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Machine learning methods have been frequently applied in the field of cognitive
neuroscience in the last decade. A great deal of attention has been attracted to
introduce machine learning methods to study the autism spectrum disorder (ASD) in
order to find out its neurophysiological underpinnings. In this paper, we presented a
comprehensive review about the previous studies since 2011, which applied machine
learning methods to analyze the functional magnetic resonance imaging (fMRI) data of
autistic individuals and the typical controls (TCs). The all-round process was covered,
including feature construction from raw fMRI data, feature selection methods, machine
learning methods, factors for high classification accuracy, and critical conclusions.
Applying different machine learning methods and fMRI data acquired from different sites,
classification accuracies were obtained ranging from 48.3% up to 97%, and informative
brain regions and networks were located. Through thorough analysis, high classification
accuracies were found to usually occur in the studies which involved task-based fMRI
data, single dataset for some selection principle, effective feature selection methods,
or advanced machine learning methods. Advanced deep learning together with the
multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends
especially in the recent 4 years. In the future, advanced feature selection and machine
learning methods combined with multi-site dataset or easily operated task-based fMRI
data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.

Keywords: autism spectrum disorder, functional connectivity, functional magnetic resonance imaging, machine
learning, feature selection

INTRODUCTION

As a pervasive neurodevelopmental disorder, autism spectrum disorder (ASD) is characterized
by deficits in social communication and interaction and restricted and repetitive behaviors
(Hull et al., 2017), which was known to be an urgent public health concern that could benefit
from enhanced strategies to help identify ASD earlier (Jon et al., 2018). Diagnosed autism
prevalence has risen dramatically over the last several decades (Nevison, 2014), and the causes have
remained elusive, which have increasingly attracted numerous researchers to focus on it. Thus far,
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different advanced neuroimaging tools have been applied for
ASD research, including structural and functional magnetic
resonance imaging (MRI), positron emission tomography
(PET), electroencephalography (EEG), magnetoencephalography
(MEG), and novel protocols (Alessandro et al., 2017; Du et al.,
2018). Among them, functional MRI (fMRI) studies involving
task-based and resting-state fMRI (rs-fMRI) data occupy a large
proportion. Especially with the appearance and development of
freely available rs-fMRI databases, such as the Autism Brain
Imaging Data Exchange (Martino et al., 2014)1, which provides
functional and structural brain imaging datasets collected from
more than 24 different independent sites, researchers from
different countries have expanded a series of studies based on it.
In this paper, the review about ASD classification is restricted to
fMRI data for more specific analysis. The aforementioned fMRI
data consist of rs-fMRI data and task-based fMRI data, which are
collected from scanning the brain using fMRI technology while
the subject is resting and performing a special task, respectively.

For the last decade, there have been a variety of methods
proposed to investigate the potential difference between ASD
patients and typical controls (TCs) from different levels using
fMRI data. It is well known that machine learning methods
have been widely applied to brain disorder research such as
schizophrenia, depression, Alzheimer disease, ASD, and so on
(Davatzikos et al., 2006; Fan et al., 2008; Cuingnet et al., 2011;
Du et al., 2012; Arbabshirani et al., 2013; Zeng et al., 2014; Patel
et al., 2015), especially with their rapid development. Recent
progress in machine learning has been driven both by the
development of new learning algorithms and theory and by the
ongoing explosion in the availability of online data and low-
cost computation (Jordan and Mitchell, 2015). Notwithstanding
the fact that there have existed great quantity of research on
classifications for ASD and the TCs, a specialized systematic
review about them is lacking. While different approaches have
different assumptions and advantages, a detailed review is
important to help us understand the ways in which these
approaches have been used. Wolfers et al. published a review
about pattern recognition for neuroimage-based psychiatric
diagnostics in which ASD was mentioned as a little part
(Wolfers et al., 2015). Du et al. (2018) have reviewed relative
literatures on classification and prediction of brain disorders
using functional connectivity (FC) but not limited to ASD. Hyde
et al. provide a comprehensive review of 45 papers utilizing
supervised machine learning in ASD but not limited to fMRI data
(Hyde et al., 2019).

In this paper, we exhibit a review by summarizing 47
literatures involving classifications using fMRI data between
ASD patients and TCs. The general process of autism spectrum
disorder studies using fMRI data and machine learning was
illustrated in Figure 1. The purpose of this review is to (1)
summarize relatively representative papers from the following
aspects to find out their commonality and differentiation:
classification features involved, machine learning methods,
classification performance, and factors on classification results;
(2) reveal critical consistent or novel conclusions about

1http://fcon_1000.projects.nitrc.org/indi/abide/

discriminant brain regions, networks, and explanations for
behavioral characteristics of ASD in the literatures; and (3) give
feasible work directions for future progress in the field.

FMRI DATA SOURCES

It is well known that spontaneous fluctuations in the blood
oxygenation level-dependent (BOLD) signal, as measured by
fMRI, present a valuable data resource for delineating the
human neural functional architecture (Cole et al., 2010). fMRI,
including rs-fMRI and task-based fMRI, has become one of
the primary tools of cognitive neuroscience. From analysis of
the papers detailed in Table 1, it was obviously found that
there are mainly three types of fMRI data sources, which are
self-acquisition data, the cooperation agency data, and freely
available database. The self-acquisition data and the cooperation
agency data are usually acquired from the same site with same
acquisition parameters. Notably, all the task-based fMRI data
involved belonged to the former two data sources. The well-
known large freely available database is the ABIDE database.
The data of the ABIDE database are collected from different
sites in North America and Europe, which inevitably introduces
heterogeneity into the dataset in terms of differences among fMRI
scanners, data collection protocols, and participant populations
(Ghiassian et al., 2016). The aggregation of data across multiple
neuroimaging sites has become popular in recent years. Given
that the sharing and combination of task-based fMRI data are
significantly more challenging than rs-fMRI data (Poldrack and
Gorgolewski, 2015), the large freely available database is mainly
rs-fMRI data. Despite this, some efforts have been made to build
an open repository for task-based fMRI data, such as the Open
fMRI database (Poldrack et al., 2013; Poldrack and Gorgolewski,
2015). The advantage of the large database is that it contains
more available data than the former two data sources and can
satisfy more researchers’ purchase for large database analysis.
Working toward the ultimate goal of deriving an automated
diagnosis tool from the fMRI data classification, a large database
is indispensable for further generalization. Unfortunately, the
classification of the large database from different sites appears to
be more challenging than that of the small database from the same
site. In spite of the above challenge, the freely available database
is getting increasing attention in the study of ASD. Notably, 33
of 47 literatures in Table 1 adopted the freely available database,
which accounted for 70% of the total.

FEATURE CONSTRUCTION FROM RAW
FMRI DATA

Sundry features constructed from raw fMRI data reflect special
meanings of brain information. They are important inputs
of machine learning and can influence the performance of
classification together with the explanation of contributed brain
areas to some extent. Therefore, proper feature construction from
raw fMRI data of ASD patients and the TCs becomes a crucial
step of classification. FC features are most popularly adopted
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FIGURE 1 | General process of ASD studies using fMRI data and machine learning (taking FC features for example). ASD, autism spectrum disorder; fMRI,
functional magnetic resonance imaging; FC, functional connectivity.

features given that they can reflect particular significance of ASD.
Besides, some other meaningful features are also introduced.

Non-task Static Functional Connectivity
Features
Resting-state FC has been proven to be a critical tool in
understanding different disease mechanisms and has great
potential to provide biomarkers for disease diagnosis (Price et al.,
2014). The typically static FCs are constructed by calculating FC
between two regions of interest (ROIs) of the brain. It has been
reported that altered patterns of brain FCs were suggested as a
key neurobiological correlate of the behavioral characteristics of
ASD (Neufeld et al., 2017). Increasingly, it has been accepted
that ASD is associated with atypical development of multiple
interconnected brain systems rather than isolated brain regions
(Minshew and Williams, 2007; Uddin et al., 2013a). Furthermore,
Hull et al. reviewed the rs-fMRI literatures over how intrinsic
connectivity is altered in the autistic brain, with reports of general
over-connectivity, under-connectivity, and/or a combination of
both (Hull et al., 2017). The whole brain fMRI is usually
parcellated into ROIs defined by different atlases, which are either
anatomically defined or functionally defined. The commonly
used atlas is the anatomical Automated Anatomical Labeling
(AAL) atlas (Murdaugh et al., 2012; Wang et al., 2012; Iidaka,
2015; Guo et al., 2017; Aghdam et al., 2018; Bi et al., 2018;
Kazeminejad and Sotero, 2019; Liu J. et al., 2020; Tang et al.,
2020; Zhao et al., 2020; Reiter et al., 2021). Aside from the AAL,
some other atlases were introduced to construct FCs for ASD
classification, such as the Power atlas (Power et al., 2014; Chen

et al., 2015; Dodero et al., 2015a; Yin et al., 2021), the Craddock
200 (CC200) atlas (Craddock et al., 2012; Kassraian-Fard et al.,
2016; Huang et al., 2020; Kazeminejad and Sotero, 2020; Liu J.
et al., 2020), the CC400 atlas (Sherkatghanad et al., 2020), the
Harvard Oxford (HO) atlas (Desikan et al., 2006; Fredo et al.,
2019), the Desikan–Killiany (DK) atlas (Kong et al., 2018; Soussia
and Rekik, 2018), and the sulci-based anatomical atlas (Yahata
et al., 2016). In particular, the whole brain FCs between 7,266
ROIs were used as classification features (Anderson et al., 2011;
Nielsen et al., 2013; Heinsfeld et al., 2018). In addition, FCs
derived from specific brain networks were also attractive. For
example, Murdaugh et al. adopted FCs between default mode
network (DMN) ROIs as classification features (Murdaugh et al.,
2012). Different from the above research, Dodero et al. (2015b)
obtained FCs by introducing the University of California at Los
Angeles (UCLA) Multimodal Connectivity Database, which is
an openly available website for brain network analysis and data
sharing (Brown et al., 2012).

Task-Based Static Functional
Connectivity Features
Though static FC features are the most adopted features for
ASD classification, they are usually but not absolutely restricted
to rs-fMRI data. The underconnectivity theory is based largely
on analysis of task-related changes in interregional connectivity
during tasks (Masona et al., 2008) that involve language, working
memory, mental imagery, executive functions, cognitive control,
and social cognition. Given that differentiation between ASD
patients and TCs is absolutely confirmed, targeted tasks can
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TABLE 1 | Summary of ASD classification studies based on fMRI data.

Study Participants Data Features Feature selection Machine learning
method

Accuracy

Anderson et al. (2011) 40 ASD
40 TC

rs-fMRI data Whole brain FCs between
7,266 ROIs

A two-tailed t-test for
p < 0.001

Not detailed 79%

Wang et al. (2012) 29 ASD
29 TC

fMRI data with a cognitive
control task

FCs between 106 ROIs
(the AAL atlas)

None Logistic regression 82.8%

Murdaugh et al. (2012) 13 ASD
14 TC

fMRI data with three stimuli
experiments

Seed-based FCs
FCs between 102 regions
(the AAL atlas)

None Logistic regression 96.3%

Nielsen et al. (2013) 447 ASD
517 TC

rs-fMRI data
(the ABIDE dataset)

Whole brain FCs between
7,266 ROIs

None Not detailed 60%

Uddin et al. (2013a) 20 ASD
20 TC

rs-fMRI data Independent components None Logistic regression 83%

Deshpande et al. (2013) 15 ASD
15 TC

fMRI data with ToM task FCs between 18 ROIs Recursive cluster
elimination

Linear SVM 95.9%

Just et al. (2014) 17 ASD
17 TC

fMRI data with a thinking task Features obtained by factor
analyses proposed by the
author

The FA procedure GNB 97%

Price et al. (2014) 30 ASD
30 TC

rs-fMRI data
(the ABIDE dataset)

Dynamic FCs from
multi-network

Self-proposed methods Multi-kernel SVM 90%

Zhou et al. (2014) 127 ASD
153 TC

rs-fMRI data
(the ABIDE dataset)

Integrated features PCA and MRMR SVM and Bayesian
network

70%

Plitt et al. (2015) 59 ASD
59 TC

rs-fMRI data FCs between ROIs from three
atlases
(the Destrieux atlas, the
DiMartino atlas, and the Power
atlas)

RFE The scikit-learn library 76.67%(peak)

Dodero et al. (2015a) 42 ASD
37 TC

rs-fMRI data
(the UCLA data)

FCs between 264 ROIs
(the Power atlas)

None Grass–Kernel based
Manifold Laplacian

63.29%

Iidaka (2015) 312 ASD
328 TC

rs-fMRI data FCs between 90 ROIs
(the AAL atlas)

Threshold Probabilistic neural
network

89.4%

Chen et al. (2015) 126 ASD
126 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 220 functionally
defined ROIs

PSO
RFE

SVM
Random forest

66%
90.8%

Chanel et al. (2016) 15 ASD
14 TC

fMRI data with emotional stimuli The beta maps RFE SVM 92.3%

Ghiassian et al. (2016) 538 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

Proposed HOG features MRMR MHPC learning
algorithm

65%

Kassraian-Fard et al. (2016) 77 ASD
77 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

None SVM 63%

Odriozola et al. (2016) 23 ASD
22 TC

fMRI data with two visual
oddball detection tasks

Multivariate activation patterns
in the dorsal part of the anterior
insula

None SVM 85%

(Continued)
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TABLE 1 | Countinued

Study Participants Data Features Feature selection Machine learning
method

Accuracy

Abraham et al. (2017) 871 participants rs-fMRI data
(the ABIDE dataset)

FCs between ROIs from three
atlases
(the HO atlas, the Yeo atlas,
and the CC200 atlas)

ICA and MSDL The scikit-learn library 67% (peak)

Yahata et al. (2016) 74 ASD
107 TC

rs-fMRI data FCs between 140 ROIs
(the sulci-based anatomical
atlas)

L1-SCCA SLR classifier 85%

Dvornek et al. (2017) 539 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

The resting-state fMRI time
series

None LSTM modela 68.5%

Rane et al. (2017) 539 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

All voxels within the GM mask None the scikit-learn library 62%

Guo et al. (2017) 55 ASD
55 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
(the AAL atlas)

SAEs DNN classifiera 86.36%

Bi et al. (2018) 45 ASD
39 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 90 ROIs
(the AAL atlas)

random SVM cluster RBF-SVM 96.15%

Heinsfeld et al. (2018) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

Whole brain FC between 7,266
ROIs

SAEs DNN classifiera 70%

Aghdam et al. (2018) 116 ASD
69 TC

rs-fMRI and sMRI data
(the ABIDE dataset)

Means of ROIs respectively for
rs-fMRI, GM and WM
(the AAL atlas)

None DBN classifiera 65.56%

Zhao et al. (2018) 54 ASD
46 TC

rs-fMRI data
(the ABIDE dataset)

Multi-level, high-order FCs LASSO multiple linear SVMs 81%

Soussia and Rekik (2018) 155 ASD
186 TC

rs-fMRI data
(the ABIDE dataset)

High-Order Morphological
Network

None SIMLR based
pairing + SVM

61.7%

Dekhil et al. (2018) 123 ASD
160 TC

rs-fMRI data PSD PSD with highest
correlation with the 34
rs-fMRI atlases

RBF-SVM 91%

Bernas et al. (2018) 24 ASD
30 TC

rs-fMRI data 7 resting-state networks Group-ICA poly-SVM 86.7%

Bhaumik et al. (2018) 167 ASD
205 TC

rs-fMRI data
(the ABIDE dataset)

FCs between Brodmann’s
areas ROIs

Filter-based test and
embedded Elastic Nets

Partial least square
regression combined
with SVM

70%

Kong et al. (2018) 78 ASD
104 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 148 ROIs
(the Destrieux atlas)

F-score DNN classifiera 90.39%

Li et al. (2018) 38 ASD
23 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 90 ROIs
(the AAL atlas)

SSAE DTL-NN classifiera 70.4%

Kazeminejad and Sotero (2019) 109 participants
342 participants
190 participants
137 participants
51 participants

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
(the AAL atlas)

A sequential forward
floating algorithm

Gaussian SVM 86%
69%
78%
80%
95%

(Continued)
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Study Participants Data Features Feature selection Machine learning
method

Accuracy

Eslami et al. (2019) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

AE A single layer
perceptrona

80%

Fredo et al. (2019) 306 ASD
350 TC
(400 participants for each
sample)

rs-fMRI
(the ABIDE dataset)

FCs between 237 ROIs
(the Gordon’s cortical atlas
the HO atlas)

Conditional random forest Random forest 62.5%
65%
70%
73.75%

Niu et al. (2020) 408 ASD
401 TC

rs-fMRI data
(the ABIDE dataset)

FCs between ROIs from three
atlases separately (the AAL
atlas, the HO atlas and the
CC200 atlas)

None The proposed
multichannel DANN

73.2%

Liu Y. et al. (2020) 506 ASD
548 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

Extra-tree Linear-SVM 72.2%

Sherkatghanad et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 392 ROIs
(the CC400 atlas)

None CNN classifiera 70.22%

Thomas et al. (2020) 620 ASD
542 TC

rs-fMRI data
(the ABIDE dataset)

Nine summary measures None 3D CNN classifiera 64%

Tang et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
fMRI × ROI connectivity
(the AAL atlas)

None DNN classifiera 74%

Zhao et al. (2020) 45 ASD
47 TC

rs-fMRI data
(the ABIDE dataset)

FCs, Lo-D-FCs and Ho-D-FCs
between 116 ROIs (the AAL
atlas)

A two-sample t-test and
LASSO

Linear-SVM 83%

Huang et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

Graph-based
feature-selection method

DBN classifiera 76.4%

Liu Y. et al. (2020) 403 ASD
468 TC

rs-fMRI data
(the ABIDE dataset)

D-FCs between ROIs
(the AAL atlas)

MTFS-EM Multi-kernel SVM 76.8%

Kazeminejad and Sotero (2020) 493 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

PCA A multilayer
perceptrona

64.4%

Yin et al. (2021) 403 ASD
468 TC

rs-fMRI data
(the ABIDE dataset)

FC between 264 ROIs
(the Power atlas)

An AE-based feature
selection method

DNN classifiera 79.2%

Yang et al. (2021) 79 ASD
105 TC

rs-fMRI data
(the ABIDE dataset)

8 brain functional networks
from
group-ICA

Dual regression 3D CNN classifiera 77.74%

Reiter et al. (2021) 306 ASD
350 TC
(400 participants for each
sample)

rs-fMRI data
(the ABIDE dataset and data
sample from SDSU)

FC between 237 ROIs
(the Gordon atlas
the HO atlas)

Conditional random forest Random Forest 62.5%
65%
70%
73.75%

aMachine learning methods that are deep learning methods.
Abbreviations: ASD, autism spectrum disorder; fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI; TC, typical control; FC, functional connectivity; ROI, region of interest; AAL, Automated
Anatomical Labeling; ABIDE, Autism Brain Imaging Data Exchange; ToM, Theory of Mind; SVM, support vector machine; FA, factor analysis; GNB, Gaussian naïve Bayes; PCA, principal component analysis; RFE,
recursive feature elimination; MRMR, maximal relevance and minimal redundancy; UCLA, University of California at Los Angeles; PSO, particle swarm optimization; HOG, histogram of oriented gradients; ICA, independent
component analysis; MSDL, multi-subject dictionary learning; L1-SCCA, the L1-norm regularized sparse canonical correlation analysis; SAEs, sparse auto-encoders; SLR, Structured Logistic Regression; LSTM, long
short-term memory; DNN, deep neural network; DBN, deep belief network; RBF-SVM, radial basis function-support vector machine; GM, gray matter; WM, white matter; LASSO, least absolute shrinkage and selector
operation; SSAE, a stacked sparse auto-encoder; SIMLR, Single-cell Interpretation via Multi-kernel LeaRning; PSD, Power spectral densities; DTL-NN, deep transfer learning neural network; AE, autoencoders; HO,
Harvard Oxford; DANN, deep attention neural network; CNN, convolutional neural network; Lo-D-FCs, low-order dynamic functional connectivity networks; Ho-D-FCs, high-order dynamic functional connectivity
networks; MTFS-EM, an improved multi-task feature selection method integrating elastic net and manifold regularization; SDSU, San Diego State University.
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expand their fMRI differences relative to rs-fMRI. Therefore,
FCs generated from task-based fMRI data also attracted the
researchers (Murdaugh et al., 2012; Wang et al., 2012; Deshpande
et al., 2013). The Theory of Mind (ToM) hypothesis, proposed by
Baron Cohen, has emerged as a highly regarded explanation of
autistic behavior (Baron-Cohen, 1988a,b,c; Baron-Cohen et al.,
1994; Baron-Cohen, 2004). According to this prior knowledge,
Deshpande et al. (2013) acquired fMRI data during a ToM task
and obtained FCs between 18 ROIs.

Dynamic or High-Order Functional
Connectivity Features
The aforementioned FCs referred to the conventional static
brain FCs, which revealed the intrinsic similarities between a
pair of ROIs or specific networks. It was recently accepted that
dynamic FCs contained more additional knowledge than static
FCs. Dynamic FCs can reveal spatiotemporal network properties
not observable in static FCs and may reveal more nuanced
transient patterns of atypical FC in ASD (Mash et al., 2019).
Even so, there are but not many relative ASD classification
studies using dynamic FCs compared to static FCs. Price et
al. obtained dynamic FCs based on independent components
generated from group-independent component analysis (ICA).
In their research, it was demonstrated that using FC features over
a wide range of time scales was able to substantially increase ASD
classification compared with static FC features (Price et al., 2014),
indicating that dynamic FCs are the important supplement of
static FC features. A high-order morphological brain network
based on Pearson correlation was further proposed by Soussia
and Rekik to detect more complex interaction patterns between
multiple brain regions (Soussia and Rekik, 2018). Moreover, it
was noticed that the identified regions at a high-order level
are different from those at a lower order, and this may appear
to provide complementary discriminative information for more
accurate diagnosis (Soussia and Rekik, 2018). Similarly, multi-
level, high-order FC networks were put forward by Zhao et al.
to serve as ASD classification features (Zhao et al., 2018), and
better classification performance was obtained. Two years later,
they fused the features extracted from conventional FCs, low-
order dynamic FCs, and high-order dynamic FCs for the ASD
classification and achieved the best classification performance
than any other type of feature fusion (Zhao et al., 2020). It
was indicated that the fusion of different-level FCs can supply
complementary relevant information for ASD diagnosis, which
was consistent with their previous study.

Other Applied Classification Features
Through analysis of the relative papers, it was obviously found
that the commonly adopted classification features are mainly
from statics or dynamic functional networks. Besides, some
researchers expanded the range of classification features of ASD
through different perspectives. Because reduced attention to
social stimuli is one of the defining features of ASD, Odriozola
et al. (2016) used two visual oddball tasks to investigate brain
systems engaged during attention to social (face) and non-
social (scene) stimuli. In their work, multivariate activation

patterns in the dorsal part of the anterior insula were chosen
as classification features. Chanel et al. (2016) acquired fMRI
data from two performed experiments and used the beta maps
of each condition estimated at the individual step level as
features for the classification. The beta map of each individual
is high-dimensional containing 186,217 features. Even the rs-
fMRI time series and all voxels within the gray matter (GM)
mask were directly chosen as classification features (Dvornek
et al., 2017; Rane et al., 2017) with the hypothesis that they will
carry more useful information than single, static FC measures.
In addition, some researchers applied integrated classification
features. For example, volumetry analysis, FC MRI analysis, and
graph theory via small-world network analysis were introduced
to produce the integrated classification features which contained
a total of 22 quantitative local and global imaging features (Zhou
et al., 2014). Integrated FCs originated from the AAL atlas,
the HO atlas, and the Craddock atlas were implemented in the
work of Niu et al. (2020). Moreover, for better classification,
some researchers applied their proposed methods to obtain
classification features, such as histogram of oriented gradients
(HOG) features (Ghiassian et al., 2016) and features by factor
analysis (Just et al., 2014). As another example of classification
feature fusion, Aghdam et al. (2018) computed means of ROIs
respectively for rs-fMRI, GM, and white matter (WM) based
on the AAL atlas, and the highest classification accuracy was
obtained using the fusion of the three features. Based on FCs
of the AAL atlas, Tang et al. (2020) introduced fMRI × ROI
connectivity for feature supplements.

MACHINE LEARNING METHODS AND
CLASSIFICATION RESULTS

Summary About Machine Learning
Methods and Classification Accuracy
Results
High classification accuracy and confirming the most
discriminant features are two main purposes for ASD
classification. The most discriminant features resulting from
ASD classifications can make a good distinction between the two
groups and have the potentiality to serve as disease biomarkers.
The higher the classification accuracy, the more creditable the
confirmed discriminant features. As a traditional classifier,
support vector machine (SVM) has been widely used in the
classification of brain disorders including ASD in the last decade.
The SVM classifier can be linear and non-linear, which was
decided by different kernels, such as linear kernel, polynomial
kernel, sigmoid kernel, and Gaussian radial basis function (RBF)
kernel. Different kernels were chosen according to different
features. Eighteen papers in Table 1 applied SVM classifiers
benefiting from their classification power. Bi et al. classified the
ASD patients and TCs by 96.15% using SVM with RBF kernel
(Bi et al., 2018). Dekhil et al. (2018) obtained 91% classification
accuracy using the same classification method. Deshpande et al.
(2013), Chen et al. (2015), Chanel et al. (2016), Odriozola et al.
(2016), Bernas et al. (2018), and Zhao et al. (2018, 2020) all made
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use of SVM classifiers to discriminate ASD patients and TCs with
higher accuracies, which are 92.3% (peak), 85%, 81%, 90.8%,
95.9%, and 86.7%, respectively. However, the choice of SVM
classifiers is not the only determining factor for high accuracies,
which will be discussed in the next section. Kassraian-Fard et al.
(2016) and Liu J. et al. (2020) also applied the SVM classifier
but resulted in a lower accuracy probably due to the large
multi-site fMRI dataset.

Besides the SVM classifier, some other traditional classifiers
are also used in the discrimination of ASD patients and TCs,
such as logistic regression (Murdaugh et al., 2012; Wang
et al., 2012; Uddin et al., 2013a), random forest (RF) (Chen
et al., 2015; Fredo et al., 2019; Reiter et al., 2021), manifold
Laplacian (Dodero et al., 2015a), Gaussian naïve Bayes (GNB)
(Just et al., 2014), and so on. In order to contrast the
effect of different machine learning methods, the scikit-learn
library, which contains multiple machine learning methods,
was also applied by some researchers for ASD classification
(Plitt et al., 2015; Abraham et al., 2017; Rane et al., 2017). In
addition, many researchers tried their best to develop novel
classification approaches for better performance. Ghiassian et
al. proposed (f)MRI HOG-feature-based patient classification
(MHPC) learning algorithm to distinguish ASD individuals and
TCs by 65% (Ghiassian et al., 2016). Yahata et al. developed
a novel machine learning algorithm called Structured Logistic
Regression (SLR) classifier and separated the two groups with
the accuracy of 85% (Yahata et al., 2016). In addition, Niu
et al. employed a proposed multichannel domain-adversarial
neural network (DANN) model and further compared it with
the existing machine learning methods such as random RF, SVM
models, and multichannel deep neural network (DNN), resulting
in the best performance of the self-proposed method with an
accuracy of 73.2% (Niu et al., 2020).

Moreover, as an advanced and popular machine learning
method, deep learning was widely applied in the classification
of ASD especially since 2017. There are several commonly
used models of deep learning, such as, autoencoders (AE), long
short-term memory (LSTM), recurrent neural network (RNN),
DNN, deep belief network (DBN), and convolutional neural
network (CNN) (Du et al., 2018). Fourteen of 47 involved papers
applied deep learning methods for the classification as detailed in
Table 1. Purely from the perspective of classification accuracy, the
performance of advanced deep learning methods is comparable
with that of traditional ones. In fact, classification accuracy was
affected by not only machine learning methods but the dataset,
constructed features, and feature selection methods, which will
be discussed in detail in section “Factors on Classification
Accuracy.” Therefore, the scientific and meaningful comparison
on performance of deep learning and traditional machine
learning should be carried out under the same condition.
Classification accuracies were compared between deep learning
and traditional machine learning in Figure 2D using papers
with more than 800 participants from the ABIDE dataset.
Generally speaking, deep learning outperformed traditional
machine learning. In the work of Thomas et al. (2020) CNN was
reported to achieve comparable results with SVM as shown in
Table 2. Apart from this, eight other papers with deep learning

reported their better performance than traditional machine
learning methods under the same condition detailed in Table 2
(Heinsfeld et al., 2018; Kong et al., 2018; Li et al., 2018; Huang
et al., 2020; Kazeminejad and Sotero, 2020; Sherkatghanad et al.,
2020; Thomas et al., 2020; Yang et al., 2021; Yin et al., 2021). It is
reasonable to believe that deep learning holds better classification
power than the traditional ones.

Factors on Classification Accuracy
High accuracy is a critical goal of classification between ASD
individuals and TCs aiming to determine biomarkers for ASD.
Through analysis of the involved literatures, several factors that
substantially impacted classification accuracy were summarized.

Task-Based fMRI Dataset
Many studies have proved the brain difference between ASD
individuals and TCs. There is a hypothesis that the degree of
alteration in the representation of self in individuals with autism
would be related to behavioral measures of various social abilities,
such as thinking, face processing, and ToM (Just et al., 2014).
Thus, fMRI data with correlated tasks are commonly used for
ASD classification studies (Murdaugh et al., 2012; Wang et al.,
2012; Deshpande et al., 2013; Just et al., 2014; Chanel et al.,
2016; Odriozola et al., 2016). It was found that classifications
using task-based fMRI data usually obtained high accuracies as
detailed in Table 1 and represented by the pink diamonds in
Figure 2B, ranging from 82.8% to 97%. Compared to the rs-
fMRI data used in the classification, the task-based fMRI data
are an important factor for high classification accuracies. But
for task-based fMRI data, it is difficult to acquire large datasets.
Most task-based fMRI studies relatively involved small samples
of usually less than 50 subjects (Poldrack and Gorgolewski, 2015).
Interestingly, we found that the less samples, the higher the
classification accuracy as shown in Figure 2B. It is worthy of note
that the classification accuracy may decrease with an increase in
the number of individuals in the task-based fMRI studies, which
necessitates further demonstration.

Contribution of Feature Selection
Besides the factor of the task-based fMRI data, another important
factor for high classification accuracy is feature selection. Feature
selection methods play an important role in classifications
because of the high-dimension property of fMRI data even
after relative features have been constructed. Proper feature
selection can further reduce the dimensionality of features,
enhance classification accuracy, facilitate visualization of the
data, and lead to faster classification (Guyon and Elisseeff,
2003; Kassraian-Fard et al., 2016). To realize the importance
of feature selection in classification, it gradually became an
indispensable part of ASD classification studies. Nevertheless,
16 of the 47 papers in this review did not introduce separate
feature selection methods as detailed in Table 1, and high
dimensional features were directly applied as the inputs of
classifiers (Nielsen et al., 2013; Heinsfeld et al., 2018) resulting
in lower classification accuracies. The performance of ASD
classification with and without feature selection methods was
also compared in some works. Chen et al. (2015) achieved
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FIGURE 2 | Summary of the involved literatures (A) relationship between number of studies and total sample size. (B) relationship between classification accuracy
and total sample size. The pink diamonds and the others represent the task-based fMRI literatures and the rs-fMRI literatures, respectively. The red dots denote the
same classification results by Reiter et al. (2021) and Fredo et al. (2019). The green hexagons denote the classification results of Kazeminejad and Sotero (2020).
(C) Classification accuracy comparison of studies with feature selection and not, regarding the rs-fMRI dataset. (D) Classification accuracy comparison of studies
with deep learning and not, regarding the rs-fMRI dataset with more than 800 participants. fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI.

90.8% classification accuracy using the top 100 features with
the highest variable importance compared with 58% accuracy
without feature selection. Guo et al. (2017) demonstrated
that classification with feature selection outperformed that
without feature selection method by 9.09%, and different feature
selection methods could bring different classification results.
Worth mentioning was that the ASD classification studies
using feature selection method in the review can averagely
bring better classification accuracies than those without it
as statistically illustrated in Figure 2C. In summary, feature
selection methods made an indelible contribution to the
performance of ASD classification.

The Property of the Dataset
Another non-ignored factor of the high classification accuracy
is the property of the dataset applied for classification such
as sample size and data heterogeneity. The total sample size
of the involved literatures mostly concentrated less than 400

or more than 800 as shown in Figure 2A. The relationship
between classification accuracy and sample size was illustrated
in Figure 2B, in which the pink diamonds and others
represent the results of the literatures involving tasks or
not, respectively. Classification across multiple sites has to
accommodate additional sources of variance in subjects, scanning
procedures, and equipment in comparison to single-site datasets
(Nielsen et al., 2013) and usually results in low classification
accuracies detailed in Table 1. However, it is worth noting that
several works in Table 1 applying the fMRI data from the
ABIDE dataset brought high accuracies from 81% to 96.15%
(Price et al., 2014; Chen et al., 2015; Bi et al., 2018; Kong et al.,
2018; Zhao et al., 2018, 2020; Kazeminejad and Sotero, 2019).
Through analysis, the commonality of datasets applied in these
papers is that they are all subsets of the large dataset according
to some special selection criteria, such as site limitation, single
protocol, or age-related selection, which can alleviate data
heterogeneity to some extent and improve the classification
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TABLE 2 | Accuracy comparison between deep learning and other machine learning.

Study Deep learning accuracy Other machine learning accuracy

Dvornek et al. (2017) LSTM classifier: 68.5% SVM classifier: 66.9%
MHPC classifier: 59.2%

Heinsfeld et al. (2018) DNN classifier: 70% SVM classifier: 65%
RF classifier: 63%

Kong et al. (2018) DNN classifier: 90.39% RF classifier:74.46%

Sherkatghanad et al. (2020) CNN classifier: 70.22% SVM classifier:
KNN classifier:
RF classifier:

Kazeminejad and Sotero (2020) A multilayer perceptron: 64.4% (average) LR classifier: 61% (peak)
RF Classifier: 63% (peak)
RBF-SVM classifier: 67% (peak)

Thomas et al. (2020) CNN classifier: 64% SVM classifier: 66% (comparable)

Huang et al. (2020) DBN classifier: 76.4% DNN classifier: 70%
LSTM classifier: 68.5%
L-SVM classifier: 68.5%
SVC classifier: 66.9%
LOOCV classifier: 60%
RBF-SVM: 59.2%

Yin et al. (2021) DNN classifier: 79.2% L-SVM classifier: 68%
Medium-SVM classifier: 72.2%
Coarse Gaussian-SVM classifier: 66.9%
Medium-KNN classifier: 72.4%
Cosine-KNN classifier: 72.6%
Weighted KNN classifier: 72.4%

Yang et al. (2021) CNN classifier: 77.74% AE-MLP classifier: 68.56%
SVM classifier: 62.97%
RF classifier: 60.62%
Conv GRU-CNN classifier:67%

Abbreviations: LSTM, long short-term memory; SVM, support vector machine; DNN, deep neural network; RF, random forest; KNN, K-nearest neighbor; LR, logistic
regression; RBF-SVM, radial basis function-support vector machine; L-SVM, linear support vector machine; SVC, support vector classification; LOOCV, leave-one-out
cross-validation; AE-MLP, autoencoders-multilayer perceptron; CNN, convolutional neural network; GRU, gated recurrent unit.

accuracy. Eslami et al. (2019) evaluated their proposed machine
learning method on all data and each site data of the ABIDE
dataset respectively, resulting in 70.1% for all data and 80% peak
accuracy for the Oregon Health & Science University (OHSU)
site. Likewise, several works that focused on childhood and
adolescent fMRI data also attained high accuracies from 83% to
91% (Uddin et al., 2013a; Price et al., 2014; Iidaka, 2015; Bernas
et al., 2018; Dekhil et al., 2018) following the principal of the
above age-related selection. In the work of Kazeminejad et al., the
dataset including 817 participants was split into five age ranges,
and the best classification accuracies for each range were obtained
ranging from 69% to 95% (Kazeminejad and Sotero, 2019). In
accordance with the task-based fMRI studies, an approximately
linear relationship between classification accuracies and sample
size was discovered in their work as illustrated in Figure 2B.
In addition, the same sample size could result in different
classification accuracies due to different heterogeneity of the
dataset, which was illustrated by the red dots in Figure 2B
(Fredo et al., 2019; Reiter et al., 2021). All in all, the property
of the applied dataset can definitely influence the classification
result to some extent.

The Choice of Atlas
As discussed in section “FEATURE CONSTRUCTION
FROM RAW FMRI DATA,” atlases of anatomical, functional

parcellation, and data-driven extraction were applied for FC
feature construction in ASD classification. It was believed that
the choice of atlas could influence classification accuracy to some
extent (Plitt et al., 2015; Abraham et al., 2017; Dadi et al., 2019;
Liu Y. et al., 2020; Yin et al., 2021). Plitt et al. addressed the
impact of three different brain atlases on classifications (Power
et al., 2011; Plitt et al., 2015), which are the DiMartino atlas, the
Destrieux atlas, and the Power atlas. The Destrieux atlas slightly
outperformed the other two as illustrated in Figure 3, indicating
that different anatomical atlases influenced the classification
accuracy indeed. Meanwhile, Abraham et al. considered three
different predefined atlases and four data-driven atlases and
compared their classification performance (Abraham et al.,
2017). The three predefined atlases are the anatomical HO atlas
(Desikan et al., 2006), the functional Yeo atlas (Yeo et al., 2011),
and the functional Craddock atlas (Lashkari et al., 2009), while
the four data-driven atlases were derived based on K-means,
Ward’s clustering, ICA, and multi-subject dictionary learning
(MSDL). Data-driven atlases were reported to perform more
poorly than the predefined atlases except the MSDL-based atlas,
and the functional HO atlas led to maximal performance. In the
work of Dadi et al., functional atlases were reported to lead to
better prediction than anatomical atlases, and the MSDL-based
atlas was found to perform comparably (Dadi et al., 2019). The
MSDL-based atlas exhibited robust performance out of all the
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FIGURE 3 | Classification accuracy comparison based on different choice of atlas in the work of Plitt et al. (2015). RF, random forests; KNN, K-nearest neighbor;
L-SVM, linear support vector machine; RBF-SVM, Gaussian kernel support vector machine; GNB, Gaussian naïve Bayes; LDA, linear discriminant analysis; L1LR, L1
logistic regression; L2LR, L2 logistic regression; ENLR, elastic-net logistic regression; Average, average of the above nine methods.

anatomical and data-driven atlas approaches (Yin et al., 2021).
In a summary, the choice of atlas played an important role on
the prediction accuracy. Apart from this, the great meaningful
contribution of the choice of atlas was the explanation of
discriminant features or biomarkers derived from classification.

Development of Machine Learning Method
As the core of classification, machine learning methods are
undoubtedly a crucial factor on classification accuracies.
Different machine learning methods and their variants
were introduced to fMRI data classification study for better
classification results, determination of discriminant features,
ASD biomarkers exploration, or just method innovation.
Among traditional shallow machine learning methods, SVM was
recognized as a powerful one than others. With the appearance
and rapid development of deep learning, it was widely applied
in ASD classification. Apart from its lack of interpretability
restrictions and being time consuming, deep learning has shown
great potential power in classification compared with traditional
machine learning methods as discussed in section “Summary
About Machine Learning Methods and Classification Accuracy
Results.” Further and deeper study on deep learning can continue
to promote the development of ASD classification. The most
promising focus on the application of machine learning to the
neuroimaging field may be to create specific methods for the
special properties of fMRI.

SIGNIFICANT RESULTS SUMMARIZED
FROM INVOLVED LITERATURES

It is well known that one major goal of the classifications
between ASD and TC is to obtain high accuracies, while

another is to determine the informative brain regions or
networks contributing to the classifications with the ultimate
goal of yielding a possible biomarker of ASD. The higher the
accuracy, the more trustworthy the identified brain regions or
networks. Not only the informative brain areas or networks were
determined, but the physiology and behavior explanation about
them were exhibited in most of the papers.

Consistent Results From FC
Classification Using the AAL Atlas
Given that FCs were chosen by many researchers as classification
features, we summarized informative brain regions and networks
determined by classifications between ASD individuals and TCs
using FCs as features in Table 3. The brain regions and networks
are more comparable in different literatures which applied the
same brain atlas regardless of different pattern classification
methods. As an anatomically defined atlas, the AAL atlas was
frequently adopted in ASD classifications (Murdaugh et al., 2012;
Wang et al., 2012; Iidaka, 2015; Guo et al., 2017; Bi et al.,
2018; Liu J. et al., 2020; Tang et al., 2020; Zhao et al., 2020).
The informative brain regions and networks were determined
separately from FC classifications as shown in Table 3 except the
work of Guo et al. (2017) and Tang et al. (2020). The common
brain regions determined by classifications of the several above
literatures included the right posterior cingulate cortex (PCC),
the left PCC, and the right thalamus. The conclusion derived
from the work of Wang et al. (2012, 2017, 2020) is that
weak functional connections between the frontal lobe and the
rest of the cortex occurred in ASD patients compared with
the TCs. Dodero et al. (2015a) obtained eight informative
connections through FCs classification detailed in Table 3, in
which red connections identify higher connectivity in healthy
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TABLE 3 | Summary of informative brain regions or networks determined by classification between ASD and TD using FCs as features.

Authors Brain atlas Informative brain regions or networks contributing to the classification
between ASD and TD

Anderson et al. (2011) 7,266 regions The DMN, superior parietal lobule, fusiform gyrus and anterior insula

Wang et al. (2012) The AAL atlas Weak functional connections between the frontal lobe and the rest of the cortex

Murdaugh et al. (2012) The AAL atlas The PCC, PCUN, and MFC

Nielsen et al. (2013) 7,266 regions The DMN, parahippocampaland fusiform gyri, insula, Wernicke area, and
intraparietal sulcus

Deshpande et al. (2013) 18 self-defined ROIs Functional connections between the fusiform face area and middle temporal
gyrus

Iidaka (2015) The AAL atlas The medial part of the superior frontal gyrus, anterior and posterior cingulate
cortices, and thalamus

Chen et al. (2015) The Power atlas Default mode, somatosensory/motor (hand region), and visual networks
The left anterior cingulate gyrus, bilateral postcentral gyrus, right PCUN, left
calcarine sulcus, the left paracentral lobule and the right postcentral gyrus

Plitt et al. (2015) The Power atlas
The Destrieux atlas
The DiMartino atlas

The insula, ventromedial prefrontal cortex, anterior, middle, and posterior
regions of cingulate cortex, supplementary motor cortex, anterior temporal
lobes, posterior aspects of the fusiform gyrus, posterior superior temporal
sulcus, temporal parietal junction, intraparietal sulcus, and inferior and middle
frontal gyri, bilaterally
Default-mode network, the frontal-parietal control network

Yahata et al. (2016) Sulci-based anatomical
atlas

16 discriminative functional connections
The cingulo-opercular network

Dodero et al. (2015b) The Power atlas Red: left precentral gyrus-left occipital pole, left precentral gyrus-left precentral
gyrus, left superior frontal gyrus-right lateral occipital cortex, right superior
frontal gyrus-right parietal operculum
Blue: right frontal medial cortex-right precentral gyrus, left caudate-right
precentral gyrus, left putamen-right precentral gyrus, right frontal pole-right
lateral occipital cortex

Abraham et al. (2017) The HO atlas
The Yeo atlas
The CC200 atlas

DMN, Pareto-insular network and semantic ROIs

Guo et al. (2017) The AAL atlas 32 most significant FC mainly from or cross different pre-defined brain networks
including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum

Heinsfeld et al. (2018) 7,266 regions The regions with the highest anticorrelation: paracingulate gyrus, supramarginal
gyrus, and middle temporal gyrus
The regions with the highest correlation: occipital pole, and lateral occipital
cortex; superior division

Bi et al. (2018) The AAL atlas The right IFG (opercular part), the right PCUN, superior frontal gyrus (orbital
part), the left inferior occipital gyrus, the right hippocampus, the bilateral
superior frontal gyrus (dorsolateral), the right median cingulate and
paracingulate gyri, the right posterior cingulate gyrus, the left supramarginal
gyrus, the right thalamus, the right superior, and middle temporal gyrus

Bhaumik et al. (2018) The Brodmann’s areas
ROIs

Dorsolateral prefrontal cortex, somatosensory association cortex, primary
auditory cortex, inferior temporal gyrus
and temporopolar area

Fredo et al. (2019) The Gordon’s cortical
atlas
The HO atlas

COTC, visual, DA, DMN, and SMH

Liu Y. et al. (2020) The CC200 atlas Lower correlation between the anterior and posterior DMN in autistic individuals

Sherkatghanad et al. (2020) The CC400 atlas The right supramarginal gyrus, the fusiform gyrus, the cerebellar vermis (C115,
C188, C247, and C326)

Zhao et al. (2020) The AAL atlas Precentral gyrus, middle frontal gyrus, middle cingulate gyrus, posterior
cingulate gyrus, amygdala, angular gyrus

Huang et al. (2020) The CC200 atlas 20 discriminative functional connections

Reiter et al. (2021) The Gordon atlas
The HO atlas

COTC, visual, SMH, DMN, and DA

Abbreviations: ASD, autism spectrum disorder; TD, typically developing; FC, functional connectivity; DMN, default mode network; AAL, Automated Anatomical Labeling;
PCC, posterior cingulate cortex; PCUN, precuneus; MFC, medial prefrontal cortex; ROI, region of interest; HO, Harvard Oxford; IFG, inferior frontal gyrus; COTC,
cingulo-opercular task control; DA, dorsal attention; SMH, somatosensory motor hand.
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subjects while blue connections identify a higher connectivity
strength in autistic subjects. Guo et al. (2017) found 32 most
significant FCs between the two groups mainly from or across
different pre-defined brain networks including the default mode,
cingulo-opercular, frontal-parietal, and cerebellum. The detailed
significant brain areas about the above papers are shown in
Table 3.

Consistent Results About the Default
Mode Network
The DMN comprised several dispersed cortical nodes including
the anterior cingulate/medial prefrontal cortices and the PCC
(Raichle et al., 2001; Greicius et al., 2003; Buckner et al., 2008;
Washington et al., 2014). Functionally, the DMN is considered to
relate to self-referential cognition including domains of known
impairment in ASD (Chen et al., 2015), which have been reported
in some previous non-classification research (Monk et al., 2009;
Assaf et al., 2010; Minshew and Keller, 2010; Zielinski et al., 2012;
Martino et al., 2013; Redcay et al., 2013). Notably, some common
regions determined by the aforementioned literatures using the
AAL atlas belong to the DMN. Early in 2011, Anderson et al. have
reported the phenotypic pattern of impaired communication
within and between the DMN and attention control networks in
ASD through classification between the two groups (Anderson
et al., 2011). Soon afterward, a series of ASD classification studies
were carried out and resulted in consistent conclusions about
the DMN. As depicted in Table 3, impaired FCs related to the
DMN were obtained in several literatures (Nielsen et al., 2013;
Chen et al., 2015; Yahata et al., 2016; Abraham et al., 2017;
Heinsfeld et al., 2018; Fredo et al., 2019; Reiter et al., 2021).
Besides, Murdaugh et al. (2012) demonstrated that deactivation
and connectivity of the DMN were altered in individuals with
ASD at a high classification accuracy of 96.3%. The impaired
DMN was also reported in the research by Plitt et al. together
with the frontal-parietal control network (Plitt et al., 2015). In
addition, seven distinctive fronto-parietal and temporal networks
between ASD patients and TCs were reported in the work of
Bernas et al. (2018) one of which was DMN. Lower correlation
was proved between the anterior and posterior DMN in autistic
individuals (Liu Y. et al., 2020). Both dorsal DMN (dDMN)
and precuneus (PCUN) achieved better accuracies than other
brain networks in the work of Yang et al. (2021), which are
the subnetworks of the DMN. Taken together, the DMN is
undoubtedly a crucial component of the underlying neurobiology
and has the potentiality to serve as a biomarker of ASD.

Partial Hemispheric Distribution of
Discriminant FCs or Brain Regions
It has been reported that the distributed patterns of functional
abnormalities are over the whole brain of ASD patients (Zhao
et al., 2018). Actually, in the work of Nielsen et al. (2013), a
homogenous regional distribution of connectivity abnormalities
in autism was argued against and replaced by a heterogeneous
spatial distribution of connectivity disturbances that involves
specific brain regions. The conclusion of partial hemispheric
distribution of informative brain regions and networks in autism
were identically obtained in several other involved literatures.

There were significantly more regions in the right hemisphere
than in the left among the brain regions involved in the 16 FCs
identified in the study of Yahata et al. (2016) with the left intra-
hemispheric FCs absent. Likewise, significant discriminative
connections between the two groups were mostly located in the
right hemisphere, and there were more involved brain areas
in the right hemisphere than in the left, which was detailed
in the work of Dodero et al. (2015a). Odriozola et al. (2016)
also found that children with ASD displayed greater activation
of the right insula when viewing deviant faces vs. scenes in
contrast to their TCs (Odriozola et al., 2016). In addition,
the best performance was achieved in distinguishing between
ASD/TC subjects for the right hemisphere by Soussia and Rekik
indicating that the right hemisphere features may have more
discriminative power (Soussia and Rekik, 2018). Though not all
relative papers involved the conclusion about partial hemispheric
distribution, it undoubtedly supplied a novel understanding and
a new prospective for ASD.

Identification of the Potential ASD
Biomarker
As a prime conception in the field of psychiatric neuroimaging
research, biomarkers have successfully attracted enough
attraction of researchers especially with the emergence and
development of machine learning. More than 10 years ago,
machine learning methods were thought to be a promising
method to reveal brain states that discriminate patients from
controls and thus constitute a valuable tool to identify potential
biomarkers (Mourão-Miranda et al., 2005; Pereira et al., 2009).
Notably, 38 of 47 papers in the review mentioned “biomarker”
to some extent, which appropriately proved the collaborative
efforts from various research teams to explain or identify the
objective biomarker of ASD using machine learning methods
and fMRI data. Plitt et al. (2015) indicated that FC classification
of autism identifies highly predictive brain features but falls short
of biomarker standards for several reasons, such as establishing
standard analytic techniques, demonstrating biomarkers
robustness to variability across larger numbers of individuals
and sites, and addressing the diagnostic potential of brain-based
biomarkers. It was thought that the predicted autistic neural
patterns determined by classification are anticipated to serve as
reproducible biomarkers and important in early diagnosis and
treatment (Kong et al., 2018; Huang et al., 2020). Resting-state FC
measures were proved to be potential diagnostic biomarkers for
ASD in several studies (Deshpande et al., 2013; Price et al., 2014;
Plitt et al., 2015; Bhaumik et al., 2018; Kong et al., 2018; Soussia
and Rekik, 2018; Fredo et al., 2019). The study of Iidaka (2015)
indicated that an intrinsic connectivity matrix constructed from
rs-fMRI data could yield a possible biomarker of ASD restricted
to children and adolescents. It was proposed that the high-order
FC could be affected in ASD compared with the traditional FC
and thus can be used as effective biomarkers for ASD diagnosis
in the work of Zhao et al. (2018). In the study of Bernas et al. a
change in the coherence of temporal neurodynamics is identified
to be a biomarker of ASD (Bernas et al., 2018). Thomas et al.
(2020) reported that hidden somewhere in the high-dimensional
spatio-temporal signal are the biomarkers that could distinguish
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between healthy and psychiatric subjects. A strong negative
correlation between the left precuneous cortex and the left
superior frontal gyrus was anticipated to serve as reproducible
biomarkers (Huang et al., 2020). In the work of Yang et al. (2021),
the dDMN, PCUN, and salience network (SN) are suggested to
be highly different between ASD and normal control (NC) and
have the potential to be reliable biomarkers for the identification
of ASD. Though most works of relative papers failed to identify
definite and replicated biomarkers of ASD, efforts from different
research teams have put the identification of the ASD biomarker
forward, and it was believed that an ideal biomarker would be
derived through the continuous work.

Some Other Specific Meaningful Results
In the work of Heinsfeld et al. (2018), the most contributing
conclusion is the anterior-posterior disruption in the connectivity
of ASD, which has been reported to be shown in previous
task-related (Adam et al., 2004; Kana et al., 2009) and rs-fMRI
studies of ASD patients (Cherkassky et al., 2006). Similarly,
the right supramarginal gyrus, the fusiform gyrus, and the
cerebellar vermis were found to play a significant role in the
diagnosis of autism (Sherkatghanad et al., 2020), which was
another evidence about the disruption of anterior-posterior brain
connectivity in ASD. Lower correlation between the anterior and
posterior DMN was demonstrated in autistic individuals than
controls (Liu Y. et al., 2020). Brain regions related to social
communication, emotion expression, language comprehension,
and action coordination were determined, such as inferior frontal
gyrus, amygdala, angular gyrus, and hippocampus (Zhao et al.,
2018). In the work of Uddin et al. the SN was identified to
play a critical role in discriminating children with ASD from
TC and could be a hallmark of ASD (Uddin et al., 2013b) with
the explanation that regions within the SN are implicated in
multiple functions, ranging from attention to interception and
subjective awareness (Craig, 2011). Changes in caudate volume,
caudate-cortical FC, and inferior frontal gyrus FC were reported
to be highly informative in the classification of the two groups
(Zhou et al., 2014). Moreover, the social brain has been accepted
to be impaired in individuals with ASD, which was further
confirmed from the perspective of fMRI classification through
four literatures (Deshpande et al., 2013; Just et al., 2014; Chanel
et al., 2016; Bernas et al., 2018). Though most involved literatures
identified contributing brain regions or networks, some still gave
more prominence to the methods and results of classifications
and ignored the determination of informative brain regions and
networks (Kassraian-Fard et al., 2016; Dvornek et al., 2017; Ktena
et al., 2017; Kong et al., 2018; Kazeminejad and Sotero, 2019; Liu
J. et al., 2020; Niu et al., 2020; Yin et al., 2021).

FUTURE WORK DIRECTION

In this paper, we summarized 47 literatures involved in
fMRI data classification between ASD individuals and TCs.

Most researchers expected to derive the biomarkers of ASD
through classification studies and have made some progress
in deed, but the overall assessment of classification of
ASD using fMRI data thus far falls short of biomarker
standards. Despite this, several work directions may need
to be paid more attention by researchers: (1) Considering
the factors for high classification accuracies, development
of novel feature selection methods should be an important
work direction for classifications between ASD individuals
and TCs, which could facilitate machine learning methods
to determine the most discriminant features. (2) Another
pivotal work direction is to obtain advanced machine learning
methods by improving the existing methods and combining
the superiority of different methods, especially trying to
develop specific machine learning methods for the special
properties of fMRI. (3) Non-invasive rs-fMRI data classification
studies between ASD individuals and TCs will still be the
prominent work direction especially since the release of
the ABIDE dataset. More robust and replicated biomarkers
are more likely derived from big datasets. (4) Age is an
important factor in the ASD diagnosis. Age-specific research
can significantly reduce the heterogeneity of ASD dataset
and increase the classification rate. Therefore, the age-specific
research of ASD will be a valuable research direction. (5)
Because of the higher classification accuracies for task-based
fMRI data, it may be a new work direction to design some
easily operated and efficient tasks to acquire fMRI data
to form large datasets for further research. In the future,
developed feature selection and machine learning methods
combined with large rs-fMRI datasets or easily operated task-
based fMRI dataset may appear to serve as a promising
diagnostic tool for ASD.
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