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Adaptive deep brain stimulation (aDBS) is a promising new technology with increasing
use in experimental trials to treat a diverse array of indications such as movement
disorders (Parkinson’s disease, essential tremor), psychiatric disorders (depression,
OCD), chronic pain and epilepsy. In many aDBS trials, a neural biomarker of interest is
compared with a predefined threshold and stimulation amplitude is adjusted accordingly.
Across indications and implant locations, potential biomarkers are greatly influenced by
sleep. Successful chronic embedded adaptive detectors must incorporate a strategy
to account for sleep, to avoid unwanted or unexpected algorithm behavior. Here,
we show a dual algorithm design with two independent detectors, one used to
track sleep state (wake/sleep) and the other used to track parkinsonian motor state
(medication-induced fluctuations). Across six hemispheres (four patients) and 47 days,
our detector successfully transitioned to sleep mode while patients were sleeping, and
resumed motor state tracking when patients were awake. Designing “sleep aware”
aDBS algorithms may prove crucial for deployment of clinically effective fully embedded
aDBS algorithms.

Keywords: DBS (deep brain stimulation), Parkinson’s disease, adaptive DBS, human neuroscience, sleep

INTRODUCTION

Commercially available sensing enabled deep brain stimulation (DBS) devices are now being
used to treat epilepsy [Neuropace RNS, (Nair and Morrell, 2019)], movement disorders and
obsessive-compulsive disorder (Medtronic Percept), (Feldmann et al., 2021; Frank et al., 2021;
Jimenez-Shahed, 2021; Thenaisie et al., 2021). These devices typically record field potentials either
cortically or subcortically and are designed to deliver personalized stimulation in response to
sensed brain activity (Gunduz et al., 2019; Bronte-Stewart et al., 2020). For most indications, a
neural biomarker of interest is typically selected and analysis is performed on predefined power
bands in the frequency domain, computed from the sensed field potential recordings (Gunduz
et al., 2019; Yin et al., 2021). Biomarkers are then compared to a predefined threshold and
stimulation current is adjusted between stimulation amplitude limits. These adaptive algorithms
are now routinely tested not only in clinical settings but at home (Gilron et al., 2021).

As studies transition from brief in clinic testing to chronic testing at home, it is important
to consider that sleep has a profound influence on most biomarkers of interest. Sleep
is typically disturbed in neurological conditions and could be modulated for therapeutic
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FIGURE 1 | Independent classification of sleep and PD motor state. The summit RC + S can configure two independent linear detectors. These detectors operate
using a “state table.” The control signal for the PD biomarker (which operates along the columns) has two thresholds, whereas the control signal for the sleep state
has one threshold. Each quadrant in the state table can be defined with a unique target current in order to functionally separate sleep from wake “modes” in the
adaptive DBS algorithm. In the conceptual example above, when the sleep control signal is above threshold target current ramps to 2 mA regardless of the PD state
biomarker position with respect to PD state thresholds.

purposes (Chen et al., 2019). However, to date, the “mental
model” for adaptive DBS algorithms have not yet incorporated
a special “mode” to detect sleep (Little and Brown, 2020). Sleep
aware algorithms are important since control signals can cause
unexpected or unwanted algorithm behavior in response to sleep
related changes in brain physiology (Urrestarazu et al., 2009;
Zahed et al., 2021).

Here, we show a general purpose strategy to Figure 1
detect and respond to sleep using a dedicated “sleep detector”
working in conjunction with an independent detector of specific
motor signs in Parkinson’s disease (PD). The incorporation
of sleep aware behavior into adaptive DBS (aDBS) algorithms
may prove crucial to long term use of adaptive DBS protocols
(Toth et al., 2020).

MATERIALS AND METHODS

Participants and Device
Details of surgery, DBS implant, lead locations and device
characteristics are extensively described in a prior publication
(Gilron et al., 2021). Briefly, four individuals with PD referred for
DBS were implanted bilaterally with cylindrical DBS leads in the
subthalamic nucleus (STN) (Medtronic model 3389) and paddle-
type quadripolar leads in the subdural space over MC (motor
cortex, Medtronic model 0913025). The cortical and subcortical
leads from each side were connected to an investigational sensing
RC + S implantable pulse generator (IPG) allowing independent
control of each hemisphere (Figure 2).

The Summit RC + S device is a rechargeable IPG that
is capable of streaming data to a host computer from up to
four field potential bipolar recordings (Stanslaski et al., 2018).
Spectral power is computed within the device from (up to eight)
predefined power bands. Power bands can be summed and input
into two independent linear detectors that execute stimulation
commands according to a state table (Figure 1). Data were
imported from the RC + S raw format using a newly released
package for RC+ S analysis (Sellers et al., 2021).

Deep Brain Stimulation Mental Model
One of the main challenges deploying adaptive algorithms
chronically in the home environment is that sleep has a profound
effect on cortical and subcortical field potentials. For instance,
many algorithms for adaptive DBS in PD rely on responding to
subcortical beta (12–30 Hz) as a control signal delivering less
stimulation when subcortical beta is low. However, this may lead
to inadequate stimulation for many patients since subcortical
beta is also depressed during sleep (Figure 3), and some rely on
stimulation to improve sleep (for example, to roll over in bed).
Therefore there is a need to create a “sleep” aware algorithm
that may switch modes when sleep is detected. To do so, we
developed such an algorithm using the embedded “state table” in
the RC+ S IPG.

The “state table” (Figure 1) adaptive controller in the RC + S
IPG was used to create two independent embedded adaptive
detectors. The first linear detector tracked Parkinsonian motor
state and the second tracked sleep state. The mental model
for the first linear detector relied on following medication
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FIGURE 2 | Dual independent PD and sleep state detectors. Detector operates in embedded fashion in each hemisphere independently. (A) Schematic drawing of
lead locations indicating right hemisphere cortical sensing paddle; right STN stimulation lead and implanted pulse generator (IPG). Detector activity depicted in top 3
plots. (B) Schematic of the left hemisphere mirrors the right, bottom 3 plots show detector activity. (A,B) During hours in which the patient is awake the detector
control signal (blue line) tracks parkinsonian motor signs using a narrowband gamma cortical signal (thought to indicate a pro-dyskinetic state). In this case
stimulation cycles between 2.6 mA (if high levels of gamma detected) and 3.2 mA (low levels of gamma) in the right hemisphere (2.2–2.4 mA on the left). If sleep is
detected (red line) by cortical alpha + theta control signal, stimulation is held at 2.6 mA (right) or 2.2 mA (left). Current is shown in green line. Time of day (24 h clock)
is on x-axis.
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FIGURE 3 | Frequencies discriminating between sleep and wake states during a period of 24 h in a single subject. (A) Power spectral density (PSD) plots of sleep
and wake hours. These PSD data were computed from 30 s segments of field potentials classified by patient motor diary. Stimulation was held constant. Top plot –
field potential from STN (subthalamic nucleus) contacts 0–2 (stimulation was constant at 2.7 mA on contact C + 1–). Middle plot – MC (motor cortex) contact 9–11.
Bottom plot – magnitude squared (ms) coherence. In all plots shaded bars represent 0.5*standard deviation of segments. Black arrow (top plot) represents beta
band activity that is commonly used as a marker of PD medication state and potential biomarker. Note decrease in beta band activity during sleep. Dashed
horizontal gray bay in middle plot (MC 9–11) represents band used for sleep classification in this patient (Table 1). (B) Color plot of -log10 of individual p-values
computed from t-tests across all bipolar recording contacts (higher values represent smaller p-values). Only frequency bins in which significant differences were
found between sleep or wake states are displayed (the equivalent of a Bonferroni corrected value of p = 0.05 on this scale is 4). Each row represents PSDs (power
spectral density) from motor cortex (MC), STN (subthalamic nucleus) or ms-coherence between the two. (C) Same data used in (B) was used to assess the
out-of-sample classification with the area under the curve (AUC) computed using the ROC (receiver operating characteristic) curve. Plot was thresholded at an AUC
of 0.7 (only higher scores shown).

state as measured by biomarkers of Parkisonian “off” states
(indicating low mobility) and “on” states (indicating potential
for dyskinesia). During off periods patients received additional
stimulation and in on states they received less stimulation in
order to avoid stimulation induced dyskinesia (Gilron et al.,
2021). The second linear detector relies on tracking sleep state
as measured by a sleep biomarker. When sleep was detected,
constant stimulation was delivered according to the state table,
regardless of the position of the first linear detector (equivalent to
clinically optimized open loop stimulation). Figure 1 contains a
sample state table.

Of note, RC + S has two independent programmable linear
detectors. Each detector has two thresholds, which result in 9
possible unique states. Each state can be programmed with a
specific target amplitude for each program (and specific rate
for each state across programs). Here we are only using 6 of
the possible 9 states, but future studies may use all 9 states
(for example, for detection of multiple motor signs, or specific
sleep stages). States are numbered (0–8) starting top left and
ending bottom right.

Detector Settings
Biomarkers for Parkinsonian “on” and “off” states and sleep
states (wake/sleep) were selected empirically per patient (Gilron
et al., 2021). First, frequency bands in which oscillations (local
maxima in the field potential power spectral density) were present

in either STN or cortical field potentials, were pre-selected
and configured using the embedded power detectors. Next,
each patient streamed “training” data during their activities of
daily living across several “wake/sleep” cycles and Parkinsonian
“on/off” cycles. Patient state was assessed using a motor diary,
wearables and patient self report. Biomarkers that best seperated
Parkinsonian state and sleep state were empirically selected.
Detector thresholds were initially set at 25 and 75% percentiles
of the range of training data for embedded power detector for
Parkinsonian state and 50% percentile for sleep state detector
and empirically adjusted over several days until satisfactory
performance was achieved. Table 1 contains the complete
parameter set used to program the detector in one patient during
a single 24 h period.

Rapid eye movement (REM) periods could cause the sleep
detector to mistakenly identify a “wake” state. In order
to counter “wake” classification in these instances we used
long termination rates such that the biomarker of interest
must be below the threshold for a certain amount of time
before it transitions out of the sleep state. Most of the
algorithm adjustments in patient 1 (throughout the testing
period) involved gradually shortening the termination value
at the expense of some misclassification during putative
REM sleep. The detector was initially designed for increased
sensitivity at the cost of decreased specificity. The sensitivity vs.
specificity tradeoff may be an important design consideration for
future detectors.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 732499

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-732499 October 15, 2021 Time: 13:39 # 5

Gilron et al. Sleep Aware aDBS Algorithm Design

TABLE 1 | Example of dual detector parameter set from a single patient and hemisphere.

Setting Value Notes

Stimulation rate 130.2 Hz Stimulation rate

Stimulation pulse 60 µs Stim pulse width

Stimulation contact +1-case Monopolar stimulation

Shared parameters for both detectors

Time domain sampling rate 500 Hz Sampling rate for time domain data

LPF1 450 Hz Embedded low pass filter before amplification

LPF2 1,700 Hz Embedded low pass filter after amplification

FFT interval 500 ms Interval in which FFT is computed

FFT size 1,024 Number of points for onboard FFT computation

Ramp up rate 0.03 mA/sec Rate at which stimulation changes from lower to higher amplitudes

Ramp down rate 0.12 mA/sec Rate at which stimulation changes from higher to lower amplitudes

Motor detector

Sense channel + 9−8 MC (motor cortex)

Linear detector power band input 64.45 – 66.41 Hz Predefined power band for embedded on board power computation

Update rate 60 Number of FFT intervals averaged in non-moving average, represents 30 s of data.
Defines algorithm rate (e.g., algorithm state is determined every 30 s). This is

referred to as “detector count” below.

Onset 0 Number of detector counts must be above threshold to change to state. A value of
0 means that as soon as the threshold is crossed stimulation ramps to the target

state.

Termination 4 Number of detector counts must be below threshold to change to state. Detector
value must be below threshold for 2 consecutive minutes (update rate × 4; =4 min

in this case) before it transitions to state.

State change blank 30 In units of FFT interval. On state change power values are not computed into linear
detector for 15 s (FFT interval × 30).

Target current state 0 3.1 mA Target stim to ramp to when stimulation is below lower threshold (for the first linear
detector- “LD0”)

Target current state 1 HOLD Target stim to ramp to when stimulation between upper and lower thresholds (for
the first linear detector – “LD0”)

Target current state 2 2.7 mA Target stim to ramp to when stimulation is above lower threshold (for the first linear
detector – “LD0”)

Sleep Detector:

Sense channel +9−8 MC (motor cortex)

Linear detector power band input 3.42 – 12.21 Hz Predefined power band for embedded on board power computation

Update rate 60 Number of FFT intervals averaged in non-moving average, represents 30 s of data.
Defines algorithm rate (e.g., algorithm state is determined every 30 s)

Onset 0 Number of detector counts must be above threshold to change to state (in “update
rate” units).

Termination 10 Number of detector counts must be below threshold to change to state. Detector
value must be below threshold for 5 consecutive minutes (update rate ×

10; = 10 min in this case) before it transitions to state.

State change blank 30 In units of FFT interval. On state change power values are not computed into linear
detector for 15 s (FFT interval × 30).

Target current state 3 2.7 mA Target stim to ramp to when stimulation is below lower threshold (for the second
linear detector – “LD1”)

Target current state 4 2.7 mA Target stim to ramp to when stimulation between upper and lower thresholds (for
the second linear detector – “LD1”)

Target current state 5 2.7 mA Target stim to ramp to when stimulation is above lower threshold (for the second
linear detector – “LD1”)

Data Collection for Testing Period
Though the RC + S device is capable of streaming a rich array of
information including time domain field potentials and adaptive
state, it can also be programmed to only store a log of the
adaptive DBS state (according to the state table). This log is stored
in a FIFO (first in first out) buffer which can be downloaded

on demand. Patients collected DBS state data during long term
tests of embedded adaptive detectors in which the embedded
detector was deployed for up to a week at a time. During this
time patients used custom software1 to download these logs from

1https://github.com/openmind-consortium/App-SCBS-PatientFacingApp

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 732499

https://github.com/openmind-consortium/App-SCBS-PatientFacingApp
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-732499 October 15, 2021 Time: 13:39 # 6

Gilron et al. Sleep Aware aDBS Algorithm Design

the device on a daily basis. This had the advantage of allowing
the patient full mobility without the need to be near a computer
for wireless streaming. In addition, it avoided losing data due to

dropped packets (Sellers et al., 2021). Data were tested over the
course of 47 days (24 h) across four patients and six hemispheres.
Patient one used sleep classifiers for 17 days but frequently

FIGURE 4 | Sleep detector performance across 47 days of sleep. (A) Dual detector states across 4 patients in 6 hemispheres. Each row represents a single 24 h
period. Note that in patient 1 each hemisphere was running independently (measuring sleep states using L/R hemispheres, respectively). Detector traces from the
same day (coming from two different pulse generators) are indicated in brackets. Sleep is not only identified during night hours but also occurs in some patients
during daytime naps. (B) Simulated state table showcase PD state detector state if sleep detector was not in place during same hours. Without relying on a
dedicated sleep detector PD state control signal still undergoes many state changes during sleep hours. Blank (white) periods indicate moments in which the
detector was not active or data do not exist.
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ran a classifier concurrently in both hemispheres, generating 30
data sets (Figures 2, 4), patient 2 ran a classifier for 2 days
in one hemisphere, patient 3 ran a classifier for 2 days, 1 day
for each hemisphere, and patient 4 ran a classifier for 13 days
in one hemisphere.

Evaluation of Sleep Detector
Performance
The performance of the sleep detector was checked empirically in
each patient before it was deployed. Using patient motor diaries,
wearables and the RC + S onboard accelerometer, patient sleep
state was verified and a concordance between sleep state and
the objective (actigraphy based) and subjective (motor diary)
measures was computed.

In 27/47 nights of sleep we collected motor diaries and
wearable actigraphy data. In filling out motor diaries patients
estimated their sleep state in 30 min increments. Concurrently
a wearable watch (PKG, Global Kinetics) was worn by patients
during testing (Joshi et al., 2019). The PKG produced a report
that estimated a median bradykinesia value every 30 min. A value
above “80” in the bradykinesia metric from the PKG watch was
interpreted as “asleep” (Gilron et al., 2021).

To test the statistical performance of the classifier we
computed a non-parametric p-value for each 24 h period using
the following procedure: We compared the concordance between
the output of the sleep detector and the “true” patient state as
indicated by either the motor diary or the PKG watch. To test
the statistical significance of this concordance (accuracy) value
we created a non-parametric null distribution of classification
(a random choice between sleep/wake classification at each
point in time repeated 10,000 times for each 24 h period). The
concordance result of the embedded adaptive state classification
was then compared to the null distribution of concordances
to derive a p-value. All p-values were corrected for multiple
comparisons using the Bonferroni method. In addition the
sensitivity and specificity of the sleep classification was computed
for each 24 h period.

Effect of Sleep State on Power and
Coherence Metrics
In order to assess the effect of sleep on biomarker power
and coherence metrics we had one patient stream neural
data (in addition to classifier state) during a 24 h period
when the sleep detector was active, but stimulation was held
constant in the clinically optimized current settings (2.7 mA,

FIGURE 5 | Concordance between motor diary, wearable watch and sleep state detector. Rows are organized in triplicate such that each triad represents a single
24 h period from one patient. The top row in the triplicate represents the output of the embedded sleep detector. The control signals for the embedded sleep
detector were cortical field potentials in the 3–12 Hz range. This detector operated in real time during activities of daily living and in the absence of any temporal
information. The middle row represents (subjective) patient motor diary information in which the patient indicated his sleep/wake state in 30 min increments. Finally,
the bottom row indicates wearable estimates of patient state (sleep wake). Brackets indicate recordings from the same day from two independent implanted pulse
generators – one in each patient hemisphere.
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C + 1−, 60 µs, 130.2 Hz). Sleep states were defined by
the classifier and PSD (power spectral density) and coherence
metrics were computed from bipolar recordings in STN and
MC (motor cortex) using 30 s segments of continuous data [as
described in Gilron et al. (2021)].

To assess the response of other frequencies on the
discrimination of sleep state (wake/asleep, as defined by
patient motor diaries) frequencies were swept in 1 Hz increments
using PSD and coherence metrics with a 2 Hz sliding window.
The data from each frequency bin was subjected to a two
sided t-test and computed for each frequency, contact pair and
measure (coherence/psd). P-values were corrected for multiple
comparisons using the Bonferroni method.

Since our embedded detector used cortical alpha and theta
bands as the sleep detector, we wanted to evaluate the capacity
of subcortical and coherence based metrics to classify sleep state
as well. Using the cortically based detector labels as ground
truth, we calculated the mean AUC using a 5-fold stratified
cross validated linear discriminant model across all frequency
bands. This allowed us to assess the potential performance of the
detector using subcortical sensing that is more readily available in
commercial devices as well as using coherence based metrics.

RESULTS

Sleep state was reliably captured by a cortical biomarker as
verified using patient motor diaries and self report. Each
IPG (implanted pulse generator) controlled stimulation to
one hemisphere with an embedded detector for sleep and
an additional detector tracking PD state (Figure 2). The
mean concordance between sleep measurements across both
hemispheres (in cases in which dual detectors were deployed) was
88% (range 77–98%) across thirteen 24-h periods.

In one subject the embedded detector was run over a period
of 24 h while streaming neural data to a research computer [as
described in Gilron et al. (2021)]. This was done in order to
examine other frequency bands and brain recording locations
that might also dissociate sleep from wake states. In particular
there is interest in subcortical classification of sleep states,
as cortical sensing is not currently offered outside of IDE
(investigational device exemption) studies. Subcortical alpha,
beta and low gamma all significantly dissociated sleep from
wake states (Figure 3). Cortical theta, alpha, beta and broadband
gamma discriminate sleep states as well. Finally coherence
between subcortical and cortical structures was able to dissociate
sleep states in the theta, alpha and beta bands.

In addition to investigating other frequencies that can
distinguish sleep from wake states we also assessed the out of
sample classification of sleep states across the same 24 h period.
Using 5-fold cross validation we found that STN alpha, beta and
gamma all discriminate sleep states with peak AUC scores of 0.7
(using the cortical theta-alpha detector as “ground truth”).

Algorithm performance was tested using embedded mode
during which patients are not tethered to a computer and the
adaptive algorithm operates in embedded mode in real-time.
Across 47 days (4 unique patients, 6 hemispheres) algorithm
captured sleep state (Figure 4A). Algorithm performance was

stable across months (maximum span between recording was
4 months). To assess whether a dedicated detector for sleep was
needed we simulated algorithm performance without the use of a
sleep detector. Indeed, all patients displayed large variation in the
control signal during periods of sleep (Figure 4B) which could
result in unwanted behavior depending on the aDBS (adaptive
DBS) algorithm used to control PD motor states during waking
hours. In some cases this would result in lower stimulation levels
during sleep which could produce adverse effects on sleep in PD
patients (Zahed et al., 2021).

To validate the performance of the sleep detector objective and
subjective metrics of sleep state were collected. Patients filled out
motor diaries (subjective) and wore a wearable watch (objective),
both of which produced estimates patient sleep state that could
be used to assess classifier performance (Figure 5).

All sleep night detections were significantly above chance (the
null distribution had concordances between 38 and 60% with a
mean at 50%) for both motor diary and wearable “ground truth”
metrics (Figure 6).

DISCUSSION

This study showcases a method to incorporate sleep sensing into
adaptive DBS algorithms. In Summit RC + S we deployed two

FIGURE 6 | Accuracy, specificity, sensitivity of sleep detector. (A) Sleep
detector accuracy (as measured by objective metric – PKG watch) for all data
shown in Figure 5. Gray dots represent accuracy scores (jittered along x-axis
for clarity). Blue shading represents one standard deviation and red shading
represents the 95% confidence interval. Red horizontal line is the mean (0.79).
All accuracy metrics were significant compared to a null distribution of
classifier performance and corrected for multiple comparisons. (B) Specificity
and sensitivity metrics for the same data represented in (A). Black arrows
indicate days in which high sensitivity but low specificity was present.
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embedded linear detectors that operate independently. Tracking
sleep states using embedded detectors is stable and repeatable,
shown here across 47 days of embedded detector performance
in four patients (Figure 4). During these days the algorithm
successfully transitioned to a predefined “sleep mode” when
patients were asleep, delivering targeted constant stimulation,
whereas during waking hours a PD state tracking mode was
entered in which the adaptive algorithm tracked PD related
motor state changes (Gilron et al., 2021).

The sleep detector algorithm achieved high concordance
with external measurements of sleep as measured by both
objective (motor diary) and subjective (watch) metrics. The high
concordance is notable since the detector classified sleep solely
based on field potential information in real time, during activities
of daily living without access to actigraphy or temporal based
information (Figure 5). The sleep detector achieved high degrees
of sensitivity and specificity but future sleep algorithms may
explore sensitivity and specificity trade offs depending on the
application (Figure 6).

Sleep has dramatic effects on cortical and subcortical field
potentials (Gilron et al., 2021; Zahed et al., 2021). This
includes broadband reductions in gamma frequency as well
as increases in alpha frequencies and reductions in canonical
parkinsonian oscillatory activity in beta frequency. Since beta
frequencies are a common target for adaptive DBS studies in PD,
addressing sleep induced reductions may be critical for future
algorithm development.

Though our sleep study used cortical alpha and theta band
activity to classify sleep state we show that other bands, notably
subcortical bands achieve high classification rates (larger than
AUC of 0.9 – Figure 3C). This high degree of sensitivity
and specificity from a variety of power bands, target brain
locations and coherent network activity suggest that a variety of
control algorithms might be employed to incorporate sleep into
adaptive DBS algorithms.

Using a separate independent detector for sleep allows
adaptive DBS algorithms to finetune their response to diurnal
fluctuations in control signals that may operate on different time
scales than sleep changes. For example, targeting beta bursts
has long been proposed as a mechanism to target pathological
beta burst oscillations in PD (Little and Brown, 2012, 2020;
Tinkhauser et al., 2017; Velisar et al., 2019; Bronte-Stewart
et al., 2020; Petrucci et al., 2020), but these bursts operate on
the timescale of 200–800 milliseconds whereas sleep related
field potential changes take place on timescales of minutes to
hours. The use of independent detectors allows each detector
to operate using disperate timescales most appropriate for
capturing desired state.

Sleep was frequently detected during the day, corresponding
to daytime naps (Figure 5). This highlights a benefit of
using physiological measures of sleep state rather than simpler
chronologically scheduled implant schedules (Toth et al., 2020).
Other potential methods for sleep classification are actigraphy
based (to determine position and activity level) or simple patient
control (patient switching to a sleep “mode”). Appropriately
targeting and incorporating sleep into aDBS algorithms has
benefits for risk mitigation, as it does not rely on the patient
to remember to switch device state or actigraphy methods

which may produce false negatives (such as lying in bed
while awake).

Sleep aware aDBS may also aid in algorithm development as it
allows testing putative algorithm performance (Figure 4B). Prior
to implementing adaptive detectors it is useful to test algorithm
performance by examining state changes without stimulation
amplitude changes. By incorporating a dual detector strategy that
incorporates sleep control signals as well as dedicated detectors
tracking patient state one can separate sleep effects from other
effects on the control signal. This can allow a priori testing to help
avoid unwanted or unexpected algorithm performance during
sleep. This could prove particularly useful for adaptive algorithms
for which operation during sleep is important.

Future studies may attempt to more selectively target sleep
by deploying personalized therapy depending on patient sleep
state (for example, REM sleep versus deep sleep). Sleep itself is
often disturbed in patients with DBS due to their underlying
neurological conditions, and this represents a major non-motor
contributor to quality of life. Adaptive strategies that improve
sleep quality may work in tandem with daytime strategies to
address non-motor as well as motor dysfunction in PD.
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