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Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture with

oscillators representing neurons and information encoded in oscillator’s phase relations.

In an ONN, oscillators are coupled with electrical elements to define the network’s

weights and achieve massive parallel computation. As the weights preserve the

network functionality, mapping weights to coupling elements plays a crucial role in

ONN performance. In this work, we investigate relaxation oscillators based on VO2

material, and we propose a methodology to map Hebbian coefficients to ONN coupling

resistances, allowing a large-scale ONN design. We develop an analytical framework

to map weight coefficients into coupling resistor values to analyze ONN architecture

performance. We report on an ONN with 60 fully-connected oscillators that perform

pattern recognition as a Hopfield Neural Network.

Keywords: oscillatory neural network, VO2 device, coupled relaxation oscillators dynamics, Hopfield Neural

Network, Hebbian learning rule, pattern recognition

1. INTRODUCTION

Coupled oscillators have been studied for decades by scientists to describe natural phenomena
(Winfree, 1967) such as the synchronization of pacemaker cells responsible for the heart beating,
the synchronous behavior of insect populations, or to model neuronal activity. For instance,
oscillator interactions have been shown to describe memory mechanisms and other cognitive
processes in the brain (Fell and Axmacher, 2011). To characterize this variety of natural oscillations,
several mathematical models (Acebrón et al., 2005; Izhikevich and Kuramoto, 2006) have been
developed to explain the synchronization and phase relations in groups of coupled oscillators.
Meanwhile, their massive parallel computing capability has been proved by Hoppensteadt and
Izhikevich (2000), Vassilieva et al. (2011), and Parihar et al. (2017) and has raised interest in
designing ONN as hardware accelerators for Artificial Neural Networks (ANN) by encoding
neurons’ activation in the phase between oscillators. Different types of ONN have since been
developed using PLLs (Hoppensteadt and Izhikevich, 2000) or oscillators in CMOS technology
(Maffezzoni et al., 2015a, 2016; Jackson et al., 2018), demonstrating pattern recognition or
resolution of some optimization problems like the Traveling-Salesman-Problem (Endo and
Takeyama, 1992). However, to design a competitive ONN at a large scale, a design framework is
needed to establish a formalism on how to perform computations with ONN and also compare its
energy efficiency with ANNs running on digital processors.

Researchers have developed oscillators by using non-linear devices such as spin-torque-
oscillators (Raychowdhury et al., 2019) or with materials presenting a hysteresis resistive state
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to induce electrical oscillations when properly biased (Sharma
et al., 2015; Wang et al., 2017). A compact device that transitions
frommetallic to insulating state (MIT) can be manufactured with
vanadium dioxide (VO2) (Corti et al., 2018), and has recently
become an interesting candidate to design energy-efficient
relaxation oscillators. Moreover, coupled-VO2-based oscillators
have been experimentally validated for various applications such
as image saliency detection (Shukla et al., 2014), graph coloring
(Parihar et al., 2017), filters in Convolutional Neural Networks
(Corti et al., 2021) and implementing Hopfield Neural Networks
(HNN) for pattern recognition (Corti et al., 2020).

In an HNN defined by Hopfield (1982), every neuron
is connected to all the others, and synaptic weights are
computed with the Hebbian rule (Hoppensteadt and Izhikevich,
2000). However, setting the right coupling element between
oscillators in ONNs remains a challenge (Todri-Sanial
et al., 2021). Given N fully-coupled VO2-oscillators, it is
yet unknown how to transform the coefficients obtained
analytically via the Hebbian learning rule to coupling
resistor values among oscillators. Further, how can one
interpret the coefficient signs Wij such as positive or
negative values?

For weakly coupled oscillators with sinusoidal waveform,
one can use the models that exist in literature (Izhikevich
and Kuramoto, 2006; Maffezzoni et al., 2016) for synaptic
design. However, it is more difficult for non-linear relaxation
oscillators as there is no direct mapping between models and
hardware. Two VO2-oscillators coupled by a capacitance or a
resistance have been studied (Maffezzoni et al., 2015b; Parihar
et al., 2015), but to the best of our knowledge, there is not
yet a formalism to map weights to coupling elements in a
larger network. This formalism is a crucial step to allow large-
scale ONN design exploration. A greedy approach would be
to tune the coupling elements corresponding to the most
negative and most positive weights and linearly interpolate all
the other weight values. However, this would be impractical.
It would require repeated simulations and re-tuning coupling
resistances when changing any oscillator parameter; hence, it is
not suitable for large-scale ONN design. Parihar et al. (2015)
proposed to use capacitors or resistors to implement a negative
or a positive weight, respectively. However, it would imply
using twice as many components to emulate a complete signed
synaptic range.

In this work, we propose a mathematical framework to
map both negative and positive Hebbian coefficient values to
ONN coupling resistances, as illustrated on Figure 1. We first
present a single VO2-oscillator followed by the dynamics of two
coupled oscillators. Then, we show that adding switches between
oscillators and coupling elements enhances the ONN dynamics
control. Based on this simple architecture, we present the ONN
computation style and how coupling resistances set the ONN
memory expressed in different phase states. Next, by merging
oscillators’ dynamics with HNN formalism, we introduce the
ONN mapping function that maps Hebbian coefficient values to
coupling resistance values. Finally, we report on the architecture
and mapping results by simulating 60 coupled VO2-oscillators
for pattern recognition.

FIGURE 1 | (A) Illustration of ONN as a Hopfield Neural Network (HNN). HNN

binary activations are translated in the phase relation between oscillators and a

reference (here the first oscillator). ONN stores patterns via weights between

the oscillators. Patterns can be retrieved if the input pattern is sufficiently close

to the stored pattern. (B) The proposed mapping function to map any weight

to a coupling resistance, facilitating large scale ONN design.

2. MATERIALS AND METHODS

2.1. Description of the ONN Building Blocks
2.1.1. General Properties
Unlikemost ANNswhere signals of interest are amplitudes, ONN
consists of N VO2-oscillators coupled by resistances where the
final result is given by N-1 phase relations to a reference oscillator
(Corti et al., 2018). Despite this difference, there are several
aspects common to any ANN that motivate our ONN study:

• The network is composed of neurons (oscillators) having input
and output nodes.

• The activation function between the oscillator input and
output is non-linear. For more than two oscillators, the
activation function is unknown but bounded as the output
phase difference of neuron i 1φout

i is in the range [0; 180◦].
• ONN has a memory (coupling resistances) and can therefore

be trained to achieve specific functionality.

We use these properties to implement an HNN (Hopfield, 1982)
by encoding its binary outputs in the ONN phase as shown
in Figure 1A. Conveniently, we can represent each oscillator’s
output as a black pixel if 1φout

i = 180◦ or as a white pixel if
1φout

i = 0◦.

2.1.2. VO2 Device
Vanadium dioxide is a material which presents temperature-
driven phase change transitions. At room temperature, it remains
semiconductor (insulating state) with a monoclinic crystal
structure and transitions to a rutile metallic state when the
temperature reaches a threshold (Corti et al., 2021). VO2 presents
an hysteresis behavior as it needs to reach a lower temperature
threshold to transition back to the insulating state (Figure 2A).

When a VO2 device is in series with a biasing load
(Figure 2B), the voltage drop V across the device induces Joule
heating which can trigger the insulating to metallic transition
(IMT). To obtain the VO2 IV characteristic, we sweep the supply
voltage which triggers IMT and MIT when V ≥ VH and V ≤
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FIGURE 2 | (A) VO2 resistance vs. temperature. RVO2
axis is in logarithmic

scale. (B) VO2 oscillator circuit (C) VO2 I-V curve showing the device

hysteresis behavior. When its voltage reaches a threshold VH, it transitions

from insulating to the metallic state. To transition from a metallic to insulating

state, V must be lower than the threshold VL. (D) If the device is biased in its

Negative Differential Resistance region (NDR), its state alternates between the

metallic and insulating state, producing electrical oscillations.

VL, respectively. The VO2 hysteresis behavior appears in the IV
characteristic with a typical Negative Differential Region (NDR)
suitable to bias the device and produce oscillations (Figure 2C).

In this work, we use the VO2 compact model fromMaffezzoni
et al. (2015b) which reproduces the VO2 hysteresis along with
continuous and abrupt transitions between the two states. The
VO2 hysteresis behavior is conceptually emulated by an amplifier
with positive feedback that charges or discharges a RC circuit
when the VO2 is in metallic or insulating state, respectively. The
voltage Vc across the capacitor commands the VO2 conductance
GVO2 as:

GVO2 (t) =
1− Vc(t)

Rins
+

Vc(t)

Rmet
(1)

Where Rins and Rmet are the VO2 resistances in insulating
and metallic state, respectively. The dynamics of the VO2

conductance is given by the RC circuit where τ0 is its time
constant modeling the transition time of the VO2:

τ0
dVc(t)

dt
+ Vc(t) = 1− V0(t) (2)

V0(t) is the output of the positive feedback amplifier (gain α) and
is expressed as:

V0(t) =
1

2

[

1+ tanh

(

2α
(

(VH −VL)V0(t)+VL−V(t)
)

)

]

(3)

2.1.3. VO2 Oscillator Circuit and Dynamics
We bias the VO2 device with a series resistor RS to obtain a
compact relaxation oscillator. To produce oscillations, the load
line IL set by VDD and RS must intercept the VO2 I-V curve in
its NDR to obtain an unstable fixed point (Figure 2C). The VO2

TABLE 1 | List of parameters used for simulations in this work.

Parameter Value

VDD 2.5 V

RS 20 k�

CP 500 pF

Rins 100.2 k�

Rmet 0.99 k�

VL 1 V

VH 1.99 V

α 200

τ0 10 ns

V+ = VDD − VL 1.5 V

V− = VDD − VH 0.501 V

Tosc 21.6 µs

device state hence alternates between the metallic and insulating
state. When the VO2 device is in the insulating state, the parallel
capacitance CP at the output node discharges through RS until
the VO2 voltage reaches VH and transitions to the metallic state.
Then,CP charges through the VO2 device until its voltage reaches
VL and a new cycle begins (Figure 2D).

We use circuit parameters depicted in Table 1. In this case,
the load resistance RS is 20 times larger than the VO2 metallic
resistance Rmet ; thus, the capacitance charge time is much faster
than its discharge (Figure 2D).

Oscillator’s dynamics can be described by Kirchoff’s law as:

CP
dVout(t)

dt
=
(

VDD(t)− Vout(t)
)

GVO2 (t)−
Vout(t)

RS
(4)

Note that despite the first order differential equation, oscillations
can occur as Equations (1–3) describe the hysteresis behavior
of GVO2 (t). To solve the oscillator dynamics, we start from an
initial insulating VO2 state and solve numerically on Matlab the
system of Equations (1–4) by using Euler’s method and Newton-
Raphson’s algorithm for non-linear Equation (3). Figure 2D

shows an example where Vout(t = 0) = 0 V , GVO2 (t = 0) =

1/Rins, and VDD(t = 0) = 2.5 V .

2.1.4. Initialization of Two Coupled Oscillators
Two coupled oscillators represent the smallest ONN and serve
as the building block for large-scale ONN. To provide input to
the ONN, we delay the second oscillator VDD starting time with
respect to the first oscillator (reference oscillator) to set an initial
phase relation between them. Assuming oscillators have the same
period Tosc, we can translate the input delay 1tinit as an initial
phase relation as:

1φinit =
1tinit

Tosc
2π (5)

However, if the two oscillators are always connected, they might
have different oscillation periods during initialization. Therefore,
their initial phase relation cannot be represented as a proportion
of Tosc (5). For example, as shown in Figure 3A, the second
oscillator starts 1tinit = 0.5 Tosc after the first one to set an
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FIGURE 3 | (A) Two oscillators are coupled by a resistance RC=10 k� without coupling switches in between. VDD2 is turned-on 0.5Tosc after VDD1 to set an initial

phase of 180◦. However, for t <0.5Tosc the first oscillator period is decreased due to the shunt RC at its output node, and we cannot control the initial phase

difference. The two oscillators are in-phase after convergence. (B) Two oscillators coupled with resistance RC=10 k� and coupling switches between isolate the

oscillators during initialization. This time, the 0.5Tosc input delay sets desired 180◦ initial phase state. Here, the switches are closed at ton = 0.5Tosc + tc such that

Vout2(ton) = V+. The two oscillators converge to an 180◦ phase state relation.

initial phase relation 1φinit = π . For t < 1tinit , the second
oscillator is off, and its output node is floating. Therefore, during
this time, the equivalent load resistance of the first oscillator is
RS//RC, which induces a shorter period of oscillation T′

osc < Tosc

and hence no control on the initial phase.
We introduce switches between each oscillator and coupling

elements as in Figure 3B to tackle this lack of control. We let
each oscillator switch freely with a known oscillation period Tosc

before coupling them at ton. Their dynamics can be expressed by
Equation (4) and the initial conditions will be known at ton. ONN
initialization is improved at the cost of one additional switch per
oscillator, which can be achieved with a transfer gate.

2.1.5. Dynamics of Two Coupled Oscillators
To predict the output phases and demonstrate ONN ability to
store information, we express the dynamics of the two coupled
oscillators using Kirchhoff’s laws:

{

CP
dVout1(t)

dt
=
(

VDD1(t)− Vout1(t)
)

G1
VO2

(t)− Vout1(t)
RS

+ Ic1

CP
dVout2(t)

dt
=
(

VDD2(t)− Vout2(t)
)

G2
VO2

(t)− Vout2(t)
RS

+ Ic2
(6)

Currents are Ic1 = −Ic2 representing the coupling element’s
current flow. As for the single oscillator case, we numerically
solve (Equation 6) along with VO2 (Equations 1–3). Figure 4
shows a simulation where VDD2 is turned on 0.1Tosc after VDD1

which initializes a light-gray pixel for oscillator 2 input image.
For a small coupling resistance, RC=10 k�, ONN converges to
a stable state with both oscillators in-phase (0◦,0◦). Whereas,

for RC=100 k�, ONN converges to out-of-phase (0◦,180◦). In
the next subsection, we study the role of RC on ONN memory
and investigate how to retrieve a stored pattern by applying an
input delay 1tinit . This formulation is the core of our proposed
mapping function to translate Hebbian coefficients to ONN
coupling resistances.

2.1.6. Memory of Two Coupled Oscillators
We solve numerically (6) and extract the output phase relation
between oscillators. Figure 5A shows the simulation results.
As already observed by Corti et al. (2018), a large coupling
resistance RC > 40 k� induces oscillators in out-of-phase
relation (0◦, 180◦) for any input delay, whereas a small coupling
resistance RC < 10k� aligns oscillators in-phase (0◦, 0◦) for any
input delay.

In contrast, we examine the region between these two ranges,
highlighted in the center of Figure 5A. We observe that for
10k� ≤ RC ≤ 40k� both states co-exist and oscillators store two
patterns (0◦, 0◦) and (0◦, 180◦) that can be retrieved by adjusting
the input delay. The line transition function between in-phase and
out-of-phase regions represents our analytical function for ONN
memory with respect to coupling resistance and initialization. It
is defined as:

ζ :RC −→ 1ttransit (7)
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FIGURE 4 | (A) Two identical VO2 oscillators are coupled with a resistance RC
and switches. VDD2 starting time and coupling time ton are delayed by 0.1Tosc
with respect to the first oscillator, representing a light-gray second pixel as

ONN input. (B) Output voltages for RC = 10k�: the oscillators converge to an

in phase state (0◦, 0◦) and the corresponding output pattern corresponds to

two white pixels. (C) Output voltages for RC = 100k�: the oscillators are

out-of-phase (0◦, 180◦) and the output pattern corresponds to a white and a

black pixels.

With 1ttransit the initial delay such that:

1ttransit = ζ (RC) |

{

1tinit < 1ttransit ⇒ 1φout = 0◦

1tinit ≥ 1ttransit ⇒ 1φout = 180◦

(8)
To confirm the existence of ζ (RC), we emulate VO2 oscillators
with off-the-shelf components on a Printed Circuit Board (PCB)
and we reproduce the experiment of two coupled oscillators.
The relaxation oscillator circuit consists of an inverting Schmitt
trigger (Schmitt, 1938) Operational Amplifier (OPA) that
implements the VO2 hysteresis behavior (Figure 5B). The OPA
saturates to +Vsat and −Vsat while the 1.8 nF output capacitor
charges and discharges, respectively. Figure 5C shows the voltage
across the output capacitor for a decoupled oscillator. Similarly to
a VO2 oscillator, the OPA transitions to another state when the
voltage across the output capacitor reaches V+ or V−. The 5.6
k� resistor implements the metallic VO2 resistance, whereas the
100 k� resistor corresponds to the load RS. For a fixed oscillating
period of Tosc=200 µs, we vary RC and we measure 1ttransit
values that define the experimental transition function ζ (RC)
(Figure 5D). There is a good match between experimental ζ (RC)
data points and the analytical transition function derived in next
subsection. Such formulation ζ (RC) is of interest as it represents a
closed-form representation of ONNmemory instead of repeating
numerical simulations for different oscillator parameters.

2.1.7. Phase Transition Function for Two Coupled

Oscillators
The phase transition function has already been observed
(Nez et al., 2021) but to the best of our knowledge, no

closed-form expression has ever been reported. To obtain
the transition function, we solve node voltage equations
analytically for two coupled oscillators during initialization (see
Supplementary Material). We derive oscillator outputs as:

1V = Vout2 − Vout1 =
(

V0
out2 − V0

out1

)

exp(−
t

τ ′
) (9)

V0
out1 and V0

out2 are the initial voltages when oscillators are
coupled and τ ′ is defined in Supplementary Material Equation
(S18). Equation (9) describes both oscillator output voltages
attracted via the coupling resistance RC. If the coupling is strong
enough (small RC), both oscillators are rapidly pulled together
with a speed determined by τ ′. If 1V < ǫ (ǫ defined in
Supplementary Material Equation S22) before reaching the VO2

thresholdV−, then both oscillators will transition to low resistive
states, and the exponential term in Equation (9) will keep the two
voltages locked. This concept is illustrated in Figure 6A when
both oscillators are in-phase. However, ifVout1 reachesV

− before
Vout2 such that 1V > ǫ as in Figure 6B, the first oscillator
transitions to a low resistance state (metallic state) while the
other oscillator is still in high resistance state (insulating state).
The two oscillators are then in opposite states, and this leads to
out-of-phase relation.

Thus, to obtain the transition function ζ (Equation 7),
we study the case when both 1V = ǫ and Vout1 =

V− conditions are fulfilled (see Supplementary Material for
details). By combining (Equations S17, S24, and S25 in
Supplementary Material) we derive coupling resistance as:

RC = 2
RSRins

RS + Rins

log

(

V−−V ins
std

V0
out1/2+V0

out2/2−V ins
std

)

log

(

ǫ(RC)

V0
out2−V0

out1

)

− log

(

V−−V ins
std

V0
out1/2+V0

out2/2−V ins
std

)

(10)
where V ins

std
is defined in Supplementary Material Equation (S5).

Finally, we introduce (Equation S9 in Supplementary Material)
into Equation (10), and obtain a relation between RC and
1ttransit . Note that ǫ is a function of RC, thus we cannot solve
(10) analytically. Instead, we numerically solve (Equation 10)
usingNewton-Raphson’s algorithm for1ttransit values.We finally
obtain RC values that describe the inverse of the transition
function as:

ζ−1
:1ttransit −→ RC (11)

Transition function ζ is plotted as the curve line (red line)
in Figure 5A, and there is an excellent fit between our
analytical model, simulations (transition region between dark
and light green in (RC,1tinit) plan) and the transition curve
obtained experimentally with off-the-shelf relaxation oscillators
(Figure 5D). In addition, we can now extract the coupling
resistor R0 that corresponds to a neutral synaptic connection
W = 0. As by definition, both output phase states can equally
occur forW = 0, we extract R0 as:

R0 = ζ−1(1tinit = Tosc/4) (12)
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FIGURE 5 | (A) Plot showing the phase relation between two oscillators for every set of parameters (RC,1tinit ). As expected, small coupling resistances tend to pull

the oscillator phase together, whereas large coupling resistances push the phase away. The green region shows the coupling resistance range 10k� < RC < 40k� in

which two patterns (0◦ and 0◦) and (0◦ and 180◦) are memorized and can be retrieved by adjusting the input delay. The red curve is our analytical model describing the

transition between the two phase states in the plan (RC,1tinit ), and plays a major role in the ONN ability to memorize patterns. (B) Experimental set-up of two coupled

relaxation oscillators based on MCP6001 OPAs. We delay VG2 with respect to VG1 by 1tinit to set the initial phase, and we close SW after initialization. (C)

Experimental oscillating waveform and equivalent circuits during charge and discharge of the output capacitor. (D) Experimental phase transition curve and analytical

model in plain line.

Finally, based on the transition function, we predict the final
phase relation as:

1φout = 180◦
(

sign
(

RC − ζ−1(1tinit)
)

+ 1

)

/2 (13)

Analogous to ANNs, Equation (13) can be thought of
as oscillator’s activation function. Because, it provides the
oscillator’s output phase based on its input phase (set by 1tinit ;
Equation 5) and the weight implemented by RC.

2.1.8. Impact of VO2 Parameters Variations on the

Phase Transition Function
Fabricating reliable VO2 devices is challenging (Corti et al.,
2019) and ONN experiments with VO2 are currently limited to
few devices because of device variability (Shukla et al., 2016).
Here, we study the impact of VO2 variability on the ability to
phase-lock and on the synaptic range. The transition function

ζ (RC) defines the boundary between two phase regions, and
allows direct identification of the neutral coupling resistor R0
corresponding to the weight W = 0 (Equation 12). Thus, we
use ζ and R0 as metrics to assess the impact of VO2 parameters’
variations. We apply relative variations on VO2 parameters one
at a time from –20% up to +20%, as shown in Figure 7A.
Note that we vary VH from –4% up to +4% only, as for larger
positive variations oscillations do not occur (load line crosses
the insulating branch and forms a fixed point). For all cases,
we discretize the whole input space (RC,1tinit) and perform
multiples transient simulations to extract the new phase regions.
Then, we numerically solve (Equation 10) with the new sets of
parameters and we verify that the transition function ζ matches
the phases boundary obtained via transient simulations, as in
Figure 5A.

Figure 7A shows the set of phase transition curves obtained
when varying Rmet , Rins, VL and VH . Note that our current
formalism assumes matched oscillators and hence, variations are
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FIGURE 6 | Two identical oscillators coupled by RC = 12k�. (A) The second oscillator is turned on at 0.2 Tosc after the first one. By zooming on the waveform when

the first oscillator reaches V−, we observe a voltage difference 1V < ǫ. Therefore, the oscillators converge to an in-phase state. (B) The second oscillator is turned-on

0.3 Tosc after the first one. In this case, we observe a voltage difference 1V > ǫ and the oscillators converge to an out-of-phase state.

applied to both coupled oscillators. For all curves, the maximum
1tinit value corresponds to an input delay of Tosc/2 and shows the
oscillation period variation (highlighted in green in Figure 7A).
Finally, we extract R0 for each configuration (Figure 7B). We
observe that variations on the IMT point (defined by Rins and
VH) induce the largest Tosc and R0 variations. With our biasing
set by RS and VDD (Table 1), the most sensitive VO2 parameter
is VH as +4 and –4% VH variations induces +40 and –20%
R0 variations, respectively. As the dynamic of the voltage V
across the VO2 device is given by CP dV/dt = IL − I,
we believe this sensitivity is mainly due to the load line that
passes very close to the IMT point on the VO2 IV characteristic
(Figure 7C). In this case near IMT, IL(VH) − I(VH) is small
and the voltage “slows down” and is very sensitive to any IMT
variation. When applying –4% up to +4% VH variations, the
oscillating period Tosc almost doubles (same remark with –20
and +20% Rins variations). Ideally, we would then place the load
line at equal distances between MIT and IMT points (I(VL) −
IL(VL) ≈ IL(VH) − I(VH)) to homogenize the impact of VO2

variations. However, we show in the next subsection that such
biasing would prevent binary phase locking and that resistively
coupled oscillators need a very asymmetric waveform to phase-
lock to 180◦.

2.1.9. Impact of Oscillators’ Waveform Shape on ONN

Phase-Locking
Oscillators’ circuit parameters listed in Table 1 influence the
oscillating frequency, amplitude and waveform shape. The
oscillating waveform shape has a major influence on ONN
phase-locking capability and has been studied for PLL-based
ONNs by Hoppensteadt and Izhikevich (2000). Here, we study
the impact of the oscillating waveform shape on the capability
for pairs of oscillators to lock to the 180◦ phase state. We
characterize the oscillating waveform shape with the ratio
τd/τc, where τd and τc are the discharging and charging
time constant, respectively (defined in Supplementary Material

Equations S6, S7). Our transition function ζ links ONN phase-
locking properties to the metric τd/τc, as ζ only depends on
oscillators’ internal parameters.

We reproduce the previous simulation with two coupled
oscillators to extract the output phase regions for different load
resistances RS that set τd/τc (Figure 8A). Note that we also could
have varied VO2 parameters such asRmet , but instead we consider
the same device. For τd/τc = 3.7 (RS = 3 k�), we observe that
the two oscillators cannot lock to 1φout = 180◦ for small 1tinit
values. In other words, the phase state 1φout = 180◦ stored by a
large RC cannot be fully recovered. This can be an issue for some
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FIGURE 7 | (A) Phase transition curves ζ (RC) when varying VO2 parameters Rmet, Rins, VL from –20 to +20%, and VH from –4 to +4% for circuit parameters listed in

Table 1. Left hand side of the transition curve corresponds to inputs (1tinit,RC) inducing 1φout = 0◦ whereas right hand side corresponds to 1φout = 180◦ phase

region. VH and Rins variations correspond to IMT point variations and have the most detrimental impact on the transition function variations. The oscillating period

almost doubles due to IMT variations. (B) Variations of the neutral synaptic resistance R0 with respect to VO2 parameters’ variations. R0 is very sensitive to VH as –4

and +4% VH variations induce –20 and +40% R0 variations, respectively. (C) The ONN sensitivity to IMT point is mainly due to the load line IL = (VDD − V )/RS placed

close to IMT point. Any IMT variation greatly impacts the oscillators’ dynamics defined by CP dV/dt = IL − I.

pairs of oscillators that need an out-of-phase relationship for any
input delay.

If τd/τc = 59 (RS = 20 k�), the charging time is much smaller
than the discharging time and the oscillating waveform becomes
very asymmetrical. Interestingly, this configuration enlarges the
180◦ phase region and 1φout = 180◦ is reachable for any
1tinit value for large RC. Our analytical model ζ (RC) predicts the
correct boundary between the two phase regions (red plain lines
in Figure 8A).

We study a simple case where 4 VO2-oscillators are coupled
by resistances to store a single pattern (Figure 8B). Based
on transition functions obtained for 2 coupled oscillators, we
compute coupling resistances R+1 and R−1 that correspond to
synaptic coefficients +1 and –1, respectively. We set R+1 and
R−1 around R0 as R+1 = ζ−1(Tosc/4 + Tosc/8) and R−1 =

ζ−1(Tosc/4 − Tosc/8), respectively. Then, we scale coupling
resistances as 3xR+1 and 3xR−1 as every oscillator is connected
to 3 others (Figure 8B). We notice that ONN with τd/τc = 59
retrieves the correct stored pattern whereas ONN with τd/τc =

3.7 produces a wrong output (Figure 8C). In the latter case, we
observe that all oscillators converge to an in-phase relationship.
We believe this wrong behavior is mainly due to the small τd/τc
value for which it is less likely ONN converges to 1φout = 180◦,
as described by the transition function ζ .

Figure 9 shows results of the same experiment for τd/τc varied
from 1.8 up to 59 (obtained for 2 k� ≤ RS ≤ 20 k�). We
observe that τd/τc > 20 is required to retrieve the correct pattern.

Interestingly for τd/τc ≤ 20, there are cases where the fourth
oscillator locks to a phase state around 270◦. 270◦ phase value is
also obtained in the phase plot between two coupled oscillators,
such as on the left-hand side of Figure 8A. This phenomenon
would allow more than two phase values but is not captured by
our current formalism. In contrast, we set τd/τc to high values (59
in this work) to ensure binary 0◦ and 180◦ phase locking.

To implement a large-scale neural network such as HNN with
an ONN, we need a systematic approach to map the weights to
ONN coupling resistances. In the next section, we exploit some
HNN features and our knowledge of two coupled oscillators to
propose amapping function.

2.2. ONN Weight Mapping
2.2.1. Applying HNN Formalism to ONN
We exploit HNN formalism to build an analogous representation
in ONN. For equivalence, we treat HNN neurons similar to ONN
oscillators. Such as, we consider a neuron i with two possible
states Si that can be thought of as equivalent to ONN oscillators
with 0◦ or 180◦ phase relations as:

Si =

{

+1

−1
⇐⇒ 1φi =

{

0◦

180◦
(14)

In HNN, each neuron output state is dynamically determined by
a sigmoid activation function g(x) =

(

tanh(βx) + 1
)

/2 (with
β a positive parameter) (Gerstner et al., 2014) and shown in

Frontiers in Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 694549

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Delacour and Todri-Sanial Mapping HLR to ONN Coupling Resistances

FIGURE 8 | (A) Phase plots showing 1φout with respect to 1tinit and coupling resistance RC between two oscillators. For τd/τc = 3.7, 180◦ phase state is not

reachable for low 1tinit values. In contrast for τd/τc = 59, 180◦ phase-locking can occur for any 1tinit value for large RC. The red line is our analytical model ζ (RC) and

captures well the boundary between phase regions. (B) Four coupled oscillators store a pattern composed of 2 white and 2 black pixels. Positive and negative

weights are mapped to 3xR+1 and 3xR−1, respectively. (C) ONN inference for τd/τc = 3.7 and τd/τc = 59. The first configuration leads to a wrong in-phase

relationship for all oscillators. In the latter case, ONN retrieves the correct stored pattern.

Figure 10. For a neuron i, g gives the probability to reach one
of the two states at t+1t for a given input weighted sum hi(t) as

P

(

Si(t + 1t) = +1 | hi(t)

)

= g
(

hi(t)
)

(15)

with

hi(t) =

N
∑

j=1

Wij Sj(t) (16)

In ONNs, Equation (15) would represent the probability of
oscillator i to be in-phase with the reference at time-step 1t.
For two oscillators case, the weighted input sum of the second
oscillator is given by:

h2(t) = W21 S1(t) = W21 (17)

Then, the probability of the second oscillator to be in-phase with
the reference can be derived by Equations (15) and (17), as:

P

(

S2(t + 1t) = +1 | h2(t)

)

= Pinphase = g(W21) (18)

2.2.2. Mapping Function
Here, we apply the above definitions to derive amapping function
using the HNN formalism, as:

µN :Wij −→ Rij (19)

where, normalized weights are −1 ≤ Wij ≤ 1 and N is ONN
size. Before scaling to N oscillators, we derive a mapping function
µ2 for two coupled oscillators. The unifying step between HNN
and ONN is the recasting of the phase transition curve, ζ as the
probability Pinphase for a given coupling resistance RC. In ONNs,
the input delay 1tinit can be considered as a uniform random
variable taking values between 0 and Tosc/2 and the transition
function ζ would give the probability Pinphase (for example for
RC > 10k�):

Pinphase = ζ (RC)
2

Tosc
(20)

and by Equations (18) and (20), we finally obtain

µ2(W21) = RC = ζ−1

(

Tosc

2
g(W21)

)

(21)

This mapping function is represented in Figure 11 for three
different values of the sigmoid parameter, β . We see that this
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FIGURE 9 | (A) Training pattern stored by the ONN. (B) ONN input pattern.

(C) Output phase with respect to τd/τc. For τd/τc < 7, all oscillators converge

to a wrong in-phase relationship. For 7 ≤ τd/τc < 20, the fourth oscillator

locks to a 270◦ phase state. A very asymmetrical waveform such that

τd/τc ≥ 20 leads to a correct binary phase-locking.

FIGURE 10 | Model of artificial neuron used to construct our mapping function

µN. The neuron’s output state Si (t) is either +1 or –1 and is dynamically

updated at each time-step 1t according to the sigmoid activation function g.

Here, g gives the probability to have one of the two states at t+ 1t for a given

input weighted sum hi (t).

parameter sets the range of RC and could be adapted for different
ONN sizes. Interestingly, we notice that |1W21/1RC| is quite
large for a positive weight, whereas it is much smaller for a
negative one. For example, we see in Figure 11B that the function
ζ−1 is a logarithmic function; thus, any small variation in 1RC
around 10k� is likely to change the final phase state outcome.
Whereas, for large RC, the two oscillators are almost always
out-of-phase. This asymmetry in ζ−1 comes from the oscillator
waveform type, as ζ−1 is derived from Equation (10), which
is specific for relaxation oscillator waveform type. Hence, we
expect some change for other types of waveforms, such as linear
sawtooth, but the formulation of mapping (21) is general enough
to be applied to any relaxation oscillators.

For large-scale ONN with N oscillators, we scale µ2 (21) by
a factor N − 1 to ensure the conservation of the current flow in

coupling resistances. We finally obtain:

µN(Wij) = Rij = (N − 1) ζ−1

(

Tosc

2
g(Wij)

)

(22)

In next section, we demonstrate the effectiveness of the proposed
mapping function (22) to design a 60-ONN architecture for
pattern recognition as in HNN.

3. RESULTS

3.1. ONN Design for Pattern Recognition
3.1.1. ONN Training and Mapping
In the previous section, we presented the memory capability of
two coupled oscillators. Here, we apply the analytical formulas
to a larger ONN size. We develop a design flow as shown in
Figure 12A for pattern recognition with ONNs where we have
implemented the proposed mapping function. We first compute
the weights associated with the M stored patterns using the
Hebbian Rule (Hoppensteadt and Izhikevich, 2000), as:

Wij =
1

N

M
∑

k=1

ξ ki ξ kj (23)

We store M = 6 images representing digits “0”, “1” to “5” as
shown in Figure 12B. Next, we use our mapping function to
compute the coupling resistances associated with the Hebbian
coefficients. The mapping is represented in Figure 12C for
different values of parameter β which sets the slope of µN(Wij).
Increasing β induces a larger coupling resistance range. Because
the Hebbian rule normalizes the weights by the network’s size
N (23), we scale β with N to keep a relative standard deviation
of Rij approximately constant when increasing the ONN size.
By simulations, we found that the best accuracy is obtained for
β = N/32, and we report the results in subsection 3.1.3.

3.1.2. ONN Inference
For every input, we set up the 60 ONN with black and white
pixels encoded by –1 and +1, respectively. For pixels with black
input, the corresponding oscillator is initialized with a delay
1tinit = Tosc/2 to set an initial out-of-phase relation (5) whereas,
for a white pixel, no delay is introduced. A noisy gray pixel
corresponds to an input delay between 0 and Tosc/2. After
few oscillations, the ONN settles, retrieves the noiseless pattern
and phase relations are measured. An example of ONN voltage
dynamics is presented in Figure 13A, showing the initialization
and the settling time before the ONN stabilizes. Figures 13B,C
show two examples of input images where 15 pixels have been
randomly altered by a uniform distribution taking values between
–1 and +1. When the number of noisy input pixels is too large
such as in Figure 13D (20 noisy pixels), ONN converges toward
a wrong spurious state that is different from the stored patterns.
The results are in accordance with original observations from
Hopfield (1982), proving that our mapping can implement HNN
with ONN.
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FIGURE 11 | Mapping function for two coupled oscillators. (A) Sigmoid activation function presents the probability Pinphase for the two oscillators to be in phase. (B)

Inverse of the transition function ζ−1 determines the coupling resistance RC for a given probability Pinphase. (C) The mapping function µ2 is obtained by the composite

function ζ−1(g).

FIGURE 12 | (A) Illustration of the ONN design flow for the associative memory application. Patterns to store can be represented as black and white images from

which we compute weights with the Hebbian rule during the training process. Then, we use the mapping function µN to get the coupling resistances, allowing a

systematic ONN design. (B) Stored patterns. (C) Coupling resistances as a function of Hebbian weights, computed with the mapping function µN for different values

of parameter β.

3.1.3. ONN Recognition Accuracy
Here, we perform simulations to compute the pattern recognition
accuracy of the 60-ONN. We randomly apply noise to training
patterns to generate a test set. It consists of 20 different subsets
Sk, k ǫ {1, 2, .., 20} in which 60 different test patterns have

k randomly located fuzzy input pixels. We vary the mapping
function parameter β to assess its influence on ONN accuracy.
We notice from Figure 14C that ONN achieves the best accuracy
for an optimum value β = N/32 = 1.875. In this case, ONN
recognizes more than 80% of test images with up to 20% of
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FIGURE 13 | (A) Noisy input image “2” with 15 random altered pixels and voltage waveforms of 60 oscillators. ONN is initialized during Tosc/2 with the noisy input

image. After few oscillation cycles, ONN settles, and phases are measured. ONN retrieves the correct output image that corresponds to the stored pattern “2.” (B)

The input image “5” has been altered at 15 random pixel locations by a uniform distribution. ONN retrieves the corresponding stored pattern. (C) Similarly, 15 random

pixels of the input image “2” are altered, and ONN retrieves the correct corresponding pattern. (D) In this example, 20 noisy input pixels are introduced to digit “1,”

and ONN converges toward a spurious state.

noise. As seen in Figure 12C, the slope parameter β sets the
coupling resistance range, which in turn affects ONN accuracy.
For instance, we observe that the set of coupling resistances
obtained for β = 2 is similar to the case β = 2.5, but the
accuracy is much lower in the latter case. In the next section,
we quantify the coupling resistance accuracy that is required for
synaptic design.

3.1.4. ONN Coupling Resistance Range
We study the impact of RC’s relative variations and RC’s
mean value. Rmin

C is the minimum resistance common to all
coupling resistances, and 1R is the additional series resistance
to distinguish between weights (Figure 14A). Using the Hebbian
rule, weights are located near “0” coefficient as in Figure 12C

and our mapping function can be fitted linearly (dashed lines).
Therefore, every coupling resistances can be approximated by
RC ≈ Rmin

C + n1Rmin with n ǫ {0, 1, 2, ..,M}. Using this linear
approximation, we can verify ONN accuracy is similar to the
nominal case of mapping function with β = N/32, as shown in
Figure 14C with the magenta dashed line.

As observed in previous sections, ONN accuracy is quite
sensitive to the coupling resistances. We obtain 1Rmax ≈

15% Rmin
C for β = 3, and 1Rmax ≈ 5% Rmin

C for β = 1
(Figure 14B). For these two cases as shown in Figure 14C, ONN
shows poor accuracy. It is rather for β = N/32 = 1.875 with
1Rmax ≈ 10% Rmin

C that ONN accuracy is above 90%.

To achieve the best ONN accuracy, a very good resistor
matching is required, as we need a precision of 1Rmin =

1.7% Rmin
C between two consecutive weights. To study the

influence of theRC’s mean value only, we apply the same variation
to all coupling resistances for β = N/32 and for 10 fuzzy input
pixels (Figure 14D). We notice that the mean value of coupling
resistances can vary from –10% up to +5% from its nominal value
to achieve a similar accuracy.

4. DISCUSSION

Oscillatory neural networks are triggering great interest for
parallel processing applications, but a remaining challenge is
how to compute with ONNs. To do so, we build analogies
with ANN to determine the mapping between Hebbian learning
coefficients (weights) to coupling resistors, knowing that they
are essential elements for the network functionality. In this
work, we proposed a mapping function that translates Hebbian
signed weights to coupling resistances in a VO2-based ONN
for systematic ONN analysis. Our simulations on 60-oscillators
test case study highlighted a strong dependency between
the ONN recognition accuracy and its coupling resistance
range, set by mapping parameter β . Although we identified
a suitable value β = N/32 to achieve good ONN accuracy,
our mapping formulation provides coupling resistances that
differ only with few percent. This would lead to significant
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FIGURE 14 | (A) Two oscillators coupled by RC, which can be decomposed in two series resistances: RC = Rmin
C

+ 1R. (B) Evolution of 1R, Rmin
C

with respect to β.

1Rmax ≈ 10% Rmin
C

gives the best accuracy results. Note that 1Rmin = 1.7% Rmin
C

. (C) ONN recognition accuracy for different values of β. The dashed line is obtained

for a linear fit of the mapping µN, i.e., with coupling resistances that are linearly spaced. (D) Impact of RC’s mean variation on recognition accuracy.

hardware design constraints, as resistor mismatches smaller than
1.7% would be required to emulate two consecutive weights.
In our mapping formalism, we used the phase transition
function ζ , which provides the coupling resistance range holding
the ONN memory. As we only derived ζ from oscillator
dynamics, we believe the oscillator design could be optimized to
expand the coupling resistance range and relax synaptic design
constraints. For example, oscillator biasing current and supply
voltage are the knobs that could be adjusted to maximize the
synaptic range.

Here, we reported on amapping function to compute coupling
resistances from signed Hebbian coefficients in a VO2-based
ONN. We first enhanced the ONN initialization control based
on a simple architecture where every oscillator can be decoupled
from the network via a switch. We were able to derive the
phase transition function from the ONN dynamics, which is
crucial for ONN memory. We then merged this analytical
formulation with a sigmoid activation function from ANN
formalism to build a mapping function. To demonstrate the
ONN architecture’s applicability with the proposed mapping
function, we presented a test case of pattern recognition with
60 fully coupled oscillators. Finally, we showed that ONN
recognition accuracy is very sensitive to relative variations
between coupling resistances.
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