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This study aimed to investigate abnormal tinnitus activity by evaluating brain surface-
based amplitude of low-frequency fluctuation (ALFF) changes detected by resting-state
functional magnetic resonance imaging (RS-fMRI) in patients with idiopathic tinnitus
before and after 24 weeks of sound therapy. We hypothesized that sound therapy
could gradually return cortical local brain function to a relatively normal range. In this
prospective observational study, we recruited thirty-three tinnitus patients who had
undergone 24 weeks of sound therapy and 26 matched healthy controls (HCs). For the
two groups of subjects, we analyzed the spontaneous neural activity of tinnitus patients
by cortical ALFF and detected its correlation with clinical indicators of tinnitus. Patients’
Tinnitus Handicap Inventory (THI) scores were assessed to determine the severity of
their tinnitus before and after treatment. Two-way mixed model analysis of variance and
Pearson’s correlation analysis were used in the statistical analysis. Student–Newman–
Keuls tests were used in the post hoc analysis. Interaction effects between the two
groups and between the two scans revealing local neural activity as assessed by ALFF
were observed in the bilateral dorsal stream visual cortex (DSVC), bilateral posterior
cingulate cortex (PCC), bilateral anterior cingulate and medial prefrontal cortex (ACC
and MPC), left temporo-parieto-occipital junction (TPOJ), left orbital and polar frontal
cortex (OPFC), left paracentral lobular and mid cingulate cortex (PCL and MCC),
right insular and frontal opercular cortex (IFOC), and left early visual cortex (EVC).
Importantly, local functional activity in the left TPOJ and right PCC in the patient
group was significantly lower than that in the HCs at baseline and was increased
to relatively normal levels after treatment. The 24-week sound therapy tinnitus group
demonstrated significantly higher ALFF in the left TPOJ and right PCC than in the
tinnitus baseline group. Also, compared with the HC baseline group and the 24-week
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HC group, the 24-week sound therapy tinnitus group demonstrated slightly lower or
higher ALFF in the left TPOJ and right PCC, and there were no differences between
the 24-week sound therapy tinnitus and HC groups. Decreased THI scores and ALFF
changes in the abovementioned brain regions were not correlated. Taken together,
surface-based RS-fMRI can provide more subtle local functional activity to explain the
mechanism of tinnitus treatment, and long-term sound therapy had a normalizing effect
on tinnitus patients.

Keywords: tinnitus, sound therapy, surface-based analysis, ALFF, functional magnetic resonance imaging

INTRODUCTION

Tinnitus is a conscious awareness of a sound in the absence
of any external acoustic stimulation, which is a major health
issue in society worldwide (Bauer, 2018; Esmaili and Renton,
2018; Conlon et al., 2020). Noise trauma is the most common
cause of subjective tinnitus (Grossan and Peterson, 2021), and
it can trigger many related complications, such as insomnia,
anxiety, depression; these complications seriously affect patients’
quality of life (Bhatt et al., 2016; Sereda et al., 2018). An
increasing number of studies have shown that tinnitus, as an
abnormality of the central nervous system, can lead to significant
alterations in brain structure and function, such as the emotional
(amygdala, anterior insula), temporofrontal/stress-regulating
regions (prefrontal cortex, inferior frontal gyrus); Functional
connectivity revealed increased neural coupling between several
auditory areas and non-auditory areas (amygdala, cerebellum,
reticular formation, hippocampus, and caudate/putamen)
(Hofmeier et al., 2018; Salvi et al., 2021). These alterations
are closely related to the clinical characteristics of tinnitus
patients and may even be the main cause of tinnitus (Han et al.,
2020; Chen et al., 2021; Wei et al., 2021). However, due to the
limitations of current research methods, it is still unclear which
neural pathways or brain regions play a major role in tinnitus
(Vanneste et al., 2019). This may also be the reason current
treatment interventions cannot achieve satisfactory results for all
tinnitus patients (Langguth et al., 2013). Therefore, effective and
precise treatments for certain brain regions or nerve pathways
are still urgently needed.

Many methods of treating tinnitus, such as repetitive
transcranial magnetic stimulation (rTMS) (Poeppl et al., 2018),
drug therapy (Zenner et al., 2017), tinnitus counseling and
cognitive behavioral therapy (CBT) (Langguth et al., 2013),
hearing aids (Yakunina et al., 2019), cochlear implants (Olze,
2015), and tinnitus retraining therapy, have been widely used
clinically (Lee et al., 2019). According to the clinical practice
guidelines for tinnitus, sound therapy is one of the recommended
treatment methods (Tunkel et al., 2014). During this treatment,
the generated sound will be set based on tinnitus features,
including its pitch, loudness, and minimum masking level.
This sound reduces the contrast between the tinnitus and the
environment, diminishes sensitivity to tinnitus, and promotes
habituation to the tinnitus sensation (Makar et al., 2017).
Narrow-band noise sound therapy has been one of the commonly
used methods for the treatment of tinnitus in recent years

(Henry et al., 2002). Narrow-band noise sound therapy has
become the most widely used sound treatment method in our
hospital and research center. In our study, narrow band sound
was defined as a sound center frequency of 400 Hz or higher: the
1/3 octave band is the narrowest and the 1/2 octave band is the
widest. Previous studies have demonstrated that sound therapy
can alter brain function to achieve successful clinical treatment
(Han et al., 2019a,b). However, previous studies were volume-
based studies. The major problem in volume-based studies was
that the accuracy of cortical positioning was insufficient (Coalson
et al., 2018). As a result, to enhance the accuracy of cortical
positioning, we adopted surface-based analysis in this study.

Different from traditional volume-based analysis, a novel
360-area surface-based cortical segmentation was applied for
multimodal data using the Human Connectome Project (HCP)
(Coalson et al., 2018). In this template, each cortical area has
multiple characteristics, such as those representing connectivity,
structure, function, auditory or visual maps (Coalson et al.,
2018). Surface-based information mapping is a more sensitive
measure of local information content and has better spatial
selectivity and higher accuracy than other methods (Oosterhof
et al., 2011). For example, surface-based analysis distinguishes
between information about finger presses in the primary
motor and somatosensory cortex, which can result in good
spatial selectivity (Oosterhof et al., 2011). Based on the HCP
template and surface-based analysis, we can extract and analyze
various brain functional features, such as amplitude of low-
frequency fluctuation (ALFF), regional homogeneity (ReHo),
and degree centrality. In the tinnitus research field, volume-
based analysis has been used in some tinnitus studies on
the microstructure of the brains of tinnitus patients (Tae
et al., 2018; Besteher et al., 2019). Some studies have reported
microstructural changes in the brains of tinnitus patients with
voxel-based morphometry (VBM) (Husain et al., 2011). Our
previous study also used VBM to evaluate tinnitus patients
and found that the thalamus, as a deep gray matter (GM)
nucleus, was significantly different in these patients after sound
therapy (Wei et al., 2020). Some studies have investigated
microstructural changes such as GM and white matter (WM)
volume and thickness of tinnitus patients with surface-based
morphometry (SBM) (Allan et al., 2016; Meyer et al., 2016).
In another study, we began to explore microstructural changes
at the surface-based cortical level in tinnitus patients before
and after sound therapy (Wei et al., 2021). However, no
one has studied the cortical changes such as alterations in
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cortical ALFF, at the surface-based functional level in tinnitus
patients. Pertinently, we think it is very important to fully
understand the relationship between the cortical function of
brain regions and tinnitus.

Amplitude of low-frequency fluctuation is a common method
used to analyze resting-state functional magnetic resonance
imaging (RS-fMRI) data (Kublbock et al., 2014); this form
of assessment uses voxel-based analysis and focuses on the
power of blood oxygen level-dependent (BOLD) signals within
the low-frequency range. The advantage of this analysis lies
in the ability to reflect the intensity of local neural activity
and analyze the relationship between brain regions (Zang
et al., 2007). ALFF has been widely used in related studies
of the diagnosis and treatment of tinnitus (Chen et al., 2014,
2015; Cai et al., 2020). Previous studies have demonstrated
that tinnitus is characterized by abnormal RS-fMRI findings
(Han et al., 2015; Lv et al., 2016a,b, 2018b). We used graph-
theoretical methods and tract-based spatial statistics (TBSS)
to investigate the associations between abnormal RS-fMRI
findings and clinical variables (Lv et al., 2018a; Han et al.,
2019b; Chen et al., 2020). Other studies have also shown
that tinnitus can cause significant changes in brain function
and structure; such changes are closely related to clinical
manifestations in patients (Ryu et al., 2016; Schmidt et al.,
2017; Han et al., 2019a). However, these studies were limited
to the volume-based level rather than the surface-based level in
patients with tinnitus.

In this study, we utilized surface-based ALFF to reflect local
neural activity in tinnitus patients who underwent 24 weeks of
narrow-band noise sound therapy. We hypothesized that sound
therapy could gradually restore local brain function to a relatively
normal range, maybe involve some functional regions.

MATERIALS AND METHODS

Standard Protocol Approval, Registration
and Patient Consent
This study was approved by the ethics committees of our
research institution (Beijing Friendship Hospital, Capital
Medical University, 2016-P2-012). Written informed consent
was obtained from all study subjects.

Subjects
All patients and healthy volunteers were recruited from our
institution. In this study, thirty-three patients with idiopathic
tinnitus were enrolled. There were two patients with right
laterality, five patients with left laterality, the rest had bilateral
laterality. The tinnitus sound was described by patients as a
persistent, low- or high-pitched sound in one or both ears.
Sound more than 4 kHz is considered high-frequency in
clinical research. The inclusion criteria were as follows: 18–
65 years old, persistent idiopathic tinnitus (persistent for ≥6
and ≤48 months), right handedness, no significant hearing
loss, and no history of associated brain diseases confirmed by
conventional MRI. The exclusion criteria included neurological
signs and/or a history of neurological disease; cardiovascular

disease; pulsatile tinnitus, Meniere’s disease, sudden deafness, or
otosclerosis; claustrophobia; and inability to pitch-match their
tinnitus. Twenty-six age-, sex-, education-, and handedness-
matched healthy control (HC) subjects were enrolled as
controls. The characteristics of the subjects are presented in
Table 1.

Sound Therapy and Clinical Evaluation
A TinniTest R© (TTS, 1000A, China) comprehensive tinnitus
diagnosis and treatment instrument was used for psychoacoustic
testing. SpeechEasy eMasker R© (Micro-DSP Technology Co., Ltd.,
China) was used to perform narrow-band sound therapy. We
advised patients to use it in a quiet environment to achieve
the best therapeutic effect. All of the enrolled tinnitus patients
were examined for tinnitus loudness matching (L = loudness of
tinnitus), pitch matching (Tf = tinnitus frequency), minimum
masking level, and residual inhibition to characterize the patients’
tinnitus and prepare them for treatment. Narrow-band sound
therapy was administered to the participants in the tinnitus
group for 24 weeks, three times a day for 20 min each time.
For each tinnitus patient, the loudness of sound for treatment
was set as L-5 dB. The bandwidth was changed according
to the center frequency, and the bandwidth was 1/3 octave
(for example, Tf = 3 kHz, low cut = 3 kHz × 2-6/1, high
cut = 3 kHz× 26/1).

We also asked the patients to complete the Tinnitus Handicap
Inventory (THI) to assess the severity of tinnitus before and after
treatment. The primary outcome of this prospective study was
the change in THI score after treatment. A reduction of at least
20 points in the THI score was considered effective treatment
(Newman et al., 1998). No kind of sound was administered to the
HC group during the study.

Data Acquisition
The functional imaging data were obtained from the tinnitus
patients at baseline (without any treatment) and at the end
of therapy (24th week). The HC group was also scanned at
baseline and at the 24th week. Images were obtained using a
3.0T MRI system (Prisma, Siemens, Erlangen, Germany) with a
64-channel phase-array head coil. During the scanning process,
we used suitable foam padding to minimize head motion, and
we used earplugs to reduce scanner noise. All the participants
were asked to stay awake, close their eyes, breathe evenly, and
try to avoid any specific thoughts. We used a conventional brain
axial T1 sequence before the scans to exclude individuals with any
visible brain abnormalities. We obtained resting-state functional
images of all participants using an echo-planar imaging (EPI)
sequence. We required the subjects to remain still during the
scan time and not to meditate. The scanning parameters were
as follows: 33 axial slices with a slice thickness = 3.5 mm and
interslice gap = 1 mm, repetition time (TR) = 2000 ms, echo time
(TE) = 30 ms, flip angle (FA) = 90◦, bandwidth = 2368 Hz/Px,
field of view (FOV) = 224 mm× 224 mm, and matrix = 64× 64.
The latter parameters resulted in an isotropic voxel size of
3.5 mm × 3.5 mm × 3.5 mm. The total number of volumes was
acquired in 8.06 min.
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TABLE 1 | Demographic and clinical characteristics of participants.

Characteristics Tinnitus patients
(baseline, n = 33)

Tinnitus patients
(24th week,

n = 33)

Healthy controls
(baseline, n = 26)

Healthy controls
(24th week,

n = 26)

P value

Age (years,x̄ ± s) 48.2 ± 12.4 47.3 ± 9.6 0.745a

Gender (male/female) 23/10 15/11 >0.99b

Handedness 33 right-handed 26 right-handed >0.99a

Tinnitus duration (months) ≥6 and ≤48 NA NA

Tinnitus pitch 250 ∼ 8,000 Hz NA

THI score 52.5 ± 44.3 37.3 ± 20.9 NA NA 0.011c

1THI score 15.3 ± 32.8 NA NA NA NA

Laterality 2 right, 5 left, 26
bilateral

Data are presented as mean ± standard deviation for all variables except gender.
THI: Tinnitus Handicap Inventory.
1THI = THIpre–THIpost.
NA: not applicable.
aTwo-sample t-tests.
bChi-square test.
cPaired-samples t-tests.

Pre-processing of Functional Data
Data pre-processing was performed using DPABISurf1, a surface-
based RS-fMRI data analysis toolbox evolved from DPABISurf.
DPABISurf uses the fMRIprep pipeline (Esteban et al., 2019)
to pre-process the structural and functional MRI data and
provides a set of statistical and viewing tools. The data pre-
processing pipeline in the present study contained the following
steps: (1) the initial five time points were discarded to allow
for signal equilibration, (2) the data were converted into
BIDS format (Gorgolewski and Poldrack, 2016), and then
the fMRIPrep 1.5.0 docker was called. (3) Anatomical data
pre-processing performed as follows: the T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010) and was used as
the T1w reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the
antsBrainExtraction workflow [from advanced normalization
tools (ANTs)] (Avants et al., 2008) using OASIS30ANTs as the
target template. Brain tissue segmentation of cerebrospinal fluid
(CSF), WM, and GM was performed on brain-extracted T1w
using fast (Zhang et al., 2001). Brain surfaces were reconstructed
using recon-all (Dale et al., 1999). (4) Functional data pre-
processing as follows: For each of the runs (resting-state) per
subject, to achieve functional data pre-processing, the following
steps were performed. First, a reference volume and its skull-
stripped version were generated using a custom fMRIPrep
methodology. The BOLD reference was then coregistered to the
T1w reference using bbregister (FreeSurfer), which implements
boundary-based registration (Greve and Fischl, 2009). BOLD
runs were slice-time corrected using 3dTshift (Cox and Hyde,
1997). The BOLD time series were resampled to surfaces on
the fsaverage5 space. (5) Nuisance regression was conducted as
follows: the Friston 24-parameter model (Friston et al., 1996)
was used to regress out head motion confounds. Additionally,

1http://rfmri.org/DPABISurf

mean framework displacement (FD) was used to address the
residual effects of motion in group analyses (Jenkinson et al.,
2002). Other sources of spurious variance (WM and CSF signals)
were also removed from the data through linear regression to
reduce respiratory and cardiac effects. Additionally, linear trends
were included as a regressor to account for drifts in the BOLD
signal. (6) Finally, data were filtered and smoothed as follows:
a bandpass temporal filter (0.01–0.1 Hz) and spatial smoothing
[full-width at half-maximum (FWHM) of 6 mm] were applied
to the normalized functional images. After the above steps, we
obtained cortical ALFF values.

Statistical Analysis
Demographic data were compared through two-sample t tests
and paired two-sample t tests using SPSS 19.0 software (SPSS,
Inc., Chicago, IL, United States). P values < 0.05 were considered
statistically significant. Longitudinal changes in THI scores were
also analyzed by using paired two-sample t tests.

DPABISurf was used to pre-process the neuroimaging
statistics. For cortical ALFF data, to determine the group × time
interaction effect between the two groups and the two scans, the
main effects of group (the tinnitus patient group and the HC
group) and time (baseline and 24-week follow-up period), two-
way mixed model analysis of variance (ANOVA) and post hoc
analyses were performed. The brain regions showing significant
time differences in the HC group were excluded (Wang et al.,
2015). Cortical ALFF analyses were conducted using whole-
brain analyses. A P value of less than 0.05 (P < 0.025 for
each hemisphere) for cortical ALFF was considered statistically
significant (Monte Carlo simulation corrected). We looked up
tables of P values based on simulations in which a Z field was
synthesized on the atlas surface. The tables were distributed
in DPABISurf. The P value for the cluster was determined by
indexing the table based on the size of the cluster, the threshold
used to form the cluster, and an estimate of the global FWHM.
Clusters were extracted separately for both hemispheres. In
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post hoc analyses, Student–Newman–Keuls (SNK) tests were
used for pairwise comparisons. Pearson’s correlation analyses
were further conducted to investigate the relationships between
the change in cortical ALFF and 24 weeks of sound therapy

of tinnitus patients [THI score (1THI score = THIpre–
THIpost)]. P < 0.05 was set as the threshold to determine
significance. The cortical ALFF results were visualized with
DPABISurf. Cortical ALFF was quantified from the T1w images

FIGURE 1 | (A,B) ALFF differences were assessed by ANOVA. Compared among the four data sets, significant group × time interaction effects between the two
groups (tinnitus patients and healthy controls) and two scans (at baseline and at the 24th week) on ALFF were observed at the bilateral DSVC, bilateral PCC, bilateral
ACC and MPC, left TPOJ, left OPFC, left PCL and MCC, right IFOC and left EVC [P < 0.05 (P < 0.025 for each hemisphere) corrected by Monte Carlo simulation; L,
left; R, right]. DSVC, dorsal stream visual cortex; PCC, posterior cingulate cortex; ACC and MPC, anterior cingulate and medial prefrontal cortex; TPOJ,
temporo-parieto-occipital junction; OPFC, orbital and polar frontal cortex; PCL and MCC, paracentral lobular and mid cingulate cortex; IFOC, insular and frontal
opercular cortex; EVC, early visual cortex.
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using DPABISurf_V1.5 software. Pearson’s correlation analysis
between the THI scores was performed using SPSS 19 software.

RESULTS

Demographics and Behavioral Outcomes
of Study Participants
Please see Table 1, and we used DPABISurf to analyze cortical
ALFF in the brains of patients in this group before and after
sound therapy. After head movement correction, no subjects
were excluded (FD < 0.3). THI scores were acquired before and
after sound therapy. Significant longitudinal decreases in THI
scores were observed. The results are summarized in Table 1.

Statistical Analysis Results
Group Differences in Amplitude of Low-Frequency
Fluctuation
As shown in Figure 1A and Table 2, there were differences
in ALFF among the tinnitus patients before sound therapy
(baseline), tinnitus patients after sound therapy (24 weeks),
HC individuals at baseline and HC individuals after 24 weeks.
The relevant brain regions included the bilateral dorsal stream
visual cortex (DSVC), bilateral posterior cingulate cortex (PCC),
bilateral anterior cingulate and medial prefrontal cortex (ACC
and MPC), left temporo-parieto-occipital junction (TPOJ), left
orbital and polar frontal cortex (OPFC), left paracentral lobular
and mid cingulate cortex (PCL and MCC), right insular and
frontal opercular cortex (IFOC), and left early visual cortex
(EVC) [P < 0.05 (P < 0.025 for each hemisphere) corrected by
Monte Carlo simulation] (Figures 1A,B).

Post hoc Analyses
Because other brain regions showing time differences in the
HC group were excluded, only the left TPOJ and right PCC

were retained for further analysis. Post hoc analysis in this study
confirmed that patients with tinnitus all had decreased ALFF
in related brain regions. ALFF was significantly decreased in
the left TPOJ and right PCC of participants in the tinnitus
baseline group compared to participants in the HC baseline
group and HC 24-week group; also, there were no differences
between the two HC groups (Figure 2). The 24-week sound
therapy tinnitus group demonstrated significantly higher ALFF
in the left TPOJ and right PCC than in the tinnitus baseline
group (Figure 2).

Compared with the HC baseline group and the HC 24-week
group, the 24-week sound therapy tinnitus group demonstrated
slightly lower or higher ALFF in the left TPOJ and right PCC,
and there were no differences between the 24-week sound therapy
tinnitus group and either of the HC groups.

In post hoc analysis, there were no differences between the
tinnitus baseline group and the 24-week sound therapy tinnitus
group in the left DSVC, left OPFC, right ACC and MPC, right
IFOC, and left EVC.

Correlation
Decreased THI scores and ALFF changes in the abovementioned
brain regions were not correlated.

DISCUSSION

This is the first study to demonstrate cortical functional
abnormality involving ALFF in patients with tinnitus. In this
study, we analyzed the changes in cortical ALFF of tinnitus
patients before and after 24 weeks of sound therapy. Cortical
ALFF changes in the brain were found in patients from before
and after longer-term sound therapy after multiple comparison
corrections were conducted. Changes were mainly in the bilateral
DSVC, bilateral PCC, bilateral ACC and MPC, left TPOJ, left
OPFC, left PCL and MCC, right IFOC and EVC. Importantly,

TABLE 2 | Difference in cortical ALFF of the left and right hemisphere between the two groups (tinnitus patients, healthy controls) and two scans (at baseline,
at the 24th week).

Brain regions HCP Cluster Size (mm2) Coordinates MNI Peak F score

x y z

Dorsal stream visual cortex L 16 336 −24 −81 23 34.64

R 13 2252 31 −89 11 25.80

Posterior cingulate cortex L 14 241 −6 −17 32 32.15

R 32 668 6 −19 32 48.79

Anterior cingulate and medial prefrontal cortex L 63 314 −7 23 53 29.17

R 63 708 8 20 50 24.41

Temporo-parieto-occipital junction L 139 237 −63 −42 11 20.51

Orbital and polar frontal cortex L 94 385 −26 14 −20 25.88

Paracentral lobular and mid cingulate cortex L 41 175 −11 6.1 37 18.51

Insular and frontal opercular cortex R 111 500 29 27 0 21.78

Early visual cortex L 6 2265 −33 −82 8 55.36

Statistically differences in cortical ALFF were defined as P < 0.05 (P < 0.025 for each hemisphere), Monte Carlo Simulation corrected after correcting for age, sex,
education, and the head motion.
MNI, Montreal Neurological Institute; HCP, Human Connectome Project.
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FIGURE 2 | Post hoc analyses showed differences in ALFF among the baseline, 24-week sound treatment, HC baseline and HC 24-week groups in both
hemispheres. *P < 0.05, **P < 0.01, ***P < 0.001.

cortical ALFF changes in the left TPOJ and right PCC remained
significant after post hoc analysis. These brain regions are mainly
concentrated in the auditory cortex, visual cortex and PCC, which
are closely related to the abnormal brain local neural activity
associated with tinnitus. Our data confirmed our hypothesis that
sound therapy could gradually restore brain function, especially
local neural activity, to a relatively normal range.

We included patients whose tinnitus duration less than
48 months. Because of shorter duration may help with treatment
effects (Schoisswohl et al., 2021). In our study, we observed
that the 24-week sound therapy tinnitus group demonstrated
significantly higher ALFF in the right PCC than in the tinnitus
baseline group. As an important nucleus in the limbic system,
the cingulate gyrus is widely connected with other areas of
the central nervous system; moreover, it participates in various
functions, such as regulating emotions, learning, and cognition
(Fan et al., 2020). The PCC is an important structure of the

default mode network (DMN) (Raichle and Snyder, 2007; Lan
et al., 2021) and belongs to the frontal-parietal-limbic network,
which has been regarded as a specific distress network in
tinnitus (Husain, 2016). Abnormalities in the PCC are usually
related to cognitive impairment, including memory function,
attention, and problems in maintaining a balance between
internal and external thinking (Leech and Sharp, 2014). The
complete symptomology of tinnitus includes at least three
factors: sensation, emotion, and cognition. Research on tinnitus
has shown that abnormal changes in the cingulate cortex are
involved in the process of tinnitus and play a key role in
noise canceling, cognitive experiences and emotional experiences
in tinnitus patients (Fan et al., 2020). “Dysfunctional noise
canceling mechanism” has been conceptualized (De Ridder et al.,
2012). A previous study found that some noise-canceling related
effects in the subcallosal area (Rauschecker et al., 2010). The
results of another study may designate the role of the rostral
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ACC as the core of the descending noise cancelation system
(Song et al., 2015). These results all suggested the possibility of
tinnitus perception modulation by neuromodulatory approaches
to change the activity of above brain regions.

According to a previous report, the PCC undergoes significant
changes in functional activity that ameliorate patient’s pain after
tinnitus treatment (Krick et al., 2017). In this study, the PCC
was considered a hub brain region of the DMN, and ALFF
became normal after sound therapy, reflecting that activation of
the PCC was enhanced after treatment. This result was consistent
with previous research on volume-based ALFF before and after
treatment (Zhang A. et al., 2019). The results also showed that
there were no differences between the 24-week sound therapy
tinnitus group and HC groups in the PCC, showing that after
sound therapy, cognition, attention, emotion and other related
functions may be restored to a certain extent.

The HCP template identified the TPOJ as a strip of cortex
bounded by the auditory, lateral temporal, inferior parietal and
occipital cortices (Glasser et al., 2016). Although the TPOJ is
not well known by many people, it contains the auditory cortex
(lateral temporal) and visual cortex (occipital cortex), forming
a bridge between advanced auditory and advanced visual areas
(Glasser et al., 2016), which is closely related to tinnitus. Some
previous volume-based RS-fMRI studies have shown that the
functional connectivity between the visual network and the
auditory network of tinnitus patients is negatively correlated.
Tinnitus may also cause a decrease in spontaneous neural activity
in the visual area (Burton et al., 2012; Maudoux et al., 2012).
Through surface-based RS-fMRI, our research also inferred that
the function of the auditory and visual cortices of patients with
tinnitus maybe restored after long-term treatment.

In this study, we used surface-based ALFF analysis instead
of volume-based ALFF analysis. Compared with surface-based
methods, volume-based processing steps, especially smoothing
and registration, significantly degrade cortical area localization;
moreover, the spatial localization effect of the latter is only 35%
of the best spatial positioning of the former (Coalson et al.,
2018). As another neural activity indicator, cortical ReHo was
demonstrated to be more specific to the intrinsic functional
organization of the cortical mantle and had higher test–retest
reliability (Zhang B. et al., 2019). However, in the tinnitus field,
there is no research on the use of ALFF in the cortex, especially for
comparisons before and after treatment. Therefore, our results
proved the effectiveness of cortical functional imaging after
tinnitus therapy to a certain extent and could more accurately
reflect local functional changes at the cortical level. In addition,
we used 24 weeks of sound therapy to evaluate patients after a
relatively long period of time in this study. Compared with the
shorter treatment period of 12 weeks used in previous studies
(Wei et al., 2020; Lv et al., 2021), 24 weeks of treatment was more
effective. With the extended treatment time, we obtained more
detailed cortical information.

Limitations
First, there was no relationship between decreased THI scores
and ALFF changes in tinnitus patients, and only left TPOJ
and right PCC showed differences between the tinnitus baseline

group and the 24-week sound therapy tinnitus group in the
post hoc analysis; this outcome may have been due to the small
sample size. In future studies, we need to further expand the
sample size to verify the correlation between the differences
observed. Second, few studies have reported treatment effects
for tinnitus at the surface-based level, especially with ALFF.
There are few related papers for our reference. Therefore,
we need to combine other surface-based indicators, such
as ReHo, degree centrality, and functional ALFF (fALFF),
to study their significance more comprehensively. Third, the
treatment time of 24 weeks should be gradually increased
while considering the patient’s tolerance. After all, achieving
a longer period of clinical treatment is conducive to the
recovery from tinnitus.

CONCLUSION

Longer-term sound therapy changed cortical ALFF in left TPOJ
and right PCC. Surface-based RS-fMRI can provide more subtle
local functional activity to explain the mechanism of tinnitus
treatment, and these brain regions could serve as potential targets
in the brain for neuroimaging evaluation of sound therapy
in tinnitus patients. Notably, long-term sound therapy had a
normalizing effect on tinnitus patients. Future follow-up studies
in a larger cohort may elucidate further meaning of the changes
in ALFF value after tinnitus.
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