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The brain rapidly processes and adapts to new information by dynamically transitioning
between whole-brain functional networks. In this whole-brain modeling study we
investigate the relevance of spatiotemporal scale in whole-brain functional networks.
This is achieved through estimating brain parcellations at different spatial scales (100–
900 regions) and time series at different temporal scales (from milliseconds to seconds)
generated by a whole-brain model fitted to fMRI data. We quantify the richness of the
dynamic repertoire at each spatiotemporal scale by computing the entropy of transitions
between whole-brain functional networks. The results show that the optimal relevant
spatial scale is around 300 regions and a temporal scale of around 150 ms. Overall,
this study provides much needed evidence for the relevant spatiotemporal scales and
recommendations for analyses of brain dynamics.
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INTRODUCTION

The brain is a dynamical system that can process and adapt to new information by rapidly
transitioning between multiple states. Human functional neuroimaging studies have demonstrated
these transitions of functional states, even in absence of an active task (Tang et al., 2012; Stitt
et al., 2017; Liégeois et al., 2019). These functional states contain orchestrated activity of several
networks of brain regions, which transition between each other in recurring patterns over time
(Alexandrov, 1999; Ashourvan et al., 2017; van der Meer et al., 2020). These network transitions
have been associated with cognition and (ab)normal behavior (Engel et al., 2001; Bassett et al., 2011;
Thompson et al., 2013; Vidaurre et al., 2017; Liégeois et al., 2019; Yoo et al., 2020). While describing
these transitions is important for our understanding of the neural basis of cognition and behavior,
a fundamental question remains, namely on which spatiotemporal scale (i.e., spatiotemporal
resolution) these transitions between whole-brain functional networks generally take place. This
unclarity has led to arbitrary decisions in neuroimaging experiments regarding spatiotemporal
scales, risking losing relevant information on network transitions.

The main reason for a lack of empirical evidence for the optimal spatiotemporal scales of brain
transitions is caused by technical restrictions of human neuroimaging studies. Despite a coherent
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overlap between functional networks in EEG/MEG and fMRI,
i.e., EEG microstates and fMRI resting state networks (Britz
et al., 2010; Musso et al., 2010; Yuan et al., 2012), these
neuroimaging modalities differ regarding the available spatial
and temporal scale. The spatial scale of MEG depends on the
number of sensors, and beamforming can only separate up to
around 70 regions across the whole brain with a significant drop
in signal in deeper regions (Brookes et al., 2016; Deco et al.,
2017a). Regarding the temporal scale, EEG and MEG provide a
temporal scale of milliseconds, whereas fMRI is limited by the
repetition time (TR) and the hemodynamics of the BOLD signal.
In line with the respective strengths of the modalities, spatial
scales and parcellations have been mainly explored with fMRI
(Proix et al., 2016; Arslan et al., 2018), while temporal scales
of brain dynamics have been rather investigated using EEG or
MEG (Bassett et al., 2006; Britz et al., 2010). However, current
technical restrictions make simultaneous comparisons of spatial
and temporal scales insurmountable.

One way of overcoming the technical limitations of
spatiotemporal scales of empirical neuroimaging data is to
use generative dynamical network models that simulate whole-
brain neural activity in a simplified manner, while retaining
the main properties of empirical spatiotemporal dynamics. In
a broad sense, generative models conceptualize the relevant
underlying processes (e.g., synaptic connectivity and dynamics
of neural populations) that generate the observed empirical
neural signal, e.g., by using mean-field approximations (Wilson
and Cowan, 1972; Stephan et al., 2007; Deco et al., 2013). In
contrast to restricted spatiotemporal scales of empirical data,
these models recover the underlying neural signal with a flexible
adaptation of the signal’s temporal scale up to a millisecond scale
(Yuan et al., 2018; Deco et al., 2019; Cornblath et al., 2020), while
simultaneously offering an exploration of various spatial scales
(Gerstner et al., 2012).

In our previous research, we were able to compare the
complexity of dynamic transitions of whole-brain networks using
a whole-brain network model incorporating different temporal
scales from milliseconds to seconds (Deco et al., 2019). In the
current study, we extend this approach by adding a spatial scale
to the analysis (i.e., the number of regions) and exploring the
transitions of networks across different spatiotemporal scales
(i.e., simultaneously considering spatial and temporal scales).
The novelty of our study comes from the information about
the optimal number of brain regions (i.e., spatial scale) in
describing the spatiotemporal dynamics of the resting-state,
providing an empirical basis for the choice of parcellations for
analyses of brain dynamics. By doing so, we complement previous
neuroimaging studies on the temporal scale of functional whole-
brain networks’ transitions (e.g., Bassett et al., 2006) and the
spatial scale of static networks (e.g., using functional connectivity
as in Arslan et al., 2018).

To achieve our goal, we explore transitions of whole-brain
functional networks at spatial scales from 100 to 900 regions.
To add a temporal dimension, these networks are extracted
from empirical resting-state fMRI with fixed temporal scales
(corresponding to the TR) as well as from simulated time series
with various temporal scales from milliseconds to seconds. We

determine the relevant spatiotemporal scale by comparing the
entropy of functional network transitions. By focusing on the
behavior of whole-brain networks instead of separate brain
regions, we extract information that is the most relevant for brain
dynamics analyses. From our results we derive recommendations
for neuroimaging researchers, highlighting our finding that the
optimal spatial scale for analyses of brain dynamics is at around
300 regions and at an optimal temporal scale of around 150
ms. Besides implications for a better understanding of functional
network transitions, we provide data-based recommendations for
choosing appropriate neuroimaging modalities and parcellation
techniques for brain dynamics analyses.

MATERIALS AND METHODS

We adapted the existing method comparing different time
scales (Deco et al., 2019) to incorporate different spatial scales.
Images were created using Biorender, Inkscape, Connectome
Workbench and the Matplotlib library within Python.

Data Acquisition and Preprocessing
We used the 100 unrelated subjects’ subset (54 females, 46 males)
from the Human Connectome Project (HCP) (Van Essen et al.,
2013). From this data, we analyzed the left-right (LR) phase-
encoding runs from the resting state fMRI data, which had about
15 min duration with a TR of 0.72 sec. The HCP study was
approved by the local ethical committees and informed consent
was obtained from all subjects. Data from six subjects were
discarded as the resulting functional connectivity (FC) matrices
consisted of at least one not available row at parcellations with
more than 800 regions (due to the sparsity of the networks),
resulting in a total of 94 subjects being used for the analysis.
During fMRI acquisition, subjects were instructed to keep their
eyes open while looking at a fixation cross. A full description of
the imaging parameters and minimal preprocessing pipeline can
be found in Glasser et al. (2013). In short, after correction for
motion, gradient, and susceptibility distortions the fMRI data was
aligned to an anatomical image. The aligned functional image was
then corrected for intensity bias, demeaned, and projected to a
common surface space, which resulted in a cifti-file.

All fMRI data were filtered between 0.1 and 0.01 Hz to
retain the relevant frequency range for further analyses of the
BOLD signal. We obtain structural and functional matrices in
different spatial scales using the Schaefer parcellation, which
optimizes local gradient and global similarity measures of the
fMRI signal in various spatial scales ranging from 100 to
900 regions (Schaefer et al., 2018). These parcellations can be
found on https://github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal. In
both fMRI datasets time series were extracted with the help
Workbench Command provided by the HCP.

To create a structural connectome as a basis for the whole-
brain model, we generated an average structural connectome
depicting the number of fibers in the required spatial scales.
We used an independent diffusion MRI dataset from the HCP
database with a subset of 32 participants acquired at the
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Massachusetts General Hospital (“MGH HCP Adult Diffusion,”
16 females, 16 males). This dataset had been acquired using
high-quality scanning protocols (e.g., using an optimized scanner
to achieve a high b-value of 10,000 s/mm2 and a high-angular
resolution, combined with a multi-slice approach), resulting
in above-average normative diffusion MRI data. The data had
already been preprocessed and made available to the public
within the Lead-DBS software package (Setsompop et al., 2013;
Horn et al., 2017). In brief, the data were processed using a
generalized q-sampling imaging algorithm as implemented in
DSI studio.1 The data were segmented and co-registered using
SPM 12. Restricted by a coregistered white-matter mask, 200,000
fibers were sampled within each participant using a Gibbs’
tracking approach (Kreher et al., 2008) and normalized into
MNI space via DARTEL transforms (Ashburner, 2007; Horn
and Blankenburg, 2016). We used the standardized methods
from Lead-DBS toolbox version 2.0 (Horn et al., 2018) to obtain
structural connectomes for the same parcellation schemes as for
the functional data, selecting tracts that both started and ended
within the specified parcellation scheme.

Whole-Brain Modeling Using the
Dynamic Mean Field Model
The use of fMRI signals would normally limit our study in the
temporal dimension. To overcome this shortcoming, we use a
whole-brain dynamic mean field (DMF) model, which allows
us to simulate data in varying timescales from milliseconds
to seconds, while maintaining a comparable structure of the
signal. The model expresses the activity of interconnected brain
regions with excitatory and inhibitory influences as a reduced
set of coupled stochastic differential equations (Deco et al.,
2013), following the original derivation by Wong and Wang
(2006). Thus, this model allows us to describe the activity of
brain regions on a macroscale, while considering the dynamics
of local neuronal pools (i.e., inhibitory and excitatory neural
populations). Importantly, considering these local dynamics,
the model gives a description of local dynamics at millisecond
scales. This fine-grained temporal scale cannot be achieved with
other whole-brain dynamical models, which usually simulate
oscillatory activity in the same temporal scale as the empirical
signal (e.g., bifurcation-based models as in Deco et al., 2017b).

A summary of the individual steps to create the model can
be found in Figure 1. The model consists of a network of brain
regions that emit spontaneous neuronal signals. The spatial scale
defines the number of the brain regions. Each of these regions
consists of excitatory (E) and inhibitory (I) neuronal pools, which
reciprocally influence each other locally within each region n.
We further assume that these regions interact via long-range
connections, as given by the connection weights of the structural
connectome (Deco et al., 2014).

We implement equations based on these assumptions in a
modified DMF model, which is based on the original reduction
first proposed by Wong and Wang (2006). In the model used in
this study, NMDA receptors mediate excitatory currents I(E) and
GABA-A receptors mediate inhibitory currents I(I). Inhibitory

1http://dsi-studio.labsolver.org

sub-populations communicate reciprocally with excitatory sub-
populations on a local level. Excitatory sub-populations are
additionally linked to other excitatory sub-populations via long-
range connections, representing the effect of NMDA receptors.
These long-range connections C are based on the number of fiber
tracts given by the structural connectome (see description above).
The connections are then tuned by the global scaling factor G that
linearly scales all synaptic strengths.

The following set of coupled differential equations are used to
create the DMF model:
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For each inhibitory (I) and excitatory (E) neuronal pool in
every brain region n, the vector I(E, I)

n represents the total input
current (in nA), the vector r(E,I)

n stands for the firing rate (in Hz)
and the vector S(E,I)

n denotes the synaptic gating. The total input
currents, which are received by the neuronal pools, are converted
by the neuronal response functions H(E,I) into firing rates r(E,I)

n .
Here, the gain factors gE=310 nC−1 and gI=310 nC−1 are used
to determine the slope of H. The shape of the curvature of H
around Ithr is defined by the constants dE = 0.16 and di=0.087.
When the threshold currents of I(E)

thr =0.403 nA and I(I)thr=0.288
nA are reached, the firing rates increase linearly with the input
currents. We add a standard Gaussian noise υn with an amplitude
of σ = 0.01 nA (Deco et al., 2014).

The average synaptic gating of the excitatory pools S(E)
n is

controlled by the NMDA receptors with a decay time constant
τNMDA = 0.1 s and γ = 0.641 (transformed into ms). The average
synaptic gating of the inhibitory pools S(I)

n is controlled by the
GABA receptors with a decay time constant τGABA = 0.01 s
(transformed into ms).

Synaptic currents In result from inputs from the local network,
i.e., S(E,I)

n , and inputs from other network nodes, i.e., S(E)
p . Local

inputs are governed by weights, i.e., wE, wNMDA, wn, wI and w.
All excitatory synaptic couplings are weighted by wNMDA = 0.15
and the weight of the recurrent excitation w 1.4. Additionally,
there is a constant input to each neural pool, denoted by
I0 = 0.382 nA with the weights wE = 1 and wI = 0.7.
The local parameters are chosen so that the average firing
rate is close to 3 Hz (Deco et al., 2014). Only the weight of
feedback inhibition wn is adjusted before each simulation using a
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FIGURE 1 | Whole-brain modeling steps to create simulated functional time series fitted to empirical BOLD data. Using a whole-brain network model such as the
dynamic mean field model allows us to accurately create time series data at different temporal scales. Local dynamics of each region given by a parcellation are
generated by a dynamic mean field model and coupled through the structural connectome (as provided by the numbers of fiber tracts estimated from
diffusion-weighted imaging). To fit the resulting neuronal time series to the empirical BOLD time series, we employ a Balloon-Windkessel hemodynamic model to
create simulated BOLD time series. The simulated time series are fitted to the empirical time series using metrics of metastability and phase similarity matrix
distributions.

regulatory mechanism called Feedback Inhibition Control, which
mimics a resting state condition (Deco et al., 2014). This ensures
that the network stays in its asynchronous state with firing rates
between 3 and 10 Hz for all regions.

Inputs from other regions S(E)
p are given by the excitatory

populations and are weighted by the connection weights of the
structural connectome Cnp. These connection weights are scaled
by the global coupling parameter G, which is adjusted using
model fitting (see below).

It is then possible to retrieve separate temporal scales from the
simulated neuronal data by binning the time series. However, first
the neuronal time series had to be fitted to the empirical BOLD
time series (by adjusting G) to ensure a biologically plausible
signal. Therefore, we transformed the neuronal signal from the
model into a simulated BOLD signal and then compared the
simulated and empirical signals (see below). We employed the
Balloon-Windkessel hemodynamic model using all biophysical
parameters as stated in Stephan et al. (2007). The model is
described by the following equations:

dsn
dt = 0.5 r(E)

n + 3− ksn − γ
(
fn − 1

)
(7)

dfn
dt = sn (8)

τ dvn
dt − fn − va

−1
n (9)

τ
dqn
dt =

fn(1−ρ)f
−1
n

ρ
−

qnva
−1
n
vn

(10)

This model describes a vasodilatory signal sn which is altered
by autoregulatory feedback. Depending on sn, the blood flow fn

leads to changes of the deoxyhemoglobin content qn and blood
volume vn. τ is the time constant, ρ is the resting oxygen fraction
and a represents the venous resistance. For each region n the
BOLD signal Bn is a static non-linear function of qn and vn:

Bn = V0

[
k1
(
1− qn

)
+ k2

(
1− qn

vn

)
+ k3(1− vn)

]
(11)

To focus on the functionally relevant frequency range, we
band-pass filtered the simulated BOLD signals using the same
filter as for the empirical data with a bandpass between 0.1 and
0.01 Hz (Achard et al., 2006; Glerean et al., 2012). A summary of
the model parameters can be found in Supplementary Table 1.

Agreement Between Empirical and
Simulated Data
To achieve biologically plausible signal statistics in the simulated
time series at each scale, we performed the fitting to the empirical
signals by adjusting G to have a maximal agreement in three
different metrics: the metastability, phase consistency matrices
and functional connectivity dynamics (see below). Each of these
metrics represent different dynamical properties of the BOLD
signal. Previous research has shown that adding these dynamical
metrics such as metastability and phase consistency matrices to
the fitting procedures improves constraining dynamical working
points of dynamical whole-brain models than using only static
metrics such as FC (Deco et al., 2017b, 2019; Saenger et al., 2017).
These metrics were computed for each value of G (between 0 and
2.5 in steps of 0.025) in the simulated data and for the empirical
data and compared as described below. Due to multiple spatial
scales, the creation of the model was very compute-intensive,
e.g., to replicate the time series of 10 subjects from the HCP
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dataset at a neuronal timescale using a parcellation of 400 regions
with different G-values from 0 to 2.5 about 80–100 GB of RAM
and 30 days of computation were required (mostly owing to the
feedback inhibition control mechanism). Therefore, we restricted
the simulations to 10 iterations, representing the time series
of a group of 10 subjects. To ensure that our analyses were
generalizable to different healthy subjects, we did 100 iterations of
the model fitting to empirical time series with a random selection
of 10 subjects at each iteration.

Dynamical Measures Used for the Fitting
Metastability
The metastability represents the overall variability of oscillations
(Wildie and Shanahan, 2012; Deco et al., 2017b). It is calculated
as the standard deviation of the Kuramoto order parameter R(t)
across time, which depicts the average phase ϕk(t) in each region
k across n regions.

R (t) = |
∑n

k=1 e
iϕk(t)
|

n
(12)

The phases were derived from the data by detrending
the filtered fMRI time series and then applying the Hilbert
transform. When R = 1, all phases are fully synchronized, while
R = 0 indicates a complete desynchronization of all phases. We
calculated the differences between the empirical and simulated
metastability. This has been previously proven to be suitable to
define the dynamical working point of dynamical whole-brain
models (Deco et al., 2017b; Saenger et al., 2017).

Phase Consistency Matrices
We calculated the phase coherence matrix by evaluating the
instantaneous phase at each time point t of every region j
and then computing the phase difference across all regions.
We measured the similarity of these phase coherence matrices
over t to create a phase consistency matrix. This matrix
is a representation of spatiotemporal fluctuations of phases.
To compare empirical and simulated data, we calculated
the Kolmogorov-Smirnov distance between the empirical and
simulated distribution of the phase consistency matrices. The
Kolmogorov-Smirnov distance quantifies the maximal difference
between two distribution functions of two samples and is
minimized by the optimal value of G (Saenger et al., 2017).

Functional Connectivity Dynamics
We split the BOLD signal into sliding windows of 80 s,
overlapping by 40 s. For each window, at time t, we calculated
the FC, FC(t). The Functional connectivity dynamics (FCD) is
defined by the Pearson correlation of the upper triangular parts of
the two FC matrices FC(t1) and FC(t2). For comparison between
empirical and simulated data, we calculated the Kolmogorov-
Smirnov distance (see above).

Furthermore, we checked whether we retrieved comparable
numbers of functional networks in the empirical and simulated
data (see Supplementary Figure 2).

Extraction of Whole-Brain Functional
Networks Using Independent
Component Analysis and Calculation of
Entropy
The summary of the analytical steps can be seen in Figure 2. The
simulated and empirical time series were available in different
spatial scales. In the case of the simulated signal, we retrieved
the simulated neuronal time series at separate temporal scales
in the range of milliseconds to seconds (see Figure 2A, middle
panel). To do so, the simulated neuronal time series were
binned by averaging the signals in windows of the width of
the timescale, each time bin corresponding to a time point of
the newly created time series. As this approach led to multiple
fine-grained time series with a high computational cost of the
analysis, we were only able to simulate the time series across
all temporal scales up to a spatial scale of 400 regions. We
created simulated time series at the group level by performing 10
iterations (representing 10 subjects).

In the case of the empirical time series, we extracted a
group of 10 subjects from the data by randomly selecting 10
subjects. We concatenated their time series to retrieve functional
networks on a group level (using the same group size as in the
simulation to ensure comparability). To make the analysis robust
to interindividual variability, we repeated this process 100 times.
The temporal scale of the empirical data was determined by the
TR (HCP: 720 ms). As only one temporal scale was provided in
the empirical data, we were able to extract functional networks in
a spatial scale from 100 to 900 regions.

In each temporal scale (given by the TR in the empirical
data or the bin size in the simulated data), the time series
were binarized using the point-process binarization algorithm for
BOLD signals (Tagliazucchi et al., 2012). Here, the time series
were normalized using a z-score transformation. Depending on
the threshold, which was defined by one standard deviation,
the time series were set to 0 or 1, resulting in an event matrix
(see the right panel of Figure 2A), following the point-process
procedure described in previous studies (Tagliazucchi et al., 2012;
Deco and Kringelbach, 2017; Deco et al., 2019). Next, the event
matrix was normalized using z-score transformation, so that
the event matrix in each brain region would have null mean
and unitary variance. This procedure has been shown to be
robust for threshold choices and is a classical method to reduce
dimensionality of dynamical data (Tagliazucchi et al., 2012). We
then continued the analysis with the normalized event matrix
E (with the dimensions: number of regions i x number of time
points b).

To estimate the number of functional networks, we applied
an adaptation of an eigenvalue analysis to assess the statistical
significance of resulting networks (Peyrache et al., 2010; Deco
et al., 2019), as introduced by Lopes-dos-Santos et al. (2013).
This method finds the number of principal components
within the event matrix with significantly larger eigenvalues
than a normal random matrix that follows a probability
function, as specified in Marèenko and Pastur (1967). As
can be seen in Figure 2B, after determining the number of
functional networks, we extracted these functional networks
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FIGURE 2 | Extraction and tracking of whole-brain functional networks at different spatial and temporal scales using the whole-brain model. (A) We simulate
neuronal time series at different spatial scales (from 100 to 400 regions). We then create different bin sizes of the time series (using bins from 10 to 3,000 ms), the bin
size corresponds to the temporal scale. The binned time series are binarized using a point process paradigm, resulting in an event matrix. (B) We extract whole-brain
functional networks using independent component analysis, resulting in a network matrix (see ribbon plot). These networks are tracked over time by projecting the
event matrix onto the networks, resulting in an activity matrix (not displayed). (C) The richness of the switching between functional networks is estimated by
calculating the entropy of their switching probability. The entropy is compared across spatial and temporal scales.

by applying an independent component analysis to the event
matrix E. This procedure resulted in the network matrix W
(with dimensions: number of brain regions i x functional
networks c).

Lastly, we tracked the activity of the functional networks over
time (see Figure 2B). By projecting the binarized event matrix
onto the network matrix, the similarity between each functional
network c and the whole-brain activity at each time point b could
be assessed. This projection resulted in an activity matrix A (with
the dimensions: functional networks c x time points b):

Acb =
−→
ETb Pc
−→
Eb (13)

with the event matrix E and the projection matrix P. The
projection matrix P is defined as:

Pc =
⇀
wc
⊗⇀

wc =
⇀
wc

⇀
w
T
c

(14)

where
⊗

is the outer product operator,
⇀
wc is one of the extracted

functional networks from the event matrix (the column of the
matrix

⇀
wc) and

−→
E b is the b column of the event matrix E (events

at time point b).
After retrieving the activity of each functional network over

time, we calculated its probability of occurrence. We calculated
the ratio of activity of each functional network in relation to

overall activity (activity of all networks over time), resulting in
the probability of each network c over time:

p (c) =
∑
b

Acb/
∑
c, b

Acb (15)

where b corresponds to each time point.
Using these probabilities, we computed the entropy of

occurrence of each network c. The entropy represents the
richness of transition activity between functional networks and
it captures the diversity of states depending on their probabilities,
adapted from the concept ofentropy by Shannon (1948):

H = −
∑
c

p (c) log
(
p (c)

)
(16)

As the number of functional networks increased with higher
spatial scales, we normalized the entropy. The normalization was
done by dividing the entropy by the logarithm of the resulting
number of networks for each spatial scale. By doing so, it was
possible to compare across spatial scales. We then compared the
entropy of network transitions across spatial and temporal scales
(see Figure 2C). We made a pairwise comparison of entropy
of spatial scales using Wilcoxon tests in the empirical data and
the simulated data (at the optimal temporal scale and at the
temporal scale = TR).
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RESULTS

In our study we described the optimal spatiotemporal scale that
captured the highest information content about the temporal
evolution of functional networks (as evidenced by the transition
activity). We extracted time series at different parcellations
at different spatial scales (from 100 to 900 regions) in the
empirical data. Furthermore, we created a dynamic mean-field
model to create time series at various temporal scales from
milliseconds to seconds (Figure 1) and a spatial scale between
100 and 400 regions. We extracted functional networks from
both simulated and empirical time series using independent
component analysis. We then explored the probability of
occurrence of these functional networks over time. We calculated
the entropy of these probabilities for each network, representing
the diversity of transition activity between functional networks
(Figure 2). By focusing our analysis on functional networks
(as opposed to region-wise time series), we ensured that
the information we gained on the temporal dynamics (as
measured by transition activity) was relevant for whole-brain
information processing.

Agreement Between Empirical and
Simulated Data
The DMF model is a neuronal model that recreates inhibitory
and excitatory synaptic dynamics (including AMPA, GABA,
and NMDA receptors) following the structure given by the
underlying anatomical connectivity. Using the steps detailed in
Figure 1 and following the constraints of anatomical connectivity
as provided by the structural connectome, we created realistic
neuronal time series at the scale of milliseconds to seconds
using the DMF model. To ensure the robustness of the model,
we fitted the resulting simulated BOLD time series to the
empirical BOLD time series based on the global coupling G,
which describes the constraint of the dynamics to the anatomy
(Deco et al., 2013). Here, we defined a good fitting where
the differences in metastability and the Kolmogorov-Smirnov
statistics of the phase consistency matrices and FCD reached
a minimum (see Supplementary Figure 1). As shown in
Supplementary Figure 1, the fitting resulted in an optimum at
a global coupling value G between 1.55 and 1.85 (depending on
the spatial scale used).

In both simulated and empirical data, some of the resulting
networks resembled known classical resting state networks (see
Figure 3). As our study focused on the dynamical alteration
of functional networks, we ensured that the properties of
the resulting functional networks from the simulation were
comparable to the properties of the networks derived from the
empirical time series. Therefore, we compared the number of
functional networks derived from the simulated BOLD time
series (see Supplementary Figure 2). Here, the number of
functional networks increased when more regions (i.e., a higher
spatial scale) were included. This finding is in agreement with the
empirical data and with what was reported in the literature using
similar approaches and numbers of regions (Yourganov et al.,
2011; Amico and Goñi, 2018; Kumar et al., 2019).

FIGURE 3 | Examples of group whole-brain functional networks rendered on
the standard brain. The left column has been retrieved from the simulated time
series (using a TR = 720 ms), the right column from the empirical time series.
Some of these networks have a high overlap with classical resting state
networks (Yeo et al., 2011) such as the Default Mode Network, Central Visual
Network and Temporal Parietal Network.

Entropy of Whole-Brain Functional
Network Transitions
The transitions of whole-brain functional networks over time
and their probability of occurrence allowed us to estimate
entropy H as a representation of the information content
of the functional network activity at various spatiotemporal
scales from a probabilistic perspective. We display the entropy
of spatiotemporal networks as a function of the spatial and
temporal scale using empirical (Figure 4A) and simulated time
series (Figure 4B).

We found an inverted U-shape form of the entropy H as a
function of probability of spatiotemporal networks across time.
Regarding the spatial scale, the H reached the highest value at a
scale of 300 regions (mean simulated H = 0.957, mean empirical
H = 0.951), but with only a small decrease at scales with 100
(mean simulated H = 0.949, mean empirical H = 0.946) or 400
regions (mean simulated H = 0.938, mean empirical H = 0.946).
At spatial scales above 400 regions (analysis only present in
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FIGURE 4 | Entropy of the temporal probability of whole-brain functional networks in different spatial and temporal scales of the empirical (A) and simulated data
(B–D). The entropy is calculated across spatial scales in the empirical data with a fixed temporal scale of 720 ms (corresponding to the TR). The simulated data gives
the opportunity to explore different spatial scales at the temporal scale of the TR, 720 ms, (B) as well as at the optimal temporal scale of 150 ms (C). Beyond that it
can be also used to explore various temporal scales and spatial scales simultaneously (C). Both the empirical and simulated data show that the highest entropy can
be found at a spatial scale of 300 regions with only a minor decrease in entropy at a spatial scale of 200 regions (marked by a red box in A–C). The highest entropy
can be found at a temporal scale of 150 ms across all spatial scales (vertical red arrow in D). Each datapoint depicts a random group of 10 subjects in the empirical
data or a simulation trial simulating a group of 10 subjects. Statistical significance of comparisons between spatial scales is indicated with “ns” meaning a p > 0.05, *
meaning < 0.05, *** meaning 0.001 (FDR-corrected).

empirical data, see Figure 4A), we observed a further drop in
entropy (down to mean empirical H = 0.916 at 900 regions).

Beside the comparison across spatial scales, the simulated time
series allowed us to compare the temporal scales (Figure 4D).
Regarding the temporal scale, we found the highest entropy
at an average scale of 150 ms (ranging from 140 to 160
ms, depending on the spatial scale used). Using finer or

coarser temporal scales led a much greater drop in entropy
(lowest value: mean simulated H = 0.5957) than a change
of spatial scales.

Considering both spatial and temporal scales, the highest level
of entropy could be found at a temporal scale of 150 ms and a
spatial scale of 300 regions (see Figure 4D). The optimal temporal
scale of 150 ms persisted at all simulated spatial scales. Also, the
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effect of temporal scale on entropy was greater than the effect
of spatial scale.

Of note, H was always higher when using the empirical dataset
in comparison to the simulated time series even when using
the optimal temporal scale in the model (see Figure 4A vs.
Figures 4B,C), reflecting the variability given by the empirical
time series (and signals not accounted for in the DMF model).

DISCUSSION

In this study we investigated the most relevant spatiotemporal
scale of fundamental macroscopic dynamical processes, i.e.,
scale of transitions between whole-brain functional networks.
We followed the temporal behavior of functional whole-brain
networks at different spatial scales and at fine-grained temporal
scales from milliseconds to seconds (using a realistic whole-brain
DMF model). Using a data-based and model-based approach,
we generated evidence that the entropy of network transitions
follows an inverted U-shaped curve with a maximum at a spatial
scale of about 300 regions and a temporal scale of about 150 ms.
Of note, the optimal temporal scale of about 150 ms persisted at
all simulated spatial scales from 100 to 400 regions, indicating
an absent interaction effect between spatial and temporal scales.
Furthermore, the effect of the temporal scale on entropy was
much greater than the effect of spatial scale, which underlines the
importance of an appropriate temporal scale for analyses of brain
dynamics. Given the close agreement between simulated and
empirical data, the DMF model offers an excellent opportunity to
bridge analyses of brain dynamics across different neuroimaging
modalities and different spatiotemporal scales.

Previous studies have performed comparisons between spatial
scales with various metrics, such as the reproducibility of
resulting networks, agreement with anatomical connectivity, and
prediction accuracy of neuropsychiatric conditions (Craddock
et al., 2011; Arslan et al., 2018; Dadi et al., 2019; Messé, 2019).
However, all these studies focused on the average functional
connectivity, without considering network dynamics. Only Proix
et al. (2016) investigated the effect of spatial scale on the
information content of brain dynamics by decomposing the time
series using a principal component analysis in a whole-brain
network model and found the highest eigenvalue at around
140 regions. Higher spatial scales led to an oversampling with
a relative reduction of connectome density, leading to more
segregated regions and an overall reduction of transmission
information content across regions. Although these results
are promising, they focused on separate brain regions only.
In contrast, we were explicitly interested in whole-brain
networks, as functional networks seem to be closer related to
cognitive processes than single brain regions (Dadi et al., 2019;
Fan et al., 2021).

Our study is the first to examine spatial and temporal scales
by simultaneously focusing on brain dynamics of whole-brain
networks. Given the significant evidence that maximal entropy
of brain dynamics is associated with maximal transmission of
information (Lungarella and Sporns, 2006; Rämö et al., 2007;
Shew et al., 2011; Wang et al., 2018), cognitive performance

(Niu et al., 2018; Liu et al., 2020), and consciousness (Mashour
and Hudetz, 2018), we chose to describe the richness of whole-
brain network activity using the entropy of whole-brain network
transitions. Selecting the most informative spatiotemporal scale
during analyses of brain dynamics can help to focus the
analysis on relevant information about the dynamical behavior
of brain networks, while reducing the amount of noise (Fornito
et al., 2010), avoiding oversampling (Proix et al., 2016), and
optimizing the computational cost of the analysis, i.e., removing
subnetworks that are barely active and contribute little to the
overall network activity.

Our findings have several implications for future research
of brain dynamics. Regarding the spatial scale, our study provides
an empirical basis for choosing the number of brain regions for
neuroimaging analyses that focus on brain dynamics of whole-
brain functional networks. We provided evidence that a spatial
scale of about 300 regions is sufficient to capture the most relevant
information on brain dynamics of functional networks. While
lower scales may be associated with a loss of information, higher
spatial scales might introduce irrelevant and possibly more noisy
functional networks.

Regarding the temporal scale, we were able to reproduce
the findings of an optimal temporal scale of about 150 ms
from our previous study (Deco et al., 2019), which was similar
to previous simulations focusing on temporal scales of brain
dynamics (Honey et al., 2007). Furthermore, our simulation
results are in line with other neuroimaging findings, which
showed a mean duration of EEG and MEG microstates between
100 and 200 ms (Britz et al., 2010; Baker et al., 2014). Besides a
close alignment with neuroimaging studies, our findings reflect
experimental results of temporal dynamics of conscious processes
that operate at similar temporal scales and typically involve a
rapid temporal sequence of information stabilization and transfer
(Koenig et al., 2002; Van De Ville et al., 2010; Wutz et al.,
2014; Salti et al., 2015; Mai et al., 2019). On top of that, our
study shows that the optimal temporal scale does not depend
on the spatial scale, i.e., an optimal scale of about 150 ms
persists across all spatial scales. For researchers focusing on
temporal properties of brain dynamics, we therefore advise to
either use neuroimaging modalities operating at this optimal
temporal scale (e.g., MEG or EEG, Michel and Koenig, 2018) or
augment their fMRI analyses with whole-brain modeling, which
allows including more fine-grained temporal scales. Therefore,
based on empirical data rather than arbitrary choices, our
recommendations contribute to efforts directed at harmonizing
analyses of brain dynamics across spatiotemporal scales. In
addition, our results underline the utility of dynamical whole-
brain models to overcome experimental limitations.

Limitations and Outlook
There are several limitations in our methodological approach.
First, we used independent component analysis to derive
whole-brain functional networks at different scales. As with any
other higher-order statistical method, independent component
analysis is not free of underlying assumptions and specifically
assumes maximal spatial independence of the networks
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(Jutten and Herault, 1991). Future studies could consider
additional analyses using other metrics such as network
measures. However, as Arslan et al. (2018) and Hilger et al. (2020)
demonstrated in their studies (Arslan et al., 2018; Hilger et al.,
2020), many network measures are largely altered by the spatial
scale and appropriate correction techniques should be used for
such analyses across scales.

Second, our analysis was focused on spatial scales of the brain
dynamics at the macroscale. For investigations of microscale
brain dynamics, other spatial and temporal scales might be
relevant. Therefore, future studies could consider exploring brain
dynamics of cellular-level networks using microscale imaging
tools such as optical imaging. Ideally analyses of brain dynamics
should bridge macro- and microscales; with corresponding
methods currently under investigation (Weiskopf et al., 2015;
Larivière et al., 2019; Gao et al., 2020).

Third, both the estimation of whole-brain functional networks
as well as the calculation of the entropy of the network transition
activity was done on a group level and during rest. Future
studies could compare the entropy of network transitions on
an individual level and under consideration of behavior and
cognition, relating individual cognition to dynamical behavior
of brain networks. For such approaches, vector-based instead of
a region-based parcellations might account for better individual
variations (Liu et al., 2021).

Overall, our results suggest that whole-brain functional brain
networks operate at an optimum of about 300 regions and a
timescale of about 150 ms. We contribute to the understanding
of the dynamical behavior of whole-brain networks, which
could inspire future human neuroimaging studies to harmonize
spatiotemporal scales and neuroimaging modalities and use
dynamical models to create connections between micro- and
macroscopic scales.
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