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Traditional facial recognition methods depend on a large number of training samples
due to the massive turning of synaptic weights for low-level feature extractions. In prior
work, a brain-inspired model of visual recognition memory suggested that grid cells
encode translation saccadic eye movement vectors between salient stimulus features.
With a small training set for each recognition type, the relative positions among the
selected features for each image were represented using grid and feature label cells
in Hebbian learning. However, this model is suitable only for the recognition of familiar
faces, objects, and scenes. The model's performance for a given face with unfamiliar
facial expressions was unsatisfactory. In this study, an improved computational model via
grid cells for facial recognition was proposed. Here, the initial hypothesis about stimulus
identity was obtained using the histograms of oriented gradients (HOG) algorithm. The
HOG descriptors effectively captured the sample edge or gradient structure features.
Thus, most test samples were successfully recognized within three saccades. Moreover,
the probability of a false hypothesis and the average fixations for successful recognition
were reduced. Compared with other neural network models, such as convolutional neural
networks and deep belief networks, the proposed method shows the best performance
with only one training sample for each face. Moreover, it is robust against image occlusion
and size variance or scaling. Our results may give insight for efficient recognition with small
training samples based on neural networks.
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1. INTRODUCTION

Over the last few decades, face recognition has been an active area of research in machine learning
and computer vision. In the early 1990s, the historical eigenface (Turk and Pentland, 1991) was
introduced. This approach recognizes faces by projecting images onto the face space and reduces
dimensionality using principal component analysis (Sirovich and Kirby, 1987). Later, support
vector machines (SVMs) were proposed for pattern recognition (Guo et al., 2000), and an accuracy
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of 97% was observed on the Cambridge ORL face database. However, SVM requires considerable
time for learning big data, even for simple problems. Further, Deep Learning outperformed the
SVM in accuracy in the same datasets (Gorur et al.,, 2019). Subsequently, non-negative matrix
factorization (Guillamet and Vitria, 2002) and the AR face database were utilized to overcome the
shortcomings of principal component analysis, but an accuracy of only 66.74% was observed. In
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2005, the histogram of oriented gradient (HOG) approach was
designed for feature extraction; this approach is currently widely
used for object detection (Joshi et al, 2020). Additionally,
deep belief network (DBN) (Hinton et al, 2006), which
utilizes greedy layer-wise unsupervised pre-training, was used
for fine-tuning the weights. This training method reduces
the difficulty of learning hidden layer parameters. However,
inappropriate parameter selection can lead to convergence
to local optimization, which may result in extended training
periods. Later in 2014, DeepFace (Taigman et al., 2014) and
DeepID (Sun et al., 2014) achieved a state-of-the-art accuracy on
the well-known labeled faces in the wild benchmark (Huang et al.,
2008). A deep convolutional neural network (CNN) (Krizhevsky
etal., 2017) can also be utilized for image classification. However,
the training and execution of large-scale deep neural networks
is computation-intensive even for single tasks. Large amount
of training data and multiple iterations are required to ensure
accuracy, which results in excessive power consumption (He
et al., 2020).

With recent advances in deep learning, existing approaches of
face recognition still have some limitations, such as the inability
to address uncontrolled facial changes, occlusions, and scaling
problems. These drawbacks may be due to the lack of a sufficient
number of sample images for network training. For deep learning
methods like CNN, the recognition error rate could be high for
small databases (Shin et al., 2016). Recently, a computational
model of visual recognition memory based on grid cells (Bicanski
and Burgess, 2019) was developed, where 98 out of 99 stimuli
were successfully recognized with one-shot learning, and most
of the test images were recognized within four to six saccades.
With real-world occlusions, an accuracy of 86.87% was obtained,
which is relatively high and rarely observed. However, the model
was tested on the stimuli it had learned, and the recognition
performance was not satisfactory with different sets of stimuli.

In the present study, we proposed an improved computational
model that utilized grid cells for face recognition. The initial
hypothesis about stimulus identity was obtained by calculating
the maximal similarity based on the HOG algorithm. The main
contribution of this paper can be listed as follows:

1. By combining HOG algorithm with the visual recognition
memory model based on grid cells, our model can provide fast
global identity/hypotheses in the first saccade, which is proven
to be efficient for reducing the number of saccades and resets.

2. The original computational model of visual recognition
memory based on grid cells (Bicanski and Burgess, 2019) can
only recognize trained/learned samples. Our model with HOG
algorithm can recognize untrained test samples with much
higher accuracy of face recognition.

3. Due to the existence of grid cell population, spatial relative
position of feature points can be memorized through the
process of eye moments during each saccade. Compared with
other neural network models such as convolutional neural
networks and deep belief networks, our method shows the
best performance with only one training sample for each
face and is robust against image occlusion, size variance,
and scaling.
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FIGURE 1 | The model schematic of the visual recognition model based on
grid cells, as proposed in Bicanski and Burgess (2019).

In subsequent sections, we present a mechanistic model based
on grid cells wherein a neural circuit contributed to the visual
process. Further, we introduce the HOG algorithm and our
proposed method that combines the HOG algorithm with the
visual recognition model. We then evaluate the performance of
our model and compare it with other existing models.

2. METHODS

2.1. The Original Visual Recognition Model
Based on Grid Cells

A schematic depicting the training process of the visual
recognition model based on grid cells as proposed in Bicanski
and Burgess (2019) is shown in Figure 1. By taking advantage
of visual grid cells to encode saccade vectors, salient stimulus
features were collected in advance. When learning a new
stimulus, a salient position (square fovea with 61 x 61 pixels,
represented as a small square in Figure 1) in the image was
selected using a bottom-up attentional mechanism without prior
information about the stimulus. For face recognition, the selected
position had nine coordinates, including the coordinates of the
corner of the eye, the tip or wing of the nose, and the corner of
the mouth. The first salient features were manually selected (nine
for each stimulus). Nine stimuli feature fovea matrices with a size
of 61 x 61 were finally generated. Connections between feature
label cells and grid cell population vectors were learned using
Hebbian associations in the visual field. Thus, grid cells were
used to anchor each feature of a given stimulus, and the relative
positions of the anchored features encoded on all grid cells were
consistent. The feature label cells corresponding to the same face
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FIGURE 2 | Samples of CASIA-3D Face V1 database. Only one training sample (marked in red) is used for training, the others are used for testing.

identity were bi-directionally connected with the corresponding
identity cell. Grid cells were implemented as standard trigger rate
graphs for look-up tables. A softmax operation and a threshold in
feature label cells can ensure a sparse code (Bicanski and Burgess,
2019). Some feature label cells activated the associating identity
cell, generating competing hypotheses about the identity. The
next saccade (i.e., the most active identity cell) is determined by
the hypotheses. Furthermore, the saccade vector from the current
feature fovea to the target fovea is encoded by grid cell population
and calculated by the distance cell and displace cells, which
are used for modeling the process of eye moments during each
saccade. A similar process was repeated until the accumulated
value in an identity cell reached the threshold (0.9). Finally,
the leading hypothesis was accepted as the identity output. For
detailed information about this model, please refer to the paper
(Bicanski and Burgess, 2019).

In this paper, we used the CASIA-3D face V1 database,
which was collected by the Chinese Academy of Sciences
Institute of Automation (CASIA). This database can be
obtained from http://biometrics.idealtest.org. The face
recognition data for verification were obtained from
http://biometrics.idealtest.org/dbDetailForUser.do?id=8.  We
used the BMP1-30 dataset in CASIA-3D faces V1. From this
database, we obtained 37-38 scans for each person. Additionally
2D color images and a 3D facial triangulated surface were
obtained for each scan. We used images from 10 individuals with
10 front-view samples per individual. Figure 2 depicts selected
samples, one image for each person (marked in red) was used
for training, and the others were used for testing. The pixel size
of each image was 440 x 440, which was consistent with the size
map of the grid cells.

We tested the performance of the original visual recognition
model proposed in Bicanski and Burgess (2019) on the CASIA-
3D Face V1 database. Figure3 depicts the performance of
this model when learned (shown in Figure 3A) or unknown
images (shown in Figure 3E) are used for testing. Each saccade

was used to achieve a hypothesis. The saccade sequences were
superimposed on the faces. The cyan circles represent the
sampled features. Familiar images that were learned during
training were successfully recognized within three saccades
(Figures 3A,B). At the first saccade, the activated feature
label cells were obtained as true predictions, as shown in
Figure 3D. Figure 3C shows that the correct identity cell of
the stimulus reached the given decision threshold, the stimulus
was successfully recognized finally. However, when the model
encountered unfamiliar images (different images of the same
person), the whole performance was not satisfactory. For
instance, due to an incorrect initial hypothesis, the recognition
of Face#8 underwent several saccades, and was reset once before
successful recognition (Figure 3E). Further, Face#9 was falsely
recognized as Face#10. Therefore, an incorrect identity cell can
lead to the activation of unrelated feature label cells; thus, the
system initiates with a false hypothesis (Figure 3F). Here, a
total of 90 new stimuli for 10 individuals were tested, and the
recognition rate was only 57.8%. Actually this happened when
different facial expressions were considered. Almost all feature
detectors related to each stimulus were activated, which resulted
in a higher number of saccades or resets and failure in feature
matching. This result shows that the original model is only
effective for the learned stimuli, but the recognition performance
was not satisfactory for new sets of stimuli. In order to reduce the
number of saccades or resets and increase recognition accuracy
of unlearned testing samples, we improve this model based on
the HOG algorithm as described in the following section.

2.2. Histogram of Oriented Gradient (HOG)

Figures 4A,B shows the model schematic of HOG for face
recognition. The HOG can capture the appearance and shape
of objects using a distribution of local intensity gradients (Dalal
and Triggs, 2005). For each input image, a horizontal and
vertical gradient for each pixel was calculated using kernels
(Ix = [-1,0,1], Iy = [~1,0,1]T). To reduce the influence
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FIGURE 3 | (A) Continuous saccades during training. (B) The firing rate of identity cells based on true hypothesis. (C) The activation rate of feature label cells based
on true hypothesis. (D) Recognition accuracy for 10 individual types from the training set. (E) Continuous saccades on the test faces. (F) The false firing rate of the
identity cells based on the false hypothesis. (G) The true firing rate of the feature label cells based on false hypothesis. (H) Recognition accuracy for 10 individual faces
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of light factors, the image matrix was normalized by contrast
enhancement with a gamma variation obtained from Equation
(1). The horizontal and vertical gradients of the image at the pixel
point G(x, y) were calculated by Equation (2). Subsequently, the
image was divided into small connected areas called cells. The
gradient magnitude and orientation for each cell was calculated
by Equation 3 and Equation 4.

1G(xy)

Gx(x, ) @

O(x,y) = tan

Derivatives capture contours, human shadows, and texture
information but weaken lighting effects. Weighted projection was
performed in the gradient direction. Based on the orientation of
the gradient element centered on each pixel, a weighted vote for
an edge orientated histogram channel was determined, and the

I, y) = I(x ys™ (1) votes were accumulated into orientation bins over local spatial

regions (cells). When detecting human beings, the best results

Gx(x%,y) = Glx+ 1,y) — G(x — 1,y) were obtained with unsigned gradients (Dalal and Triggs, 2005),

{ Gy(x,y) = Glx,y +1) — Glx,y — 1) () or with nine bins over 0° — 180°, as depicted in this study.

When the gradient orientation of the pixel was 40° — 60°, the

count of the third bin of the histogram increased by one. To

G(x,y) = \/ Gy(x, y)2 + Gy(x, y)2 (3)  obtain the histogram of the gradient direction of the cell, each cell
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FIGURE 4 | The model schematic of HOG algorithm.

FIGURE 5 | (A) The HOG feature vector of a training image. (B) The HOG
feature vector of a testing image.

pixel was weighted and projected along the gradient direction; it
was subsequently mapped within the block corresponding to the
calculated angle. Next, a histogram of the gradient direction of
the block and window were collected. Finally, the feature vectors
of all the windows were concatenated, and the HOG feature of
the entire image was obtained as a feature array.

During the test phase, the HOG algorithm was used to
extract the feature vectors of the current testing image and
all of the training sets. Figures 5A,B represent the HOG
feature vectors of a training image (left) and a testing image
(right), respectively. Correlations between HOG features of the

test face and previously trained stimuli were calculated using
Equation (5). The HOG feature with the maximal correlation was
considered to be belonging to the hypothetical identity cell. In
this way, the first identification was determined. Since the HOG
algorithm extracts the contour of objects, true hypothesis rate is
high and is beneficial for quick recognition.

>3 (Amn — A)(Byn — B)
corr2 = m (5)

(e -27) (3 -5

2.3. Visual Recognition Model With HOG

and Grid Cells (HG)

In theory, the first hypothesis should provide an identity based
on the whole face instead of the local foveal, which is important
for reducing reset and saccade times. Ignoring the model’s
biological plausibility, we improved the visual recognition model
by implementing grid cells and identifying the image in the first
central fovea using the HOG method to improve the accuracy of
facial recognition (as shown in Figure 6). The detailed process is
as follows:

Step 1: In the first action-perception cycle, correlations
between the values of the HOG feature for the test face
and the previously trained stimuli were calculated. The
face type having the maximal correlations resulted in a
hypothetical identity.

Step 2: The identity cell determined the next saccade. And
the saccade vector from the current feature fovea to the target
fovea was encoded by grid cell population and updated during
the process of eye moments in each saccade.

Step 3: The firing rate of the hypothetical identity cell was
accumulated until it reached the decision threshold. If the
first hypothesis based on HOG is incorrect, the most activated
feature label cells determined the associating identity cell.

Besides applying the HOG algorithm, the influence of foveal
size on the recognition accuracy was also investigated. Moreover,
the first salient features were manually selected (nine for each
stimulus) in the original model. The entire feature extraction
is time-consuming and labor-intensive for large database. Here,
facial images were evenly divided into 3x3 blocks and the first
salient features were randomly selected from these nine blocks.

Subsequently, we performed experiments to analyze the
performance of our method (HG) with other algorithms. Here,
two aspects were considered: normal image and scaling or
occluded stimuli. In addition, to determine the validity of our
model, we compared the performance of our model with other
models based on both the CASIA-3D face V1 database and
AR database.

3. RESULTS

3.1. Analyses Using the CASIA-3D Face V1

Database
Figure 7A shows a representative grayscale image 440 x 440 with
different foveal sizes. We compared three models: the original
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visual recognition model based on grid cells (G), our model (HG),
and the HG model with grid cells lesion (i.e., disconnected grid
cells from the feature label cells in neurons). The bar chart in
Figure 7B compares the accuracy in different foveal sizes of the
three models. We can see that the recognition accuracy of HG
model was the highest. The performance could be improved by
increasing the foveal size. Since larger foveal areas include more
image pixels, this can lead to more Hebbian-learned associations
between different kinds of cells (foveal array = feature label
cells <= identity cell) for encoding. Considering the eyes as an
example, a 61 x 61 fovea framed a small portion of the eyes, but
a 101 x 101 fovea sampled the entire eye area or even larger.
Models with the larger fovea 101 x 101 can obtain a higher
accuracy. Therefore, we used 101 x 101 fovea in our simulations.
Further, Figures 7C,D show that the lesion of grid cells can
greatly increase the number of fixations (including resets) and
reduce the recognition accuracy. But the performance of HG
with gird cell lesion is still better than the original model due
to the high rate of first accuracy based on HOG (Figure 7E).
HOG captures global features effectively and is helpful for
hypothesis prediction by reducing the number of eye-movements
and contributing to the improvement of recognition accuracy.

3.2. Comparisons With Different Methods
Since deep neural networks are commonly used in image
recognition, we compared the accuracy of our model with
a traditional CNN, a DBN with local binary patterns (LBP),
namely the LD model (Murphy and Weiss, 2013), and the sparse
representation-based classification (SRC) method (Wright et al.,
2008).

For CNN, the Keras model (Ketkar, 2017) was used to build
the topology of the CNN, which is shown in Figure 8A. Here,
we created a simple 5-layer sequential connected network. The

kernel size was 3 x 3, filters were set to 32, and the convolution
kernel was the first layer. Each hidden neuron of the output was
set to zero with a probability of 0.5.

For LBP, the image was divided into several blocks, using a
5 x 5 block, and we performed LBP for each block. Here, we
chose the uniform LBP pattern. Further, texture T was defined
in a local neighborhood of a monochrome texture image as the
joint distribution of the gray levels of the image pixels (Ojala et al.,
2002):

T = t(gc:g();“')gp—l) (6)

where g denotes the gray value, g represents the center pixel in
the local neighbors, and g, represents the evenly spaced pixels
on the radius R of the circle. Our experiment used the most
commonly used parameter setting (p = 8, r = 1), and a total of
58 unique uniform types of LBP values were generated.

To verify the efficiency of the HG model, additional 20
individuals with front-view samples per individual of the
CASIA-3D face V1 database are added in the experiment. The
performance of our model (HG), CNN, LD, and SRC on the
recognition of this database with different number of individual
types (10, 20 and 30 face types) is compared in Figure 8B. We
can see that although the recognition accuracy declines with
the increase of individual types, HG model still outperforms
the other models. When there is only one training sample, the
accuracy of our model is always higher than that of the other three
commonly used models.

3.3. Size Invariance and Occlusions

Even if a stimulus is partially occluded or downscaled, the model
can generate meaningful eye movement sequences (Bicanski and
Burgess, 2019). We utilized two types of abnormal stimuli: real-
world occlusions and downscaled images, for comparing the
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ratios (1/2,1/4,1/5). The recognition accuracy of different models on the occluded and downscaled images are compared in (C,D), respectively.

performance of the models. The occlusions were generated from
33 stimuli, which included objects, scenes, faces, and generic
textures in equal proportions. Examples of partially occluded
stimuli with different proportions of occlusion (1/2,1/3,14) are
shown in Figure 9A, and downscaled images with different
scaling ratios (1/2,1/4,1/5) are shown in Figure 9B. The
recognition accuracies of the different models on the occluded
and downscaled images have been compared in Figures 9C,D,
respectively. We observed that for both cases, HG (our method)
has the best performance, even when the stimuli only depicted
half the face or downscaled to very small images. This result
demonstrated that our model was robust to size variance
and occlusions.

Considering the partially occluded stimuli, once the eye
movement focuses on the occlusions, many features will
mismatch. The accumulation of firing rate of the identity cell
will increase slowly until the model generates the next saccade
based on the previously activated one (without any hypothesis).
In the case of recognition failure in a specific saccade target, most
saccades will usually generate reasonable recognition because of
the memory-guided eye movements based on grid cells. For a
downscaled image, the visual recognition memory model can
achieve size invariance by placing the downscaled image globally
and correctly. The gain between the displacement vector and the
output are scaled uniformly for all eye movements to sample
the given features of downscaled images, leading to successful
facial recognition in different size variances or encoded stimuli
at different distances.

3.4. Analyses on the AR Face Database

We verified the efficacy of our proposed model using the
well-known AR database (Martinez, 1998). The AR database
contains images of 116 individuals (63 males and 53 females).
Some sample images are shown in Figure 10A. Sample ARI
in Figure 10A has a neutral expression, which was chosen for
training. The remaining samples were reserved for testing. AR2
is a smiling face, AR3 is an angry face, and AR4 represents a
screaming face. AR5-ARS8 are samples with the same expression
as that of AR1-AR4. The original image had a size of 768 x
576 pixels with 24-bit color resolution. AR9-ARI12 are samples
with sunglasses and scarves. To avoid the influence of the
external background, we only considered face regions by training
separate detectors for the original images (Hu and Ramanan,
2017). The pictures were cropped and reshaped to 440 x
440 pixels.

Using seven training samples (AR2-ARS), the SRC method
achieved a recognition rate of 92% with 540 dimensional
features for all individuals. Here, we used only one sample
(AR1) for training, and AR2-AR8 were used for testing.
Comparisons among these models are shown in Figure 10B
with different numbers of individuals. We observed that HG
model still shows the best performance on this database.
Although the outperformance of our model compared with
SRC is not obvious when the number of face types is
larger than 60, our model is much more robust than
SRC when images are occluded (as shown in Figure 10B,
dash lines).
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FIGURE 10 | (A) AR face database: AR1&AR5 neutral, AR2&ARG smile, AR3&AR7 anger, AR4&AR8 scream, AR9&ART1 sunglasses AR10&AR12 scarf. (B)
Comparison of HG (our method) with the other models on the performance of AR face database with different number of individual types.

Face types

4. CONCLUSIONS

In this study, an improved computational model via grid cells
for face recognition was proposed. Here, the initial hypothesis
about stimulus identity was obtained by calculating the maximal
similarity based on the HOG algorithm. The HOG descriptors
can effectively capture the features of the sample edge or
gradient structure. Utilizing this model, most of the test samples
were successfully recognized within three saccades. The false
hypothesis and average fixations for successful recognition were
reduced. With only one training sample for each face, our
method outperformed the original model, SRC model and deep
learning neural networks like CNN and DBN. Since there is
only one training sample for each face type in the experiments
of this paper, synaptic weights of CNN and DBN can not be
fully updated, leading to insufficient feature detections. Adding
more hidden layers will not obviously improve the performance
but greatly increase time consumption. Actually, deep learning
method strongly depend on big training data. In the case of single
training sample for each image, these deep learning models do
not perform well and can be easily disturbed by image occlusion,
size variance, and scaling (as shown in Figures 8-10). Although
incorporating HOG into this visual recognition memory model
voids its biological plausibility, the main purpose of this study
is to improve the accuracy of facial recognition based on grid
cells, instead of maintaining the biological mechanisms involved
in facial recognition. Our results may give insight for efficient
recognition with small training samples based on brain-inspired
neural networks.
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