
performing some arithmetic operations. In the case of the IF
model, the membrane potential vm is fetched and the bias is
added to it (line 10). Next, it is checked for firing by comparing
it with the threshold voltage vth (line 11). In case of firing,
the neuron ID is pushed into a spike queue (line 12), and the
membrane potential is reset and written back to thememory (line
13). If every neuron in the network is evaluated at every timestep,
the above process will involve at least one memory access
per neuron per timestep. Thus, the number of computations
and memory accesses performed during spike generation are
proportional to the number of neurons.

The final phase, spike propagation, as described in
Algorithm 1 (lines 16–23), is performed in the event of a
neuron spiking. For every spike in the queue, the postsynaptic
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FIGURE 1 | A generic structure of spiking neural networks.

Algorithm 1: SNN Evaluation Scheme

parameters: number of timesteps→ T
number of layers→ N

1 for t← 0 to T − 1 do
2 spikes = get_input_spikes(t) ⊲ injection
3 for layer ∈ net.layers do
4 propagate(layer, spikes) ⊲ propagation
5 spikes = eval_neurons(layer) ⊲ generation

6 end

7 end

8 Procedure eval_neurons
input : Layer to be evaluated L
output : Spikes generated S

9 for neuron ∈ L.neurons do
10 neuron.vm += b
11 if neuron.vm > vth then
12 push(S, n)
13 neuron.vm −= vth
14 end

15 end

16 Procedure propagate
input : Layer to be evaluated L

Spikes to be propagated S
17 for spike ∈ S do
18 pre = spike.presynaptic_neuron_ID
19 target_neurons = postsynaptic(L, pre)
20 for post ∈ target_neurons do
21 post.vm += weight(pre, post)
22 end

23 end

neurons connected to the spiking neuron are identified (line 19)
and all such neurons are updated with the respective synaptic
weights (line 21). This process is referred to as a synaptic update.
It involves fetching the synaptic weight and the state of the
postsynaptic neuron from memory, updating the state with

the weight, and writing the neuron state back to memory. This
amounts to at least two memory reads, one arithmetic operation
and one memory write per synapse per spike per timestep. The
total number of computations and memory accesses for the
propagation step is thus proportional to the amount of spiking
activity (number of spikes) and the number of synapses in the
network. Overall, as the number of synapses in a network far
outnumber neurons, the number of memory accesses associated
with the spike propagation step exceeds that of the other two
phases and it accounts for the dominant share of memory
accesses during SNN valuation.

In Figure 2, we show the fraction of energy consumed
by memory and compute operations during SNN
evaluation on three different hardware platforms, viz. IBM
TrueNorth (Akopyan et al., 2015), SNNAP (Sen et al., 2017), and
PEASE (Roy et al., 2017). It is observed that memory accounts
for the predominant portion of energy consumption in each of
these hardware platforms. Thus, techniques for improving the
energy efficiency of SNNs should focus on reducing memory
energy. Further, as discussed above, spike propagation requires
more memory accesses than the other phases in SNN evaluation.
Hence, to improve energy efficiency of SNN implementations, it
is imperative to develop better spike propagation techniques that
reduce memory accesses.

3. PROBABILISTIC SPIKE PROPAGATION

We propose a probabilistic approach to spike propagation
for reducing the number of memory accesses during SNN
evaluation, and consequently the total energy consumed. It can
be applied to existing spiking networks while causing minimal-
to-zero degradation in recognition accuracy. This section first
outlines the key concepts involved and subsequently describes the
proposed approach in detail.

3.1. Key Concepts
Consider two neurons (labeled i and j, respectively) in an SNN,
that are connected by a synapse. Neuron i is called presynaptic
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FIGURE 2 | Ratio of memory to compute energy on PEASE, TrueNorth, and SNNAP.

and neuron j postsynaptic if the output of i is used to drive the
membrane potential of j. The magnitude of the weight associated
with the synapse is wij, which we will assume (without loss of
generality) to be a real-valued number ∈ [0, 1]. This is a safe
assumption since the effects of the weights are evaluated relative
to a threshold value, and so it is possible to normalize all weights
to this range of magnitudes. Note that negative weights would
correspond to inhibitory synapses, which are modeled in exactly
the same way as excitatory synapses, and only the magnitude of
the weight matters for the discussion that follows.

The weight associated with the synaptic connection as well as
the spiking activity of neuron i dictate the amount of impact it
has on neuron j. We quantify this impact as the total potentiation
of a postsynaptic neuron due to a presynaptic neuron. Due
to the temporal nature of spiking neural networks, the total
potentiation should be measured after incorporating the spikes
from neuron i across all timesteps. Thus, considering a spiking
pattern of Si for neuron i and a synaptic weight of wij, the
total potentiation, Mij, of postsynaptic neuron j by neuron i at
time t is

Md
ij(t) = Ci(t)× wij (1)

where Ci(t) is the total number of times neuron i has spiked
until time t. We term this process of spike propagation as
deterministic, and denote it using the superscript d. It should
be noted here that Md

ij(t) is only the impact neuron i has on the

membrane potential of neuron j, while the spiking behavior of
neuron j itself depends on the neuron model and its potentiation
by other presynaptic neurons.

Instead of potentiating neuron j by wij every time neuron i
spikes, if we apply a weight of ŵij for a random subset of the
spikes, the total potentiation becomes

M
p
ij(t) = Ĉi(t)× ŵij (2)

Ŝi(t) is the random subset of spikes from neuron i that were
propagated to neuron j and Ĉi(t) is the number of spikes in Ŝi(t)
till time t. In other words, we propagate a spike from neuron i to
neuron j with a probability of pij, where

pij = lim
t→∞

Ĉi(t)

Ci(t)
(3)

We term this process of spike propagation as probabilistic, and
denote it by the superscript p.

FIGURE 3 | Illustration: Neurons 1 and 2 sending spikes to 3.

We can define the average potentiation of neuron j by neuron
i as follows:

Mij(t) =
Mij(t)

Ci(t)
(4)

It should be noted that the average potentiation is defined when
there is at least one spike from neuron i. For the deterministic
approach, the average potentiation is equal to the synaptic
weight itself.

Md
ij(t) = wij (5)

On the other hand, for the probabilistic approach corresponding
to Equation (3), the average potentiation is a limit.

lim
t→∞

M
p
ij(t) = pij × ŵij (6)

We hypothesize that, it is sufficient that the average potentiation
for probabilistic spike propagation tends toward the average
potentiation for the deterministic case, for the network to
achieve similar levels of accuracy with both the probabilistic
and deterministic approaches. This can be achieved by carefully
choosing values for pij and ŵijin the probabilistic approach. One
interesting choice is to set pij = wij and ŵij = 1, which is simply
an alternative interpretation of each weight as the probability of
spike propagation. We highlight the effects of such a probabilistic
approach through an example below.

Consider the connectivity pattern illustrated in Figure 3.
Neurons 1 and 2 are spiking sources, which are connected to
neuron 3 through synapses. The behavior of this simple network
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FIGURE 4 | Behavior of the network in Figure 3: (A) spike patterns of neurons 1 and 2; (B) membrane potential of neuron 3; (C) consequent spike pattern of neuron

3; (D,E) average potentiation of neuron 3, by neurons 1 and 2, respectively, with deterministic and probabilistic (pij = wij ;ŵij = 1) spike propagation.

with the deterministic and probabilistic spike propagation
approaches is visualized in Figure 4.

The spike patterns of neurons 1 and 2 are shown in Figure 4A.
The effects of these spikes on the instantaneous membrane
potential of neuron 3 for both the deterministic and probabilistic
approaches are shown in Figure 4B. The resulting output spike
pattern S3 for neuron 3 is shown in Figure 4C. As we can
see, the probabilistic spike propagation causes the behavior of
neuron 3 to slightly differ from that in the deterministic case,

but the average potentiations M13(t) and M23(t), which are in
shown in Figures 4D,E for the two synapses, respectively show
an interesting convergence.

Overall, when the spikes are propagated in a probabilistic
fashion, the instantaneous membrane potential of neuron 3 may
differ from that under deterministic propagation, but as more
and more spikes are generated by the presynaptic neuron, the
average potentiation for the probabilistic case converges to the
deterministic one, which is essentially the synaptic weight. We
introduced randomness into the process of spike propagation in a
network that is otherwise deterministic, and allowed the temporal
nature of the network to average it out.

The crux of our hypothesis is that even though the introduced
randomness alters the instantaneous state of the network, the
variations will average out over time and result in a network-level

equivalence with the deterministic evaluation scheme. In the
following subsections, we describe how to take advantage of this
randomness to develop efficient implementations of SNNs.

3.2. Accelerating Convergence
From Figure 4, we can infer that, given enough spikes, the
average probabilistic potentiation converges to the average
deterministic potentiation, which is the synaptic weight.

lim
Ci→∞

M
p
ij(t)→ wij (7)

Clearly, the number of spikes required for convergence is an
important issue to address. For better convergence, we would
need to process more spikes. The number of spikes is directly
related to the number of timesteps for which the network is
evaluated. Alternatively, probabilistic spike propagation can be
viewed as Monte Carlo sampling for approximating the value
of wij. The number of Bernoulli trials required, which in this
case is the number of spikes, for an approximation with low
relative error is inversely proportional to the probability of
success (Asmussen and Glynn, 2007).

As most weights in neural networks are observed to be small
in value, the probabilities of propagation is going to be small
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FIGURE 5 | Ratio of maximum to median outgoing weight.

for most synapses. And thus, the number of spikes required for
convergence of network behavior is going to be large, which
directly means that the probabilistic approach will require that
the networks be run for more timesteps. Thus, it is desirable
to drive up the probabilities of propagation, which will reduce
the required number of spikes and consequently bring down the
number of timesteps required to converge to the same levels of
network performance.

One solution is to let pij =
wij

wmax
i

and ŵij = wmax
i , where

wmax
i is the maximum weight of all the outgoing synapses of

neuron i. For most of the neurons, wmax
i is lower than 1, which

increases the probability of propagation.
However, the number of outgoing synapses per neuron in

modern networks could be in the thousands and, wmax
i , in

most cases, tends to be an outlier in the weight distribution.
In Figure 5, we see the ratio of wmax

i to the median outgoing

weight wmed
i for all the neurons in a layer of a fully connected

network trained on the MNIST classification task. We observe
that wmax

i is roughly around 5× wmed
i for most neurons, which

means half the outgoing synapses of these neurons in that layer
will have spike propagation probabilities of <0.2, which will
require a higher number of timesteps for the convergence of the
probabilistic approach.

In order to overcome this, we group outgoing synapses of a
neuron into synaptic clusters. Synaptic clusters are simply spatial
groupings of the outgoing synapses from a neuron. For each
synapse, we use the maximumweight of its corresponding cluster

as the normalizer, as pij =
wij

wmax
ib

and ŵij = wmax
ib

, where b is the

cluster to which the synapse between neurons i and j belongs.
This prevents the synaptic weights from getting dominated by
outlier maximum weights, increasing their spike propagation
probabilities and accelerating convergence.

Figure 6 presents histograms for spike propagation
probabilities across synapses in the same layer as Figure 5.
B denotes the number of synaptic clusters in Figure 6. When the

FIGURE 6 | Effect of clustering on probabilities of propagation.

outgoing synapses of each neuron are grouped into eight clusters,
we see that the histogram is skewed toward higher probabilities,
unlike when there is no clustering (B = 1).

It is important to note that, for a given number of
timesteps, the probability of spike propagation controls a trade-
off relationship between cost and performance. The lower the
probability, the lower the number of synaptic updates and poorer
network performance. The higher the probability, the higher the
number of synaptic updates and better network performance.We
explore this trade-off in greater detail in section 6.

3.3. Realizing the Probabilistic Synapse
A probabilistic synapse can be realized by generating a uniformly
distributed random number rb ∈ [0,wmax

ib
] and comparing with

wij. The probability of success of this Bernoulli trial is

rb ∈ [0,wmax
ib

] −→ P(wij > rb) =
wij

wmax
ib

(8)

which is equal to the desired probability of propagation presented
in the previous discussion. Hence, the spike can be propagated on
every synapse that has a weight wij greater than rb.

While this implements the probabilistic synapse, it requires
fetching of the weight for each synapse from memory prior
to the decision of propagation. This can be cheaper than
the deterministic approach, as for the synapses that we don’t
propagate the spikes on, the post-synaptic neurons need not be
updated. It should be noted that this random skipping of synapses
can cause pipeline inefficiencies in a hardware implementation.
In the probabilistic spike propagation process described in
Algorithm 2, we overcome this limitation and show how to
reduce the memory accesses further. It involves a preprocessing
step of organizing synapses into multiple synaptic clusters and
sorting the synapses in each cluster by their weights. Along with
storing the weights of all the outgoing synapses in sorted order,
we also store their indices in rank order (line 5).
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Algorithm 2: Implementation of Probabilistic Spike
Prop.

input : neuron spiked−→ i
parameter: Layer being evaluated−→ L

number of synaptic clusters−→ B
1 for b← 1 to B do

2 number of outgoing synapses−→ Nmax
ib

3 rb = rand(0,wmax
ib

)

4 for k← 1 to Nmax
ib

do

5 h = ranked_indices[i, k] ⊲ Synapse of rank k
6 j = post_index(i, h)
7 if wij > rb then
8 L.neurons[j].vm += wmax

ib

9 else

10 break

11 end

12 end

13 end

Consider that neuron i has spiked. Assume that the weights
of the outgoing synapses of neuron i in synaptic cluster b are
ranked from 1 to Nmax

ib
(line 2). As described in Equation (8), for

each synaptic cluster, we generate one random number rb (line
3). Since the weights are stored in sorted order, every synaptic
update requires reading the index (line 5) and weight (line 7), but
as soon as the comparison fails for one synapse, all the remaining
synapses in the cluster can be skipped (line 10). The index j of
the postsynaptic neuron can be determined with the indices of
the presynaptic neuron and the synapse (line 6), based on the
underlying connectivity pattern.

3.3.1. Optimization: Determining the Termination

Point
We define the termination point of the spike propagation from
neuron i, tp ∈ [1,Nmax

ib
], as the number of synapses withwij > rb.

It is the rank of the smallest weight in the synaptic cluster that is
greater than rb. In the straightforward method of determining tp
described above, note that we need both the actual weight value
and the index of the target neuron, potentially requiring twice the
number of memory accesses.

An alternate approach is to use a cumulative histogram of the
outgoing weights of each neuron in each cluster, indicated by Cib .
The cumulative histogram is a discrete function that gives the
number of values below the input i.e., Cib (rb) gives the number of
outgoing synapses of neuron i in synaptic cluster b with weights
lesser than rb. Therefore, the termination point tp is essentially
Nmax
ib
− Cib (rb). Thus, by generating and storing a cumulative

histogram of the form shown in Figure 7 in a preprocessing step,
as shown in Algorithm 3, we can determine tp through a single
memory access (line 4). Consequently, we can perform synaptic
updates without fetching the synaptic weights.

Another way to look at this is as a way of discretizing the space
of random number generation for rb. For discrete values of rb,

FIGURE 7 | Cumulative histogram of a neuron.

Algorithm 3: Implementation of Probabilistic Spike
Prop.: tp using Cumulative Histogram

input : neuron spiked−→ i
parameter: Layer being evaluated−→ L

number of synaptic clusters−→ B
1 for b← 1 to B do

2 number of outgoing synapses−→ Nmax
ib

3 rb = rand(0,wmax
ib

)

4 tp = Nmax
ib
− Cib (rb) ⊲ Termination point from

cumulative histogram
5 for k← 1 to tp do
6 h = ranked_indices[i, k] ⊲ Synapse of rank k
7 j = post_index(i, h)
8 L.neurons[j].vm += wmax

ib

9 end

10 end

we can store the termination point tp directly and sample from
these points. The number of discrete points correspond to the
number of bins of the cumulative histogram and is a parameter
of concern. It controls the trade-off between memory overhead
and performance. The higher the number of bins, the better the
fidelity of the termination point. The lower the resolution, the
lower the memory overhead. In this work, we have implemented
this approach in the hardware architecture and have studied
its implications on accuracy and cost. The trade-off between
accuracy and memory overhead has been studied in section 6.

In summary, the proposed probabilistic spike propagation
approach reduces the number of synaptic updates,
and consequently the number of memory accesses in
SNNs by introducing randomness into the process of
spike propagation.
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FIGURE 8 | P-SNNAP accelerator architecture.

4. HARDWARE

To evaluate the system-level impact of probabilistic spike
propagation, we develop P-SNNAP, an SNN accelerator based
on SNNAP (Sen et al., 2017). The overall architecture is shown
in Figure 8 and the individual components are described in
detail below.

4.1. Overview
The P-SNNAP architecture consists of three different modules—
the Spike Neural Processing Element (SNPE), the Eval unit
and the global controller. It also contains three types of on-
chip memories—the spike memory, the weight memory, and the
state memory, for storing spikes, weights, and neuronal state
variables, respectively.

In a deterministic SNN evaluation, as performed in SNNAP,
the neurons in every layer are evaluated at each timestep before
moving on to the next timestep. However, it involves loading
the neuronal state variables and weights for each layer into
the on-chip memory repeatedly at every timestep. To avoid
these repeated off-chip memory accesses and increase the reuse
of loaded weight values, we evaluate one layer for the total
number of timesteps before moving on to the next layer. The
spikes generated at each timestep during the evaluation of one
layer are stored in the spike memory and subsequently fetched
during the evaluation of the next layer. Since a large number

of modern deep networks are strictly feed-forward, this layer-
wise evaluation scheme can be applied to reduce the required
buffering. Specifically, all networks evaluated as part of this work
are feed-forward networks. We note that this optimization is
orthogonal to our proposal and is applied to both deterministic
and probabilistic SNN evaluation.

4.1.1. Eval Unit
The Eval unit, similar to the Leak-and-Spike unit in SNNAP,
is the module that performs neuron evaluation. It fetches the
membrane potentials from the state memory, increments it
by the bias value and compares it with the threshold. If the
membrane potential exceeds the threshold, a spike is generated
and communicated to the controller. The updated membrane
potentials are written back to the state memory.

4.1.2. Controller
The Controller orchestrates the functioning of the accelerator. It
has two phases of operation—the first phase controls the SNPEs
and the second phase controls the Eval unit. For each timestep,
the controller goes through both phases. In the first phase, the
controller fetches the spikes generated by the previous layer
from the spike memory and sends them to the SNPEs. Once all
the spikes are sent and the SNPEs finish their operations, the
controller moves on to the second phase, in which the controller
receives spikes from the Eval unit as it evaluates all the neurons in

Frontiers in Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 694402

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Nallathambi et al. Probabilistic Spike Propagation

FIGURE 9 | Timing diagrams illustrating the need for asynchronous spike serving for the probabilistic spike propagation. (A) Synchronous SNPE-deterministic spike

propagation, (B) Synchronous SNPE-probabilistic spike propagation, (C) Asynchronous SNPE-probabilistic spike propagation.

the layer and writes the spikes to the spike memory. Once all the
neurons of the current layer are evaluated, the current timestep is
completed and the controller moves on to the next timestep for
the layer.

4.1.3. SNPEs
Spike propagation is realized by an array of Spike Neural
Processing Elements (SNPEs). The propagation along different
outgoing synapses of neurons are parallelized and balanced
across the 16 lanes of the SNPE array. Each lane has an SNPE
coupled with two blocks of on-chip memory, one each for
membrane potentials and weights. When a layer is evaluated,
the controller fetches the spikes from the previous layer and
sends them to the SNPEs. On receiving a spike, an SNPE uses
the index of the spiking neuron to iterate through its outgoing
synpases. For each synapse, the SNPE calculates the index
of the post-synaptic neuron. This calculation depends on the
connectivity pattern of the layer being evaluated. Next, for each
post-synaptic neuron, its membrane potential and the weight of
the corresponding synapse are fetched. The membrane potential
is updated and written back.

4.1.3.1. Mapping Synaptic Clusters to Lanes
Both the lanes of SNPEs in the architecture and the synaptic
clusters in the probabilistic approach group outgoing synapses
of neurons. Despite the similarity, the grouping is done with
different goals. While deciding the number of lanes, the primary
concerns are inference speed and the required logic area and
size of the on-chip memories, at the hardware level. On the
other hand, while deciding the number of synaptic clusters, the
concerns are computational effort and accuracy.

When the number of synaptic clusters and lanes are chosen
to be equal, a simple direct mapping is possible—the outer loop
in Algorithm 3 is unrolled completely and each SNPE processes
one cluster. It is also possible for the number of clusters and lanes
to be different. When the number of synaptic clusters is less than
the number of lanes, multiple lanes operate on a single synaptic
cluster. When the number of synaptic clusters are more than the
number of lanes, each lane will have to process more than one
cluster, i.e., the outer loop in Algorithm 3 is unrolled partially
and each SNPE will process multiple clusters.

The weight memory in each SNPE lane stores all the
information required to perform probabilistic spike propagation,
including the discretized cumulative histograms for the

corresponding mapped synaptic clusters, the sorted synaptic
indices and the maximum weight values.

4.1.3.2. Asynchronous Spike Processing
In the deterministic propagation of spikes, since the outgoing
synapses of the spiked neuron are distributed equally among the
lanes, each lane ends up performing an equal number of synaptic
updates, which means that all the SNPEs take an equal amount
of time, as shown in Figure 9A. In contrast, in the probabilistic
propagation of spikes, even though the lanes have been assigned
an equal number of synapses, the termination point tp that each
lane comes up with is random and thus, they perform different
number of synaptic updates and end up taking unequal amounts
of time, as illustrated in Figure 9B. Before the controller can serve
the next spike, a number of SNPEs would have been idle. These
bubbles in the compute pattern in turn leads to under-utilization
of SNPEs and compute inefficiencies.

To address the aforementioned challenge, P-SNNAP
implements asynchronous spike processing. Each SNPE is
equipped with a queue as shown in Figure 8. The controller fills
up the queues with spikes. As soon as an SNPE has finished
propagating a spike, it can move on to the next spike from the
queue, as shown in Figure 9C. This allows the probabilistic
approach to be faster and have better compute utilization.

5. EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental methodology and
benchmarks used to evaluate the proposed concepts.

5.1. Benchmarks
The benefits of the proposed approach have been studied across a
range of image classification networks trained onMNIST, SVHN,
CIFAR10, CIFAR100, and ImageNet datasets, as listed in Table 1.
The networks were trained as conventional analog (non-spiking)
deep networks using backpropagation and converted to spiking
networks using the Keras-based ANN-to-SNN conversion and
simulation framework developed by Rueckauer et al. (2017).

We refer to the deterministic evaluation of all synapses in a
network as the baseline (BSL) approach in section 6. On the other
hand, for the Probabilistic Spike Propagation (PSP) approach
in section 6, we empirically choose between deterministic or
probabilistic spike propagation at a layer-granularity for each
network in the benchmark suite, with the goal of iso-timesteps
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TABLE 1 | Benchmarks.

Network Neurons Synapses Params

MNIST-FCN 2 k 1.8 M 1.8 M

MNIST-CNN 112 k 51 M 786 k

SVHN-CNN 130 k 40.7 M 2.3 M

CIFAR10-AllConv 0.2 M 174.9 M 1.4 M

CIFAR100-VGG16 0.3 M 313 M 15 M

ImageNet-VGG16 15 M 15.5 B 138 M

operation. The probabilistic approach is beneficial only for layers
with large numbers of synaptic connections and high activity.
For instance, the CIFAR10-AllConv network in our benchmark
suite is the All-CNN-C network from Springenberg et al. (2014),
that was converted into a spiking network. In PSP, layers 2, 4,
5, and 7 of this network were evaluated with probabilistic spike
propagation, while the remaining layers were evaluated with
deterministic spike propagation. The savings achieved by this
configuration are reported in section 6.

5.2. P-SNNAP Details
The P-SNNAP engine was designed at the Register Transfer
Level and synthesized to the Nangate 15 nm technology using
Synopsys Design Compiler. CACTI (Thoziyoor et al., 2008) was
used to model the memory blocks. A simulator was implemented
in the dynamic, high level language Julia (Bezanson et al.,
2017) to simulate the proposed spike propagation methods
on P-SNNAP. The hardware simulator profiles the memory
accesses and number of cycles and uses the values obtained from
hardware synthesis and CACTI to estimate energy consumption.
The compute logic in P-SNNAP occupies a total area of
0.1 mm2. The compute power consumption is 28.6 mW. A
version of SNNAP without support for probabilistic spike
propagation was implemented to act as the baseline in our
comparisons. We observe that the probabilistic approach incurs
a compute logic area overhead of 12% and compute logic power
overhead of 23.5%. These hardware additions facilitate significant
improvements in time and energy consumed to evaluate SNNs, as
discussed in the following section.

In our implementation, the on-chipmemory in the accelerator
was sufficient to hold the largest layer in the suite of benchmarks.
The on-chip memory can be reduced if needed by employing the
layer-wise evaluation scheme at a finer granularity and dividing
layers into multiple blocks of neurons and evaluating one block
at a time. The memory overhead of the probabilistic approach is
due to the tables of cumulative histograms and these tables are
sparsely accessed at the rate of 1 read per lane per spike. Hence,
these cumulative histogram tables can reside in off-chip DRAM
and fetched on demand if on-chip memory is constrained.

6. RESULTS

In this section, we present results of our experiments that evaluate
the benefits of probabilistic spike propagation (PSP) in SNNs.

6.1. Accuracy vs. Synaptic Updates
In this subsection, we study the trade-off between classification
accuracy of a network and the number of synaptic updates
performed during its evaluation. Specifically, we record the
classification accuracy and number of synaptic updates (averaged
across all test inputs) at each timestep for both the deterministic
and probabilistic propagation schemes. The results for the
CIFAR10 all-convolutional network are presented in Figure 10.
We observe that, for both approaches, accuracy saturates with
increasing timesteps, and hence with increasing synaptic updates.
We also observe that the proposed probabilistic approach
requires significantly fewer synaptic updates than the baseline
to achieve roughly iso-accuracy. In Figure 11, we visualize the
accuracy degradation of PSP as a function of synaptic updates
(normalized to a fraction of the baseline) for the other networks
in the benchmark suite. The accuracy degradation and synaptic
update fraction were calculated with respect to the respective final
values of BSL. The final accuracy values of the BSL networks
are noted in the legend. PSP causes very minimal accuracy
degradations of <0.1% in the networks trained on the MNIST,
SVHN, CIFAR10, and CIFAR100 tasks. The ImageNet-VGG16
network was evaluated on subset of 1,000 images of the ImageNet
validation set and an accuracy degradation of 0.6% was observed.

6.2. Reductions in Synaptic Updates,
Energy, and Run-Time
The benefits of PSP in terms of the reduction in the number
of synaptic updates, total energy, and execution time on the P-
SNNAP architecture are presented in Figure 12. The BSL and
PSP cases were evaluated for iso-timesteps and the corresponding
number of synaptic updates, energy and execution time were
measured. We observe that PSP achieves 2.4–3.69× reduction
in average number of synaptic updates per inference across all
benchmarks. It should be noted that the reduction in synaptic
updates for a specific network depends on the distribution
of weights, which is why there is some variability across the
benchmark suite. These benefits translate to 1.39–2× reduction
in average total energy per inference. Clearly, the bulk of the
energy benefits can be attributed to the reduction in memory
accesses. As a result of the asynchronous spike serving, the
probabilistic spike propagation approach also achieves a 1.16–
1.62× speedup on the P-SNNAP architecture.

6.3. Number of Synaptic Clusters vs.
Accuracy
As discussed in section 3.2, increasing the number of synaptic
clusters causes the number of synapses affected by outlier weights
to go down, and their probabilities of propagation go up.

We observe that this improves the classification accuracy
for iso-synaptic updates. In the extreme case, with 1 synapse
per cluster, probabilistic propagation becomes identical to
the deterministic approach. This dictates that the trade-off
relationship between number of synaptic updates and accuracy
has a sweet spot on the possible number of synaptic clusters.

The all-convolutional CIFAR10 network has been studied to
explore this relationship in more detail. The network is evaluated
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FIGURE 10 | Accuracy vs. Synaptic updates: PSP performance in the CIFAR10-AllConv network.

with different number of synaptic clusters and the accuracy and
average number of synaptic updates per inference image are
measured. The contour plot in Figure 13 visualizes this surface.
Each line in the contour represents the accuracy degradation
for different number of synaptic clusters at a particular level of
computational effort, or, number of synaptic updates.We observe
that across our benchmark suite, the most favorable trade-off is
achieved when the number of synaptic clusters is set to 8 or 16.

It should be noted that this sweet spot is dependent, at a high
level, on the number of synapses per cluster, which is decided
by the size of the network. Ideally, the number of synaptic
clusters could be determined at a per-neuron granularity.
However, in this work, we have chosen it to be a network-level
hyperparameter to reduce the overall search space.

6.4. Resolution of the Cumulative
Histogram
The number of bins used in the cumulative histogram impacts
the fidelity of the random number rb, as it affects the value of the
termination point tp determined from the cumulative histogram.
Therefore, it directly affects the degradation in classification
accuracy. At the same time, reducing the number of bins reduces
the memory footprint. It should be noted that, the number of
accesses to determine tp is only one per lane per spike, irrelevant
of the number of bins used in the cumulative histogram.

We specifically study the effect of the number of bins on
the classification accuracy of CIFAR10 all-convolutional network.
Figure 14 plots the corresponding degradation in recognition

accuracy as a function of the number of bins. As expected, we
observe that the accuracy degradation reduces as the number of
bins is increased.

A cumulative histogram of 50 bins causes a memory overhead
of 23.7% in the CIFAR10-AllConv network. While this can be
considered to be significant, we note the following

• The memory overhead is much lower in larger models like
CIFAR100-VGG16 (10.9%) and ImageNet-VGG16 (1.1%).
• Although the memory footprint is larger, the total number of

memory accesses with PSP is substantially lower.

7. RELATED WORKS

The focus of this work is to improve the energy efficiency of
spiking neural networks by utilizing a probabilistic approach to
spike propagation for reducing the number of memory accesses.
It can be directly applied to pre-trained spiking networks,
without any structural or behavioral modifications. We now
relate this to previously proposed approaches for improving
SNN implementations and highlight the unique aspects of
our approach.

7.1. Custom Hardware Architectures
There have been several custom hardware accelerators
designed expressly to implement spiking networks (Neil
and Liu, 2014; Akopyan et al., 2015; Cheung et al., 2016;
Smaragdos et al., 2017; Davies et al., 2018). They employ
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FIGURE 11 | Accuracy degradation vs. synaptic updates for various benchmarks.

FIGURE 12 | Performance benefits of probabilistic spike propagation on P-SNNAP.
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FIGURE 13 | Impact of varying the number of synaptic clusters for CIFAR10-AllConv.

FIGURE 14 | Optimal resolution of cumulative histogram for CIFAR10-AllConv.
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specialized compute and communication units to match the
computational and communication pattern in SNNs. Our
approach is complementary to such techniques, and can
potentially be realized on these hardware architectures with
some memory overheads.

7.2. Stochastic Techniques
Stochastic computation techniques apply randomness to the
process of computation itself (Shanbhag et al., 2010). Variants
of this approach have been applied to spiking neural networks
(Rosselló et al., 2012; Ahmed et al., 2016; Smithson et al., 2016).
These are mostly orthogonal to the ideas we discuss, since
a different (stochastic) hardware architecture for elementary
compute units can also be incorporated into our approach which
introduces randomness in the process of spike propagation.

7.3. Specialized Neuron Models and
Encoding Schemes
Ahmed et al. (2016) considered a probabilistic model of the
neuron itself, wherein the spike generation mechanism is
stochastic in nature but spike propagation is deterministic.
Bayesian spiking neurons (Deneve, 2008; Paulin and Van Schaik,
2014) apply probabilistic techniques for the neuron models to
perform Bayesian inference. The idea of interpreting synaptic
weights as probabilities of spike propagation has also been
explored in previous efforts (Seung, 2003; Kasabov, 2010; Neftci
et al., 2016). However, these works are primarily algorithmic
efforts focused on developing new functionality or new training
schemes and don’t leverage the randomness to improve energy
efficiency. We, on the other hand, demonstrate how randomness
can be introduced in the spike propagation of existing spiking
networks without changing their intrinsic spiking behavior,
while exploiting their time averaging capabilities. We further
develop techniques to leverage this randomness for improving
the energy efficiency of SNNs. Park et al. (2019) demonstrated
neural information coding schemes that improve the energy
efficiency of SNN evaluation. This is orthogonal to the direction
our work, which improves energy efficiency of existing rate
coding networks.

7.4. Pruning and Approximate Computing
Pruning is a technique used to reducememory footprint of neural
networks. Rathi et al. (2018) propose a pruning algorithm that
works in parallel with STDP SNN learning algorithm on shallow
networks. Kundu et al. (2021) propose a pruning algorithm
that compresses an ANN during training, converts the network
into an SNN, and then retrains the network using a surrogate-
gradient based supervised sparse learning. These works prune the
networks statically and result in a sparse network model. While
these sparse networks can be very lightweight, they lack memory
regularity. Developing hardware implementation for these sparse
and irregular networks is a niche of its own. Probabilistic spike
propagation can be viewed as a stochastic online pruning scheme.
Without requiring any retraining, or losing memory regularity,
probabilistic spike propagation is able to leverage temporality of
SNNs and dynamically reduce memory accesses.

Approximate computing is well-known in the area of signal
processing and neural network hardware, but has seen limited

application to spiking networks. One example is Sen et al. (2017),
where neurons are progressively trimmed from evaluation as
time progresses. Another is Krithivasan et al. (2019), where spike
propagations are reduced by dynamically bundling spike events
across time. Our approach is parallel to these, and could possibly
be combined to further reduce computations.

7.5. Emerging Technologies
Finally, there are approaches that rely on the use of new and
emerging technologies, such as spin-based computing (Sengupta
et al., 2016; Zhang et al., 2016; Srinivasan et al., 2017; Chen
et al., 2018; Sahu et al., 2018), photonics (De Lima et al., 2017;
Chakraborty et al., 2019; Xiang et al., 2019), andmemristors (Afifi
et al., 2009; Serrano-Gotarredona et al., 2013; Al-Shedivat
et al., 2015). These works develop hardware implementations
leveraging intrinsic characteristics of these technologies to exhibit
properties of spiking networks like leakage, stochasticity, or
learning. While this work is focused on the contemporary
generation of CMOS computing, our approaches should be
applicable to emerging computing technologies.

8. CONCLUSIONS

In this work, we introduce probabilistic spike propagation
as a new approach for improving the energy efficiency of
spiking neural networks. The proposed approach reduces the
number of memory accesses during the spike propagation
phase in SNNs by casting spike propagation as a probabilistic
process. We show that the temporal nature of SNNs allows the
network to regain any accuracy loss caused by this approach.
We successfully apply the technique on pre-trained spiking
networks without any network modifications or retraining and
demonstrate significant reductions in the number of synaptic
updates performed during evaluation whilemaintaining near iso-
accuracy performance levels. We further develop a new hardware
architecture, P-SNNAP, to realize probabilistic spike propagation
in hardware and show that the proposed approach achieves
considerable execution time and energy savings when compared
to deterministic spike propagation.
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