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Despite the wide range of proposed biomarkers for Parkinson’s disease (PD), there
are no specific molecules or signals able to early and uniquely identify the pathology
onset, progression and stratification. Saliva is a complex biofluid, containing a wide
range of biological molecules shared with blood and cerebrospinal fluid. By means of an
optimized Raman spectroscopy procedure, the salivary Raman signature of PD can be
characterized and used to create a classification model. Raman analysis was applied to
collect the global signal from the saliva of 23 PD patients and related pathological and
healthy controls. The acquired spectra were computed using machine and deep learning
approaches. The Raman database was used to create a classification model able to
discriminate each spectrum to the correct belonging group, with accuracy, specificity,
and sensitivity of more than 97% for the single spectra attribution. Similarly, each patient
was correctly assigned with discriminatory power of more than 90%. Moreover, the
extracted data were significantly correlated with clinical data used nowadays for the PD
diagnosis and monitoring. The preliminary data reported highlight the potentialities of the
proposed methodology that, once validated in larger cohorts and with multi-centered
studies, could represent an innovative minimally invasive and accurate procedure to
determine the PD onset, progression and to monitor therapies and rehabilitation efficacy.
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GRAPHICAL ABSTRACT |

INTRODUCTION

Parkinson’s disease (PD) is one of the most common
neurodegenerative disorders occurring in the elderly, associated
with the inactivation of dopaminergic neurons in the substantia
nigra and with the appearance of Lewy bodies made of abnormal
α-synuclein (Boller et al., 1980; Davie, 2008). Epidemiologically,
PD is the second most relevant neurodegenerative disorder
after Alzheimer’s disease (AD), with an increasing burden in
aging society (Berg, 2008). The PD diagnosis mainly relies on
clinical motor symptoms, which occur generally decades after the
pathology onset (Sveinbjornsdottir, 2016; Lindestam Arlehamn
et al., 2020). This lag time hampers the detection of the earliest
phases of the disease and the time at which the treatment with
neuroprotective drugs could have the greatest effect (Berg,
2008). The further onset of cognitive impairment of variable
degrees, common in various neurodegenerative disorders,
before and during PD progression, lead to the worsening of the
clinical diagnosis and prolonging the diagnostic period for a
clear PD identification (Aarsland et al., 2010; Martinez-Horta
and Kulisevsky, 2019). In this frame, researchers are focused
on the identification of a measurable and easily collectable
PD biomarker able to identify the disease onset also in the
preliminary pathological phases [levels 1 and 2 of Braak’s staging
(Braak et al., 2003)], to monitor the therapeutic and motor-
neuronal rehabilitation efficacies and also to clearly distinguish
the different forms of parkinsonism (Gelb et al., 1999). Up to
now, most of the potential biomarkers have been identified in the
cerebrospinal fluid (CSF) and in peripheral blood (serum and

Abbreviations: AD, Alzheimer’s disease; CNN, convolutional neural network;
CSF, cerebrospinal fluid; CTRL, healthy controls; CV, Canonical Variable; DL, deep
learning; FCNN, fully connected neural network; H&Y, Hoehn and Yahr; LDA,
linear discriminant analysis; LEDD, levodopa equivalent daily doses; LOOCV,
leave-one-out cross-validation; LOPOCV, leave-one-patient-out cross-validation;
MCC, Matthews correlation coefficient; MCI, mild cognitive impairment; ML,
machine learning; MVA, multivariate analysis; PC, Principal Component; PCA,
principal component analysis; PD, Parkinson’s disease; ROC, receiver operator
characteristic; RF, random forest; RS, Raman spectroscopy; SERS, surface enhanced
Raman scattering; SMBO, sequential model-based optimization; SVM, support
vector machine; TPE, Tree Parzen Estimator; UPDRS III, movement disorder
society Unified Parkinson’s Disease Rating Scale motor part III.

plasma) (Parnetti et al., 2019). α-Synuclein, and the autosomal
enzymes involved in synuclein degradation, are actually the
most promising biomarkers and have been widely studied in
CSF and blood, playing a central role in PD and other synuclein
aggregation disorders (Gao et al., 2015; Eusebi et al., 2017;
Parnetti et al., 2017, 2019; Poewe et al., 2017). Other molecules
involved directly in PD onset or in the organism response to
the disease have been characterized and proposed as potential
biomarkers, including amyloid species, microRNA, specific
cytokines expression patterns and molecules associated to the
damages of radical oxygen species (ROS) (Zhang et al., 2008;
Devic et al., 2011; Bäckström et al., 2015; Liang et al., 2015;
Lleó et al., 2015; Kori et al., 2016; Bougea et al., 2019; Maass
et al., 2019; Parnetti et al., 2019; Sancho Cantus et al., 2019).
The main limitations related to all the described molecules
concern the invasiveness of the sample collection procedure
(i.e., CSF), the sharing of several biomarkers with other similar
pathologies (PD and AD) and to the techniques used for their
characterization (Berg, 2008). The application of methodologies
such as ELISA, blotting assays or mass spectroscopy focalize
the investigation on one, or few, targets for each analysis with
long preprocessing steps and high-cost procedures and materials
(McKhann et al., 2011; Postuma et al., 2015; Parnetti et al.,
2019). These limitations make difficult the characterization of
the whole biomarkers presence inside the chosen biofluid, hiding
the complex expression patterns that can precisely identify the
onset of a neurological disorder, such as the entire proteome
involved in the inflammatory response or the biological product
of the ROS pathway (Berg, 2008; Reed, 2011; Maciejczyk et al.,
2020). Therefore, the identification of a fast methodology able
to determine a global biomarker with a minimally invasive
procedure is of crucial importance for the PD diagnosis and
for the monitoring of therapeutic and rehabilitative efficacy.
Saliva is a complex biofluid collectable with a minimally
invasive procedure, containing several biological molecules
(i.e., protein, enzymes, lipids, nucleic acids, carbohydrates,
metabolites, and hormones) shared with blood or CSF due to
the physiological transport processes (Huang, 2004; In et al.,
2009). Among these molecules, different studies reported the
presence of potential biomarkers directly correlated with PD
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onset, including heme-oxygenase-1 and cysteine protease DJ-1
(Kang et al., 2014; Bäckström et al., 2015; Song et al., 2018;
Bougea et al., 2019). Therefore, the characterization of the
entire pattern of biomolecules contained in saliva of PD patients
could be of crucial importance in order to assess differences in
composition and attributing at the same time the origins of these
differences. To overcome the detection and velocity limits of
the methodologies used nowadays, one of the most promising
approaches regards Raman spectroscopy (RS) that is able to
detect the concomitant presence, concentration, mutation,
environment, and interactions of different biological species
inside a target biofluid (Devitt et al., 2018). The output of the RS
analysis consists in a complex spectrum containing the complete
and sensitive (10−8 to 10−15 M) biochemical information in
the so called “Raman fingerprint” (Feng et al., 2015). RS has
already been proposed for the diagnosis of neurodegenerative
diseases (Gualerzi et al., 2019; Carlomagno et al., 2020b)
and the RS analysis of saliva has been applied for forensic
purposes, chemotherapy monitoring, drug abuse evaluation,
and for the diagnosis of different pathologies including tumors,
viral infections, amyotrophic lateral sclerosis, AD, and for the
detection of salivary α-synuclein in PD patients (Farquharson
et al., 2005; Virkler and Lednev, 2010; Gonchukov et al., 2012;
Li et al., 2012; Andreou et al., 2013; Al-Nimer et al., 2014;
Radzol et al., 2014; Feng et al., 2015; Qiu et al., 2016; Ralbovsky
et al., 2019; Carlomagno et al., 2020a). The aim of the present
work regards the application of the RS for the analysis of saliva
collected from PD patients and compared with related healthy
subjects and other pathological controls to verify statistical
differences able to create an automatic classification model.
The methodology involves the modification of a previous RS
protocol for the analysis of saliva (Carlomagno et al., 2020a),
in which the time for sample preparation has been reduced,
whereas the total amount of biological molecules that can be
monitored has increased. The collected data were used for the
characterization of the PD Raman fingerprint by means of the
multivariate analysis (MVA), creating a classification model able
to discriminate the membership of the single spectra. In order
to enhance the discriminative power from the single-spectra
level to a patient-level enabling the deployment of the predictive
framework for diagnostic purposes, more complex non-linear
interactions need to be represented. For this reason, machine
learning (ML) and deep learning (DL) models have been
investigated, further automating the data analysis for unveiling
hidden patterns that correlate with the pathology. In particular,
DL has emerged as one of the most focused research aimed at
learning features and directly building predictive models from
large-scale raw datasets (Chatzidakis and Botton, 2019), with
excellent performances in many biochemical fields including
spectroscopy (Alakwaa et al., 2018), metabolomics (Eraslan et al.,
2019), and genomics (Gautam et al., 2015). In fact, DL based
methods are well adapted to highlight the complex connections
within high dimensional data provided by RS (Gautam et al.,
2015; Lussier et al., 2020). In this work, the Raman data
collected from PD patients, AD and mild cognitive impairment
(MCI) patients and healthy controls (CTRL) were processed
creating a MVA-based classification model able to individuate

the single Raman fingerprint of PD patients with sensitivity,
specificity, and accuracy of respectively, 97, 98, and 98% for
the single-spectrum classification model. The consecutive
application of convolutional neural network (CNN), combined
with a data augmentation strategy to enrich the training dataset
and a sequential model-based optimization (SMBO) for the
computation of the hyper-parameter configuration (Hutter
et al., 2011; Feurer and Hutter, 2019), revealed sensitivity,
specificity, and accuracy of 90, 94, and 89% in the identification
of PD patients between the considered experimental groups.
The extracted parameters from the Raman database correlated
with the clinical scores used for the diagnosis and monitoring
of PD progression.

MATERIALS AND METHODS

Materials
All the materials were purchased from Sigma-Aldrich
(United States) and used as received if not differently specified.
Salivette R© swabs for the saliva collection were purchased
from Sarstedt (Germany, catalog number S1 1534). Mini Bin
aluminum foils (Sigma-Aldrich, United States, catalog number
Z691569-1EA) were used as Raman substrate. All the materials
were used following the manufacturer’s instructions without
further purification steps. All the described procedures were
performed in accordance with relevant guidelines, regulations,
and ethical standards. The procedures were approved by the
Ethical Committee of the institution in which the experiments
were done or in accord with the Helsinki Declaration of 1975.

Patients Selection
All the recruited participants for the exploratory study provided
written informed consent and the study was approved by the
institutional review board at IRCCS Fondazione Don Carlo
Gnocchi ONLUS on March 12th, 2018. The study was not
pre-registered and no randomization and no blind methods
were applied. PD patients and CTRL recruitment took place at
the Neurology Unit of IRCCS Fondazione Don Carlo Gnocchi
ONLUS in Milan (Italy), between June 2019 and June 2020. AD
participants were recruited in the Department of Neurology-
Stroke Unit of IRCCS Istituto Auxologico Italiano in Milan
(Italy). PD patients were diagnosed according to the Movement
Disorder Society Clinical Diagnostic Criteria for PD (Postuma
et al., 2015), excluding patients affected by vascular parkinsonism
(with cerebrovascular disease, as indicated by brain imaging
computed tomography or magnetic resonance imaging, or by the
presence of symptoms that are consistent with stroke). Moreover,
brain tumor, drug-induced parkinsonism, other known or
suspected causes of parkinsonism (e.g., metabolic, etc.), or any
suggestive features of a diagnosis of atypical parkinsonism,
severe speech problems and poor general health, concomitant
neurologic, and/or psychiatric diseases were also excluded. The
Hoehn and Yahr (H&Y) and the Movement Disorder Society –
Unified Parkinson’s Disease Rating Scale motor part III (UPDRS
III) criteria were adopted for the evaluation of the disease stage
and the symptoms severity.
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TABLE 1 | Number, age, male sex percentages, Hoehn and Yahr (H&Y), Unified
Parkinson’s Disease Rating Scale motor part III (UPDRS III), levodopa equivalent
daily doses (LEDD) of subjects affected by Parkinson’s disease (PD), by
Alzheimer’s disease (AD), and healthy subjects (CTRL).

PD AD CTRL

Number 23 10 33

Age (p = 0.246) 69.9 ± 8.8 78.6 ± 7.9 63.5 ± 8

Male sex (p = 0.14) 74% 80% 66.6%

H&Y 2.19 ± 0.7 – –

UPDRS III 31.7 ± 14.5 – –

LEDD 466 ± 220 – –

Subject’s age in different groups was compared through ANOVA two-tailed t-test.
Sex percentage was tested through Chi-square test. Values are followed by
standard deviations (±n) or by the relative percentage (n%).

Levodopa equivalent daily doses (LEDD) prescribed at the
time of saliva collection were registered for each patient. Patients
with AD patients and MCI due to AD were diagnosed according
to the clinical criteria described by Albert et al. (2011) and
McKhann et al. (2011), excluding individuals with neurological
or major psychiatric comorbidities. CTRL were matched for
age and gender to the AD and PD patients in order to limit
sex hormone variability in saliva that can affect the Raman
signature (Muro et al., 2016). Exclusion criteria for CTRL, PD,
and AD were a continuous drug administration (e.g., anti-
hypertensive) and the presence of chronic or/and inflammatory
oral or systemic diseases or infections. For this study, a total
number of 23 PD (n = 23), 10 AD (n = 10), and 33 CTRL
(n = 33) were selected for the saliva collection. The number of PD
patients was enrolled in the study without a preliminary sample
size calculation. Statistical comparison between the groups was
performed using the ANOVA two-tailed t-test and Chi-square
test. For all the participants, demographic, personal, and clinical
data were recorded. All the demographic and clinical information
regarding the subjects involved in the study are reported
in Table 1.

Saliva Collection and Raman Analysis
The saliva collection procedure was performed following the
instructions reported for Salivette R©. Briefly, the swab was placed
in the mouth of the subject and chewed for 1 min in order
to stimulate salivation. To limit the results variability, the
salivary collection time was fixed at an appropriate period
from the last meal (2 h) and from teeth brushing (2 h) in
the morning, keeping the same collection time for all the
participants. Storage time and temperature (4◦C), time between
the collection and Raman analysis, smoking and dietary habits,
oral and respiratory infections, gingivitis or periodontitis, and
recent dental surgeries were recorded. The swab was then
centrifuged at 1,000 g for 2 min in order to recover saliva. The
Raman acquisition procedure and part of the data processing
were adapted from previously published works (Carlomagno
et al., 2021a,b). Raman spectra were acquired using the Raman
microscope Aramis (Horiba Jobin-Yvon, France), equipped with
a laser source at 785 nm at 512 mW power emission. The
analysis was performed after instrument calibration with the

reference band of silicon at 520.7 cm−1, using 30 s acquisition
time. A drop (3 µL) of saliva was casted on an aluminum
foil and dried at room temperature in order to achieve the
surface enhanced Raman spectroscopy (SERS) effect (Muro
et al., 2016; Carlomagno et al., 2020a). Raman analysis was
performed using a square-map (80 µm × 60 µm) close to the
center of the drop, with the acquisition of at least 30 points
for each subject. The acquisition range was set between 400
and 1600 cm−1. All the analyses were performed using a 50×

objective (Olympus, Japan) and with a spectral resolution of
0.8 cm−1/step. The laser grating was set at 600 while the hole
was kept at 400.

Data Processing, Statistical Analysis,
and Single Spectrum Classification
Model
For successfully applying both MVA and ML, the spectral
preprocessing step is crucial as it can strongly affect the
classification performances. The raw acquired spectra were fitted
with a fifth-degree polynomial baseline and normalized (unit
vector) using the incorporated acquisition software LabSpec 6
(Horiba, France). With the same software, all the data were
despiked and resized, aligning the spectra to the peak at
1001 cm−1. The contribution of the aluminum substrate was
subtracted from each spectrum. For spectral representation, the
second-degree Savitzky–Golay smoothing method was applied.
Artifact spectra produced due to high fluorescence (saturation)
or no signal (laser Z-axis shift) were identified and removed
using the incorporated software LabSpec 6 (Horiba, France). At
least 20 spectra for each subject were maintained for further
statistical analysis. The MVA analysis was performed using
principal component analysis (PCA) and linear discriminant
analysis (LDA) on the three experimental groups, reducing
the dimension of the data and highlighting the most relevant
trends. The first 15 Principal Components (PCs) were used
to create the LDA-based classification model to discriminate
the data maximizing the variance between the groups, and
to avoid data overfitting analyzing the cumulative loading
of PCs of 78.3%. The error rate, accuracy, sensitivity, and
specificity in spectra attribution of the model were tested
using leave-one-out cross-validation (LOOCV) and confusion
matrix. The receiver operating characteristic (ROC) curve was
calculated using the MVA results on the classification model
(Gualerzi et al., 2019). The Matthews correlation coefficient
(MCC) was calculated to assess the quality of the binary
classification (PD versus no PD). ANOVA test and Chi-square
test were applied to verify the statistical relevant differences
between the experimental groups. The correlation between
the MVA results and clinical and paraclinical tests or scores
was calculated using Pearson’s correlation, while the partial
correlation coefficient was used to assess the effect of the
covariates (age and sex) on the final scores. Correlation results
were considered statistically relevant for p-values < 0.05. This
section of the statistical analysis was performed using OriginPro
2018 (OriginLab, United States).
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Machine Learning Data Preparation
The applied pipeline included four different phases: data
preprocessing and augmentation, model selection, model tuning,
and model evaluation. In the preprocessing steps, we performed
the removal of the outlier not-informative spectra (artifacts)
and the realignment of the Raman shift axis, by means of
a linear interpolation (Díez-Pastor et al., 2020), resampling
each spectrum on a given grid of 900 points between 400
and 1600 cm−1. The signal given by the intensity of the
aluminum substrate was subtracted from the original signal and
the background noise given by the fluorescence of the samples,
was removed by baseline fitting with a sixth-degree polynomial.

Despiking was performed by means of Whitaker–Hayes
algorithm (Whitaker and Hayes, 2018) allowing the removal
of any spike given by cosmic rays (threshold: 3.5; size of
the neighborhood: 11). Finally, we tested Standard Normal
Variate, Max value, Min–Max, and L2 techniques for intensity
normalization. The results obtained showed substantial
robustness of the classification models with respect to these
normalization methods. Data augmentation was performed
generating new synthetic data samples by applying variations
and distortions to the original data (injection of Gaussian noise,
offset in Raman shift and slope) to maximally exploiting their
intrinsic invariances and partially overcoming data scarcity
(Shorten and Khoshgoftaar, 2019). Since in our data set the
PD–AD classes appear to be unbalanced in favor of the CTRL
class, new patients’ data have been generated according to a
different multiplication factor based on the degree of imbalance.

Application of Learning Models for the
Patient Classification Model
Support vector machine (SVM) and random forest (RF) were
implemented as baseline ML algorithms and compared with
different DL models, namely fully connected neural networks
(FCNN) and 1D CNNs. A grid search approach was applied
to find suitable hyper-parameters configurations in ML models,
while Tree Parzen Estimator (TPE) sampling and SMBO has
been used to optimize our FCNN and CNN, respectively. The
DL-related hyper-parameters optimization task was performed
through the Optuna framework (Akiba et al., 2019) in
combination with Scikit-Optimize Library (Head et al., 2018).
This Bayesian optimization framework allows the integration, in
addition to the native TPE sampler, an SMBO module provided
by Scikit-Optimize. The hyper-parameters optimization involved
two main phases: the overall DL model structure optimization
(selecting the number of convolutional or dense layers) and
the tuning of the fine hyper-parameters. SMBOs were applied
with Gaussian processes and RF regressions as base estimators
along the process, both in combination with specific acquisition
function. All the optimizations were performed in 10-folds
cross-validation and the objective function was minimized on
the average classification error. The models performances were
evaluated on their ability in discriminating between PD, AD, and
CTRL subjects according to the majority label assigned to their
spectra. To control overfitting, we regularized our DL model
by the intensive use of dropout masks in the fully connected

layers responsible for the classification. In addition, we applied
early stopping to avoid overtraining that could potentially harm
generalization in our settings. Furthermore, to overcome any
classification bias given by an arbitrary test-set choice, we applied
the leave-one-patient-out cross-validation (LOPOCV), a robust
and stable procedure where each test-fold is composed by the
entire set of spectra from a single patient that guarantees a
most accurate estimation of the model performances. The entire
pipeline was coded in Python, and while ML algorithms have
been implemented through the Scikit-Learn Library (Pedregosa
et al., 2011), for the DL ones we exploited Keras, the Tensorflow
high-level API (GitHubkeras-team/keras, 2021).

RESULTS

Raman Analysis of Saliva
The modification of a previous optimized protocol was adopted
for the analysis of saliva collected from 23 PD patients, 10
AD patients, and 33 CTRL (Carlomagno et al., 2020a). The
principal modification regarded the removal of sample filtration
step with 3-kDa filters, resulting in a wider range of molecules
detected and in a faster analytical procedure. The average
spectra obtained from all the collected CTRL samples (n = 33)
is presented in Figure 1. The detailed signal provides an
overview on the species that mostly contribute to the Raman
spectrum, with attributed peaks at 517, 532, 578, 619, 715,
750, 870, 920, 978, 1001, 1047, 1077, 1102, 1125, 1203, 1244,
1268, 1346, 1415, and 1444 cm−1 (Figure 1, black arrows).
The highlighted peaks and bands regard the typical Raman
signal provided by salivary samples analyzed using aluminum
substrates (Table 2; Muro et al., 2016). The most important
signal attribution regards the peak at 750 cm−1 related to the
O–O stretching vibration in oxygenated proteins. The peaks at
870 and 1125 cm−1 can be attributed to the C–N stretching

Figure 1 | Average Raman signal obtained from the collected CTRL salivary
samples (n = 33). Black arrows indicate the identified peaks. The gray band
represents the standard deviation.
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TABLE 2 | Attribution of the most prominent peaks obtained from Raman salivary
analysis (±8 cm−1), based on reported literature (Movasaghi et al., 2007;
Gonchukov et al., 2012; Muro et al., 2016).

Raman shift (cm−1) Attribution

517 Phosphatidylinositol

532 Ester of cholesterol

578 Tryptophan, cytosine, guanine

619 Phenylalanine twisting

715 Phospholipids

750 O–O stretching in protein

870 C–N stretching in protein, tyrosine ring breathing

920 Glucose/glycogen

978 C–C stretching of phosphorylated proteins

1001 Aromatic ring breathing

1047 C–C in plane bending

1077 C–C bond of lipids

1102 Secondary bands of Amide I

1125 Tyrosine, phenylalanine, CH3 rocking in protein

1203 Tyrosine

1244 Nucleic acids/secondary bands of Amide III

1268 C–H bond of phospholipids

1346 Amide III

1415 C–H deformation

1444 C–H stretching of glycoproteins

and to the CH3 rocking in protein backbone, respectively,
with the peak at 1001 cm−1 related to the ring breathing of
aromatic amino acids and the signal at 1444 cm−1 assigned
to the C–H stretching of glycoproteins, mostly obtained from
mucins (Movasaghi et al., 2007; Gonchukov et al., 2012).
The peaks at 1002 and 1346 cm−1 regard, respectively, the
secondary bands of Amide I and the principal band of the
Amide III, which are directly correlated with the secondary
structures of the protein contained in saliva (Rygula et al.,
2013). The associated standard deviation reveals high variability
among the tested samples, probably due to the different
physiological and pathological states of the subjects involved in
the study (Figure 1, gray band). The great part of attributed
modes regards the vibration of molecules belonging to the
protein, lipid, nucleic acid, and saccharide families, providing
a global overview on the distribution of the species inside the
biofluid (Table 2).

The proposed procedure allows the collection of detailed
spectra using a very fast protocol that foresees a minimal
sample preparation. The molecular content, as well as the
information provided by the spectra, are detailed and repeatable
giving an optimal point of view on the biochemical species
present in saliva. For these reasons, we analyzed 33 CTRL,
23 PD, and 10 AD saliva samples following the procedure
described previously. Figure 2 shows the Raman signals
collected from the saliva of CTRL (n = 33; Figure 2A), PD
(n = 33; Figure 2B), and AD (n = 10; Figure 2C) groups.
Considering the intra-group variability, the preliminary analysis
highlights a higher standard deviation value of the CTRL group
(Figure 2A) respect to the pathological groups (Figures 2B,C),

indicating a potential specific biochemical equilibrium during
the pathological onset. As it is possible to notice from the
overlapped average Raman spectra, the main differences between
the groups can be attributed only to variations in intensities
and presence of specific peaks, with negligible signal shifts.
The remarked differences in peak intensities are probably due
to variations in the molecular concentration and distribution
between the physiological and pathological states (Figure 2D).
In order to highlight the principal spectral discrepancies between
the experimental groups and to investigate potential new
discriminatory regions, subtraction spectra were obtained by
comparing the signal intensities of CTRL, PD, and AD at different
wavelengths (Figure 3). All the differences in intensity (1I) were
considered for values of 1I ≥ 0.01. The main differences between
CTRL and PD (Figure 3A) are due to the peaks at 496, 595,
678, 715, 770, 829, 850, 939, 1001, 1047, 1102, 1244, 1346, 1415,
1444, and 1571 cm−1. Similarly, the main differences between
CTRL and AD were identified at 472, 593, 641, 750, 770, 870, 920,
1047, 1372, 1415, and 1444 cm−1 (Figure 3B), while regarding
the comparison between PD and AD peaks at 643, 750, 767,
870, 920, 1001, 1047, 1181, and 1326 cm−1 showed the main
differences (Figure 3C). These differences compared with the
already attributed peaks (Table 2) are mainly due to the potential
modifications of proteins, lipids, and carbohydrates and confirm
previous observations on the overlapped spectra (Figure 2D).
In particular, in the subtraction spectrum between PD and AD
patients (Figure 3C), the most prominent peaks in PD were
related to protein (643, 750, 1001, and 1580 cm−1 are peaks
related to single amino acids while the peak at 1540 cm−1 regards
the Amide II band) and to phosphatidylinositol (770 cm−1).
The same difference was encountered between PD and CTRL
(Figure 3A), but in this case the resultant intensity with the
relative error propagation (1I ≤ 0.01) was not considered
statistically significant.

Classification Models
Single Spectra Classification Model
In order to verify if the observed differences could lead to the
creation of a classification model able to discriminate the signals
collected from CTRL, PD, and AD subjects, we performed the
PCA–LDA on the collected spectra. The results are reported in
Figure 4. The scatterplot of the first three loadings obtained by
means of the PCA (cumulative PC scores = 46.2%; Figure 4A)
shows a partial overlap of the data dispersion associated to the
three defined groups represented on the base of the first three
PCs with the higher loading (PC1 = 30.6%; PC2 = 8.9%; and
PC3 = 6.5%, Figure 4A). The subsequent LDA on the first
10 PCs demonstrated a distinct dispersion of the Canonical
Variables (CVs), with the CTRL, AD, and PD group means
widely spaced (Figure 4B). Only a partial overlapping was
observed between CTRL and PD data. Taking into consideration
the dispersion of CV1, the differences between each group
were proved to be statistically significant (p < 0.001, one-way
ANOVA test, Figure 4C), indicating the potential role of RS
in the discrimination of the salivary spectra acquired from PD
respect to CTRL and AD.
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Figure 2 | Average salivary Raman spectra of the (A) CTRL (n = 33), (B) PD (n = 23), and (C) AD (n = 10) experimental groups. The gray bands represent the
associated standard deviations. (D) Overlapped average Raman spectra of the three analyzed groups.

The LDA analysis was used to perform a LOOCV and to create
a classification model, using the acquired data for the training
of the machine. The discriminatory performances of the model
are reported in Table 3. The error rate for cross-validation of
data was 1.05%, with calculated values of sensitivity, specificity,
and accuracy of respectively, 97, 98, and 98%. The quality of the
binary classification (PD versus no PD) was evaluated through
the MCC with a related value of 0.97. The ROC curve, showed in
Figure 4D, presents an area under the curve of 0.98 with standard
error of 0.002 and confidence interval of 97% (significance level
p < 0.001).

Patient Level Classification Model
The application of DL techniques to spectral data involves a series
of challenges. As result of the high complexity (and capacity)
of such DL models, the available data volume should be large
enough to create a more uniform and coherent dataset, and for
this reason a data augmentation protocol was applied resulting in
the generation of synthetic spectral examples to favor the network
training and to boost the classification performances, allowing
for better generalization capability. Furthermore, higher model
complexity leads to a large number of possible configurations.
Therefore, a suitable DL architecture must be selected by

searching for the optimal composition of the various layers.
Especially for CNNs, the configuration design requires a great
effort in selecting the hyper-parameters. To this extent, we used
SMBO to optimize the CNN architecture and fine-tune its hyper-
parameters. Figure 5 shows the final configuration of the model.

Our CNN architecture consists of three 1D convolutional
layers for the feature extraction and three fully connected layers
for the classification. Comparing our DL model against the
ML baseline introduced in section “Application of Learning
Models for the Patient Classification Model,” we found that
the ML models were systematically outperformed by the CNN-
based model. This can be explained by the capability of a
convolution-based model to capture the local structure in high
dimensional complex Raman data, correctly elaborating the
peak-related local correlations and information. Our findings
about the suitability of DL models for Raman spectral analysis
seems to be confirmed also by Liu et al. (2017) and Ho et al.
(2019). Given the difficulty of the learning problem, characterized
by a low-volume high-dimensional dataset, both the ML and DL
models have been trained on pre-processed data. In addition,
we performed classifications on raw unprocessed data, and we
verified, in good agreement with Liu et al. (2017), that DL
models, in particular CNNs, are capable of gaining competitive
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Figure 3 | Subtraction Raman spectra of (A) the average CTRL versus the average PD signals, (B) the average CTRL versus the average AD signals, and (C) the
average PD versus the average AD signals.

performances without the need of any preprocessing on the data.
The DL architecture is trained on the three-class classification
problem outputting a probability distribution associated with the
class choices, where the highest probability is used to predict
the label. The model has been tested using LOPOCV and
performance breakdowns are reported in the confusion matrix in
Figure 6. We firstly build a single-spectrum classification model
(spectral-level) and then, having acquired multiple spectra for
each patient, we aggregated the classification result at the patient-
level according to their majority label. The average spectral-level
sensitivity, specificity, and accuracy were respectively of 80, 89,
and 80% using the CNNs (Table 4, spectral-level). In comparison,
the more common ML techniques of SVM and RF achieved
discriminatory power not comparable with the scores reached
by the CNN.

The labeling decision for a patient can be taken based on
its entire spectral set (since numerous spectral samples are
acquired from the same individual). Classification metrics can
thus be condensed into a new confusion matrix grouped by
patients (Figure 6B), where the average sensitivity, specificity,
and accuracy score of the CNN model were respectively of 90,
94, and 89%. Again, the scores of the tested ML methods were
not comparable with the values reported for the CNN model.

Correlations
Data extracted from the MVA of the Raman database were
correlated with clinical and paraclinical parameters collected
from the PD patients including UPDRS III, H&Y, and LEDD.
In order to assess the independency of the Raman method,
all the data were correlated using as correcting covariates the
demographical data of the subjects, including age and sex. The
results are reported in Figure 7. Interestingly, all the coefficients
extracted from the Raman database using the MVA approach,
show strong correlation with at least one of the indicated
parameters. In particular, the clinical scales UPDRS III and H&Y
demonstrated the influence on all the CVs and PCs correlated
(Figure 7). The levels of levodopa influence mostly the PCs
distributions, with strong positive correlation for PC1, 2, and
3, but not of the obtained CV1 and 2 (Figure 7) that represent
the new set of coordinates in order to maximize the differences
between the samples. A possible explanation for this result
could be found in the influence of the drug therapy, which is
able to influence the biochemical composition of saliva but not
determining a direct influence on the final set of CVs used to
build the classification model. The PCs represent independent
directions, with their own specific weights (loadings, Figure 4A),
applied in order to maximize the variance between the variables
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Figure 4 | (A) Principal component analysis (PCA) in three axis distribution (X = PC1; Z = PC2; Y = PC3), covering the 45.83% of the loadings. Linear discriminant
analysis (LDA) and spatial distribution of (B) the Canonical Variables 1 and 2 and (C) box plot of values of the Canonical Variable 1 with the statistical groups
including CTRL (n = 33), PD (n = 23), and AD (n = 10). ***p < 0.001, one-way ANOVA test. (D) Receiver operating characteristic (ROC) curve with the relative
confidence interval (97–99%).

TABLE 3 | Sensitivity, specificity, accuracy, Matthews correlation coefficient
(MCC), error rate for the cross validation and area under the curve for the receiving
operators characteristic (AUC ROC) curve for the single spectrum Parkinson’s
disease leave-one-out cross-validation (PD-LOOCV) classification model.

Sensitivity Specificity Accuracy MCC Error rate AUC ROC

PD-LOOCV 97% 98% 98% 0.97 1.05% 0.98

considered during the PCA. The data reported in Figure 7
indicate a strong dependency of the Raman data with the clinical
status and stage of the PD patients.

DISCUSSION

The proposed pilot study paves the way to the possibility to
use the entire salivary Raman spectrum of PD patients to
assess the pathology onset and progression. The preliminary
data presented here have proved that the Raman analysis of
saliva can distinguish PD patients with sensitivity, specificity,
and accuracy, respectively of 90, 94, and 89%. The importance
of biomarkers in the great part of pathologies relies on the

possibility to assess the disease onset, to shorten the diagnostic
delay, to evaluate the disease progression and to perform a
continuous monitoring of the efficacy of both therapeutic and
rehabilitation strategies. Due to the various different forms of
PD-related pathologies and to the overlapping of symptoms
with other neurodegenerative diseases, the necessity to discover
a specific biomarker, able to identify the early pathological
onset, is of crucial importance. In the last decade, various
studies proposed different potential biomarkers, collectable from
peripheral blood or CSF with invasive procedures, but their
potential application is still unclear (Parnetti et al., 2019).
One of the reasons for the controversial results can be found
in the pleiotropic role of the candidate molecules that can
be associated to neurodegeneration in multiple neurological
diseases, leading to a complex situation for the determination
of a single biomarker uniquely associated to the PD onset
and progression (Zhang et al., 2008). Previous studies have
already demonstrated the applicability of the RS as diagnostic,
prognostic, and therapeutics/rehabilitative monitoring tool using
different biofluids for various neurodegenerative diseases (Devitt
et al., 2018). In this work, we optimized a RS-based analysis
for the spectroscopic characterization of saliva collected from
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Figure 5 | Graphic representation of the best 1D-CNN model configuration obtained through the hyper-parameters optimization process.

Figure 6 | Confusion matrices obtained in LOPOCV by the proposed CNN. (A) Spectra-level and (B) patient-level.

PD patients. The optimized procedure allowed the collection
of a highly informative signal from saliva, with information
on proteins, lipids, carbohydrates, and nucleic acids, using a
fast (20 min from the saliva collection to the Raman results),
cheap (the only consumable reagent is commercially available
aluminum), reproducible and minimally invasive procedure.
Moreover, refining our previous sample preparation procedure
and removing the filtration step (Carlomagno et al., 2020a),
we were able to concomitantly amplify the range of analyzable
molecules and increase the technique velocity. Concerning the
economic burden of Raman spectroscopy use in clinics, we
would like to mention that portable instruments are already
commercially available on market, with different degrees of

spectral resolution depending on the methodological needs and
affordable for any diagnostic laboratory. We foresee that, once
the methodology will be verified with the benchtop instrument
in a larger cohort, the transferability of the method to a portable
cost-effective platform will be evaluated.

By adopting the described technique, we were able to
characterize the salivary Raman fingerprint of PD patients and
to identify evident differences compared to CTRL and AD
subjects, principally regarding the peaks and bands related to
proteins, nucleic acids, saccharides, and lipids. In detail, the
differences between PD and CTRL regard peaks related to
proteins (829, 939, and 1001 cm−1 are signals from specific
amino acids, while 1102 and 1346 cm−1 due to the Amide
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bands), nucleic acids (1244 cm−1) and glycoproteins/saccharides
(850 and 1444 cm−1) (Movasaghi et al., 2007; Virkler and
Lednev, 2010). The protein signal alterations can potentially
derive from the pathological species present in saliva during
the PD progression or due to the secondary effects caused
by the pathological state (e.g., inflammatory responses or ROS
damages). For example, high concentrations of α-synuclein,
heme-oxygenase-1, protein damaged by ROS and the cysteine
protease DJ-1 were found in the saliva of PD patients, which
could explain the higher signals related to protein found in the
subtraction spectra between CTRL and PD (Kang et al., 2014;
Song et al., 2018; Bougea et al., 2019; Maciejczyk et al., 2020).
Besides, the marked saccharides alteration can be related to
the altered metabolism of glucose and related carbohydrates in
PD patients, leading to an incremented amount of circulating
saccharides (Van Woert and Mueller, 1971). Examining the
spectral differences between PD and AD patients, those related
to protein can be explained by the inflammatory species and
aggregated proteins found in the circulating protein patterns in
the two pathological states (Berg, 2008). On the other hand, the
phosphatidylinositol accumulation in PD patients is probably
due to the alteration of the phosphatidylinositol transfer protein

TABLE 4 | Accuracy, sensitivity, and specificity in patient- and spectra-level
obtained by the proposed CNN in leave-one-patient-out cross-validation using a
10× data augmentation.

Sensitivity (%) Specificity (%) Accuracy (%)

Spectral-level 80 89 80

Patient-level 90 94 89

expression responsible for the transport and metabolism of the
phospholipid in PD (Chalimoniuk et al., 2006). The LDA model
applied to the three experimental groups (PD, AD, and CTRL)
revealed two CVs dispersed with a distinct trend, which allows
to statistically discriminate the Raman single spectrum on the
base of the CV. These results mean that the differences between
the Raman spectra collected from the saliva of PD patients
are significant enough to determine a classification model able
to discriminate them from the CTRL or AD with accuracy,
sensitivity, and specificity of more than 95%. The ML and DL
approaches were refined and performed in order to automatize
the signal preprocessing and, more importantly, to create a
classification model able to discriminate not only the signal
coming from a single spectrum, but also the entire Raman
spectral set associated to the subject. This approach is one of the
most advanced procedures for the creation of a fast and sensitive
Raman-based diagnostic and monitoring tool close to the clinical
application. The deep convolutional model that obtained the
best performances has been trained on the pre-processed data.
Nevertheless, competitive performances have been also reached
by training the DL model directly on raw data, in good agreement
with Liu et al. (2017). This can be explained by the fact that
CNN models have local connectivity and translational invariance
properties well suited for dealing with spectral data, where
a vertical and horizontal translational invariance (e.g., small
changes in intensity and in Raman shift) play important roles.
These properties allowed a better handling of raw spectral
data through CNNs, preventing the introduction of biases and
information filtering during the manual data manipulation. The
ML/DL pipeline resulted in the proper classification of almost
all of the considered subjects. The attribution of part of the

Figure 7 | Heat map representing the partial correlation (Pearson’s coefficients) with the relative significance of Canonical Variables 1 and 2 (CV1 and CV2) and
Principal Components 1, 2, and 3 (PC1, PC2, and PC3) correlated with levodopa equivalent daily doses (LEDD), Hoehn and Yahr (H&Y) stages and Unified
Parkinson’s Disease Rating Scale (UPDRS) motor scales (III). Age, sex, and behavioral parameters were used as control covariates for the partial correlation.
*p < 0.05, **p < 0.01, and ***p < 0.001, Pearson’s test.
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total number of PD spectra to the CTRL group (8.3% in the
spectral-level confusion matrix) and consequently of four PD
patients to the same group (patient-level confusion matrix),
could be derived from the patients’ pathological progression.
In fact, these particular patients had the lowest H&Y and
UPDRS III clinical scores, determining the attribution by the
classification models in the CTRL group, despite the regular
assumption of the dopaminergic therapy. The results of this
pilot study highlight the potentialities of the model not only
to discriminate the pathological onset, but also to potentially
identify the shades of the different PD stages. This feature must
be validated with the study of new samples collected from a wider
population of PD patients recruited at different pathological
stages. Moreover, the introduction of new experimental groups
and sub-groups related to the same pathology (e.g., different
pathological stages and comorbidities), will be of fundamental
importance to further train the classification mechanism, such
as patients in the prodromal phase or parkinsonism followed
in a longitudinal study and collecting the saliva samples at
specific time-points corresponding to the pathological evolution.
In the same way, data regarding the rehabilitation and drug
therapies could provide an indication of the effectiveness of the
prescribed procedures. In fact, one of the greatest advantages of
this approach consist in the possibility to easily train the model
with new and different data related to the target pathologies,
leading to a refinement in the discriminatory power and to the
classification of new groups, including PD stages of progression,
overlapping comorbidities and PD prodromal phases. It has to
be noted that the main limitations of the present work rely
in the number of patients and in the involvement of a single
laboratory for the RS analysis: as recently reviewed, multi-
centered studies are needed to assess the actual robustness of
RS methodology prior to their clinical application because of the
profound influence of the setup-dependence in RS (Zech et al.,
2018; Guo et al., 2020). For this reason, next steps in the validation
of the proposed methodology will include the inclusion of larger
cohorts of patients including different pathological stages and
comorbidities, use of multiple instruments and involvement of
different research teams to avoid experimental setup influence
and biases in the validation phase.

Finally, our results are the first reported data that suggest the
reliability of the Raman salivary analysis through the correlation
of the MVA results with the clinical parameters of PD patients.
In particular, despite the limited number of patients recruited,
CV1 and CV2 demonstrated a statistically significant correlation
(p < 0.001) with the two most relevant scales used nowadays
for PD diagnosis and monitoring. The H&Y scale describes
the motor symptoms correlated with PD progression, whereas
the UPDRS provides a comprehensive tool to monitor PD
related disability and impairment concerning a series of clinical
manifestations including mental state, difficulty in performing
daily activities, motor skills, dyskinesia, and others. Specifically,
UPDRS part III refers to the motor function evaluation scale.
The correlation of the CVs with UPDRS III and H&Y revealed
a close relationship between the salivary biochemical content
and the clinical state of the patient. It is worth noting that both
scales have been recently reported to correlate also with the
Raman biochemical fingerprint of serum extracellular vesicles

in PD patients, assessing the close relationship between the
biochemical equilibrium in biofluids and the disease onset
(Gualerzi et al., 2019). This observation, together with the well-
known physiological mechanisms of saliva production and the
direct correlation of salivary composition to that of blood or
CSF, make us hypothesize a possible involvement of the vesicular
components in the salivary fingerprint of PD patients, although
this issue requires further studies to be ascertained. Besides the
partial correlation with the same clinical scales, the PC1, PC2,
and PC3 also revealed a strong correlation with LEDD. These
parameters could be exploited to individuate the optimal dose
of dopaminergic therapy necessary to the specific PD patient,
clinically framed by the associated Raman fingerprint. In order
to investigate the molecular bases of these relationships and to
validate the correlations between MVA data and clinical scales
and therapies, further studies on larger and various cohort of
PD are needed, including different PD progression stages and
longitudinal studies.

Collectively, the MVA approach on the single Raman spectra
allowed us to make a preliminary estimate of the diagnostic
potential of the Raman analysis that was shown to reach an
excellent accuracy level of 98.5%. Even more interestingly, the
innovative ML/DL approach at the patient-level reached an
accuracy of 89%. Once validated, this approach would represent a
competitive diagnostic tool that could even surpasses previously
proposed assays for PD (Saracchi et al., 2014). In conclusion, our
pilot study demonstrated the potential application of the Raman
analysis for the simultaneous identification of a large range
of molecules present in saliva, obtaining high discrimination
performances. The complex signal obtained from the salivary
spectra was approached using a combined ML and DL method
able to characterize and validate the Raman signature of
PD and to assess with high discriminant ability the clinical
state of the considered subject. Despite the small cohort of
considered subjects, the potentialities of the proposed method
were corroborated by the statistically significant correlation
obtained between the MVA coefficients and the clinical data
collected from the patients. The proposed methodology, once
validated in larger cohorts and with multi-centered studies, could
represent an innovative, cost-effective, minimally invasive, and
accurate procedure to determine the early PD onset, progression
and to monitor therapies and rehabilitation efficacy. Having
in mind the future steps required for the final validation, we
believe that this method has the potentiality to be transferred
to the clinical setting, thus, the Raman analysis of saliva could
provide clinicians and researchers with a powerful instrument for
the PD managing.
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