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Accurate and consistent segmentation plays an important role in the diagnosis, treatment

planning, and monitoring of both High Grade Glioma (HGG), including Glioblastoma

Multiforme (GBM), and Low Grade Glioma (LGG). Accuracy of segmentation can be

affected by the imaging presentation of glioma, which greatly varies between the two

tumor grade groups. In recent years, researchers have used Machine Learning (ML) to

segment tumor rapidly and consistently, as compared tomanual segmentation. However,

existing ML validation relies heavily on computing summary statistics and rarely tests

the generalizability of an algorithm on clinically heterogeneous data. In this work, our

goal is to investigate how to holistically evaluate the performance of ML algorithms on

a brain tumor segmentation task. We address the need for rigorous evaluation of ML

algorithms and present four axes of model evaluation—diagnostic performance, model

confidence, robustness, and data quality. We perform a comprehensive evaluation of a

glioma segmentation ML algorithm by stratifying data by specific tumor grade groups

(GBM and LGG) and evaluate these algorithms on each of the four axes. The main

takeaways of our work are—(1) ML algorithms need to be evaluated on out-of-distribution

data to assess generalizability, reflective of tumor heterogeneity. (2) Segmentation metrics

alone are limited to evaluate the errors made by ML algorithms and their describe their

consequences. (3) Adoption of tools in other domains such as robustness (adversarial

attacks) and model uncertainty (prediction intervals) lead to a more comprehensive

performance evaluation. Such a holistic evaluation framework could shed light on an

algorithm’s clinical utility and help it evolve into a more clinically valuable tool.
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1. INTRODUCTION

Accurate and consistent segmentation of gliomas (Chen et al.,
2017), is important for diagnosis, treatment planning, and
post treatment evaluation. Glioblastoma Multiforme (GBM), the
most aggressive of high grade gliomas, has the worst prognosis
with a 5-year survival rate of <5% and a median survival of
approximately a year even with treatment (Tamimi and Juweid,
2017; Witthayanuwat et al., 2018). Low grade gliomas (LGG),
though less aggressive than GBM, reportedly undergo anaplastic
progression into higher grade tumors around 70% of the time
within 5–10 years of diagnosis. The median survival from initial
diagnosis is∼7 years (Claus et al., 2015).

Current standard of care for High Grade Glioma (HGG),
for example GBM, is surgical resection of the tumor followed
by radiotherapy combined with the chemotherapeutic agent
temozolomide (Tan et al., 2020). Segmentation for the surgical
resection for gliomas should be effective for total gross
resection or reduction in tumor bulk, without affecting the
surrounding normal functional brain tissue. Radiation therapy
requires accurate delineation of tumor margins to ensure
effective dosage to tumor region. Due to the relative low
aggressiveness of LGG, a more conservative management (“wait-
and-watch”) approach (Whittle, 2004) is sometimes adopted.
Segmentation is important in this scenario also to monitor
temporal morphological and volumetric alterations of the tumors
during observation, prior to elective tumor resection (Larsen
et al., 2017).

However, the imaging presentation of gliomas varies between
LGG and HGG, which could affect the accuracy of their
segmentation. Most HGGs, such as GBMs, have a heterogeneous
appearance on T1-weighted pre-contrast imaging and typically
show a heterogeneous thick-walled rim-enhancing appearance
on the T1 post-contrast (T1-Gd) sequence, with a surrounding
low attenuation of perifocal edema. The overall appearance
of HGGs on T2-weighted fluid-attenuated inversion recovery
(FLAIR) sequence is heterogeneously hyperintense, with areas
corresponding to enhancing and non-enhancing components as
seen on T1-weighted post contrast sequence. The advancing non
contrast-enhancing FLAIR hyperintense portions of the tumor
are of concern to clinicians because it is believed to contain
active tumor remote from the apparent enhanced portions of
the aggressive core. On the other hand, low grade tumors
appear hyperintense on a FLAIR sequence with or without clear
margins. On the pre-contrast T1-weighted sequences, the lesions
tend to be hypointense and typically do not enhance following
administration of gadolinium based agents (Forst et al., 2014;
Bulakbaşı and Paksoy, 2019).

Manually defining the margins of the tumor and surrounding

non-enhancing perifocal region remains challenging due to

tumor heterogeneity, ill-defined margins, and the varying

degrees of perifocal edema. This makes segmentation an

arduous task with questionable consistency. In recent years,
Machine Learning (ML) techniques have shown potential
to assist in tumor segmentation for correct diagnosis and
efficient treatment planning (Wadhwa et al., 2019; Bajaj and

Chouhan, 2020; Kocher et al., 2020; Nazar et al., 2020). While
both HGG, including GBM, and LGG, benefit from accurate
segmentation, existing ML validation rarely tests if an algorithm
generalizes well to out-of-distribution data that reflects this
tumor heterogeneity. Rebsamen et al. (2019) have shown that
implicitly incorporating high-vs.-low tumor grade information in
model training could improve model performance. While recent
work has evaluated for tumor heterogeneity across geographic
populations (McKinney et al., 2020), hospital systems (Zech et al.,
2018), and federated learning settings (Sheller et al., 2020), this
has yet to be done considering differences between HGG, for
example GBM and LGG imaging presentations.

In this work, we address the need for rigorous evaluation
of ML algorithms for brain tumor segmentation. We propose
a holistic evaluation framework (Figure 1) that takes into
account tumor heterogeneity, robustness, and confidence of
the ML algorithm, and batch effects that may arise from the
data. We demonstrate this framework with a cross-sectional
study design similar to Zech et al. (2018) and analyze how well
an ML algorithm trained on one glioma type (either HGG,
exemplified by GBM or LGG) generalizes to another, out-of-
distribution glioma type. We conduct four experiments and
holistically evaluate an ML algorithm for the problem of tumor
segmentation:
Diagnostic Performance: We compute standard segmentation
metrics to objectively compare the ML algorithm’s segmentation
performance against radiologist-annotated ground truth. Results
indicate that metrics such as Dice and AUROC do not sufficiently
capture differences in generalizability, although the classification
matrix reveals clear differences.
Model Confidence: We measure model confidence in
segmentation performance by computing prediction intervals
for the brain as well as tumor region. Results indicate that ML
algorithms trained on LGG data is more confident than the rest
on all homogeneous as well as mixed data.
Robustness: We measure the ML algorithm’s ability to maintain
performance despite adversarial perturbations to test their
reliability comparably. Results indicate that the ML algorithm
trained only on GBM data was least robust when segmenting
tumor corrupted with high levels of noise. Testing performance
of the model across out of distribution data, was performed
in all the experiments, but can be considered an extension of
robustness testing.
Data Quality (Batch Effects): We measure the degree to which
MRI scan quality influences segmentation metrics. Results found
that scan quality features are not significantly correlated with
performance, but that there were some batch effect differences,
primarily between LGG and GBM sites.

Our results demonstrate the limitations of segmentation
metrics, and caution that metrics alone do not capture all aspects
of an ML algorithm’s performance. We discuss how our findings
relate to recent literature in segmentation metrics. We further
discuss how such a holistic evaluation framework could shed light
on the algorithm’s clinical utility in post-deployment scenarios
and help it evolve into a more clinically valuable tool (Recht et al.,
2020).
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FIGURE 1 | Simplified flowchart of different axes of holistic evaluation—diagnostic performance, robustness, model confidence, and data quality. Axes are ordered by

dependency and relation with each other. We recommend models to be evaluated with atleast one experiment on each of these axes. We evaluate two aspects of

robustness, namely, closeness to decision boundary and generalizability on unseen glioma type. Decision points in the framework lead to alternate paths for

researchers to follow.
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TABLE 1 | Split of patients in each of the three datasets.

Dataset GBM patients LGG patients ALL patients

Train 102 (14,688) 65 (9,360) 167 (24,048)

Validation 16 (2,304) 21 (3,024) 37 (5,328)

Test 17 (2,448) 22 (3,168) 39 (5,616)

Values in brackets (.) indicate the total number of images available in the dataset for 2D

segmentation. Note that henceforth, we refer to the test dataset as DGBM (GBM patients

only), DLGG (LGG patients only), and DALL (All patients—GBM and LGG patients).

2. MATERIALS AND METHODS

The aim of this work is to propose a framework to evaluate model
performance across four axes—diagnostic performance, model
confidence, robustness, and data quality. To demonstrate this
framework, we first train ML algorithms by considering tumor
heterogeneity. We use publicly accessible code for algorithm
development and perform post-hoc calibration.

2.1. Dataset
We used publicly available Magnetic Resonance Imaging (MRI)
from The Cancer Genome Atlas (TCGA) (Clark et al., 2013).
Glioblastoma Multiforme (GBM) and Low Grade Glioma (LGG)
collection (Bakas et al., 2017a,b). This included the skull-stripped
and co-registered MICCAI-BraTS 2018 Test Dataset (Menze
et al., 2015; Bakas et al., 2017c). The data consisted of pre-
operative multimodal MR imaging sequences (i.e., T1, T1-Gd,
T2, T2-FLAIR) along with their whole-tumor segmentation
labels composed of edema, enhancing tumor, and non-enhancing
tumor. We combined these labels into a single whole tumor
for this study. Number of patients in GBM BraTS Test Dataset
and LGG BraTS Test Dataset were split approximately in half
and allotted to validation and test datasets. The GBM and LGG
data were merged across the three categories to form an ALL
dataset. Each patient was associated with 144 pre-operative MRI
scans, which were treated as independent data points for 2D
segmentation. These MRI scans were cropped to 144 × 144
pixels and further pre-processed the data by pixel-intensity
normalization. Table 1 describes the total number of patients
and total number of MRI scans available in each dataset. The
training datasets were used for model development (section 2.2),
validation datasets were used to determine hyperparameters and
calibrate the models (section 2.3), and test datasets (DGBM ,DLGG,
DALL) were used to perform subsequent experiments (section 3).

2.2. Network Architecture and Training
We used the state-of-the-art U-Net architecture (Ronneberger
et al., 2015) to develop three tumor segmentation models using
the GBM, LGG, and ALL train datasets. The U-Net architecture
consists of an encoder, decoder, and skip connections. Each
module of the encoder consists of 2D Convolution layers,
followed by Batch Normalization and MaxPooling layers. Four
such modules make up the encoder. The decoder consists of four
modules of Conv2DTranspose layers followed by Concatenate
layers. The network performs slice-wise (2D) segmentation with
multi-modal MRI scans provided as the input. Models were

TABLE 2 | We first compute calibration metrics on a patient-level, then

aggregated by mean.

Metrics
MGBM MLGG MALL

Before After Before After Before After

NLL 0.038212 0.013506 0.070146 0.022842 0.056573 0.018483

BS 0.003519 0.002970 0.006020 0.005263 0.004533 0.003862

ECE% 0.3413 0.1439 0.5877 0.3141 0.4454 0.1876

MCE% 36.4552 14.0762 31.9731 14.3702 37.0614 13.8812

We consider only pixels in the skull-stripped brain to compute these metrics. ECE and

MCE are presented in %. Metrics should ideally reduce upon calibration. Columns under

each model indicate metric values before and after calibration. Bold values indicate best

% decrease or increase as compared to the “before” column. All models improved after

calibration.

trained with Dice Loss function for 100 epochs on 8 GPUs.
Adam optimizer (Kingma, 2015) was used with a learning rate
of 1× 10−4 and a batch size of 128. Data augmentation was used
while training each of the models to improve generalization. This
consisted of random rotations (0–25◦ degrees range), random
zooming (value = 0.2, zooms image by 80–120% range), width
shift (value = 0.2, horizontal translation of images by 0.2 percent),
height shift (value = 0.2, vertical translation of images by 0.2
percent), shear (value = 0.2, clips the image in counter-clockwise
direction) and random horizontal flips. We referred to publicly
available code for model development, model training, and data
augmentation (Dong et al., 2017; Ojika et al., 2020).

2.3. Model Calibration
The goal of model calibration is to align the algorithm’s
predicted probabilities align with the observed (ground truth)
outcomes (Guo et al., 2017). Calibration process ensure that
algorithms do not overstate or understate their confidence
in prediction of tumor (Jungo and Reyes, 2019; Mehrtash
et al., 2020). Models that have been already trained can
be calibrated with post-hoc methods (Rousseau et al.,
2021). Guo et al. (2017) recommend performing post-hoc
calibration with the same validation dataset (Table 1) used for
model development. We use Platt Scaling technique (Platt,
1999) for post-hoc calibration due to its simplicity and
ease of implementation. To ensure models are properly
calibrated, we compute and report common calibration metrics.
Negative Log Likelihood (NLL) measures a probabilistic
model’s quality and is also known as cross-entropy loss. Brier
Score (BS) measures the accuracy of probabilistic predictors.
Percentage Expected Calibration Error (ECE%) partitions the
model’s predictions into equally spaced bins and takes a
weighted average of the difference between accuracy and
model confidence across bins. Percentage maximum calibration
error (MCE%) estimates the worst-case deviation between
confidence and accuracy. For metric definitions and more
information, we refer readers to Mehrtash et al. (2020) and
Guo et al. (2017). Table 2 indicates that all models are
properly calibrated.
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3. EXPERIMENTS

Here, we perform an experiment on each of the four
axes of our evaluation framework. We compute metrics to
summarize diagnostic performance, measure model confidence
by computing prediction intervals, simulate adversarial attacks
to assess robustness and use MRQy package to analyze batch
effects in data. For each experiment, we point to related work, and
provide details on the experiment procedure. Then, in section 4,
we provide the outcome of these experiments. We evaluate each
of the calibrated ML algorithms (MGBM , MLGG, and MALL) on
each of the three test datasets (DGBM , DLGG, and DALL). Thus, we
evaluate 3 (models)× 3 (datasets) = 9 conditions.

3.1. Metrics for Segmentation Performance
There exist a plethora of metrics to evaluate the performance
of a medical image segmentation algorithm (Udupa et al.,
2006; Taha and Hanbury, 2015). Each metric focuses on a
specific aspect of the algorithm’s performance, and is thus
limited in capability to describe the algorithm’s performance by
itself. Several metrics are necessary to describe comprehensive
characteristics of segmentation performance (Renard et al.,
2020).

We perform this experiment as a baseline, reflective of
the current standard practice for evaluation. We follow the
guidelines described by Taha and Hanbury (2015) and select
eight metrics to evaluate segmentation performance. Sensitivity
(Sens) measures the proportion of tumor pixels that are correctly
identified as tumor (foreground). Specificity (Spec) measures
the proportion of benign pixels that are correctly identified as
benign (background). Positive Predictive Value (PPV) measures
the probability that pixels classified as benign truly belong to parts
of the patients’ brain without a tumor. Negative Predictive Value
(NPV) measures the probability that pixels classified as tumor
truly belong to parts of the patients’ brain with a tumor. While
accuracy can be skewed due to the paucity of tumor pixels in
the tumor class, Balanced Accuracy (BAcc) takes into account
class imbalance. Dice Coefficient (Dice) and Jaccard Coefficient
(Jac.C) both measure the overlap between tumor annotated by
the different sources (ML algorithm and the radiologists’ manual
annotations). Area under Receiver Operating Characteristics
curve (AUROC) describes the probability that a randomly
selected tumor pixel will have a higher predicted probability
of being a tumor than a randomly selected benign pixel. We
eliminate any extra-cranial regions and only consider the skull-
stripped brain for computing the metrics. We compute metrics
on a per-patient level, as it offers more granularity than at
a population-level.

3.2. Prediction Intervals for Model
Confidence
Prediction Intervals (PIs) are often reported and considered for
medical decision-making (Kümmel et al., 2018). In radiation
oncology, Chan et al. (2008) used prediction intervals to capture
uncertainty in tumor and organ movement. While a confidence
interval measures the precision of a predicted value, PIs measure
the expected range where a future observation would fall, given

what has already been observed. The width of the PI is directly
proportional to the model uncertainty at that region (Kabir et al.,
2018). We use prediction intervals to quantify uncertainty in
tumor segmentation.

We use Conformal Quantile Regression (CQR) (Romano
et al., 2019) to compute PIs. Construction of PIs is difficult, as
PIs can be too small that they don’t capture the true magnitude
(Type 1 error) or too large that they are uninformative (Type
2 error) (Elder et al., 2021). The CQR method guarantees
construction of PI such that the target value is contained within
the PI by error probability α (valid coverage) and that the PIs
are informative.

We used the CQR method to compute PIs in a post-hoc
manner. The method uses a dataset for training the CQR models
and a separate test dataset to compute the PIs. To reduce
computational cost, we selected summary images (image with
the largest tumor) for each patient in the validation and test
datasets (Table 1). We designed a setup to generate prediction
intervals around the calibrated model values. We first obtained
logits (model output before the calibration) for the selected
summary images for patients in both datasets. The CQR models
were trained on validation dataset logits and the corresponding
calibrated model predictions as target values. The trained CQR
models were then used to compute prediction intervals for test
dataset logits. We followed the method described by Romano
et al. (2019) to compute average prediction intervals (API) per-
patient in the test set. We then generated API box plots for all
nine conditions.

3.3. Adversarial Attacks for Robustness
This experiment was designed to test the impact of data
quality and potential batch effects on the predictions of the
model. There has been a lot of work in other domains on
evaluating the adversarial robustness of ML algorithms. The
application of imperceptible noise can change the prediction of
image classification system from correctly identifying a panda
to confidently miscalling the image a gibbon (Goodfellow et al.,
2015). There are now a variety of adversarial attack techniques,
from white-box techniques that can look inside the algorithm
to those that can build attacks simply by testing inputs and
outputs. These techniques can provide a useful framework for
evaluating the robustness of a medical imaging machine learning
system. In tumor imaging in general, Zwanenburg et al. (2019)
showed how radiomics features can be evaluated for robustness
by perturbing the tumor mask. Understanding how vulnerable
ML algorithms are to noise, and how easily they change their
decisions in response, gives a sense of how these ML algorithms
might fail.

The adversarial attack used in this experiment was fast
gradient signed method (FGSM), described by Goodfellow et al.
(2015). This technique is a white-box method which takes the
calculated gradient of the neural network to find the direction
of the smallest change that will affect the label of the output. This
gradient adversarial noise is multiplied by a factor of epsilon, to
vary the strength of the attack. In these experiments the epsilon
factor was varied over a range of 0–1 (0, 0.005, 0.01, 0.05, 0.1, 0.2,
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0.4, 0.6, 0.8, 1.0), with more examples on the lower end of the
range to evaluate small perturbations.

We performed the FGSM attack on each of the test datasets
(DGBM , DLGG, and DALL), for all three ML algorithms (MGBM ,
MLGG, and MALL). The full panel of metrics was computed
for each of these experiments. The performance of the ML
algorithms was expected to decay as epsilon decreased, but the
relative robustness of each of the ML algorithms and the way that
they decayed was studied as well. The chosen epsilon values were
(0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1). An epsilon of 0
indicates that no change was made to the image.

3.4. MRQy for Analyzing Batch Effects
Magnetic resonance imaging has many strengths in studying and
monitoring cancer status, including a variety of sequences to
investigate different aspects of tumors. However, the flexibility it
provides to radiologists can lead to inconsistencies in protocol
and scan quality. MRQy is MRI quality package that provides
a variety of features that assess the quality of a scan, and other
effects that might be considered batch effects (Sadri et al., 2020).
The complexity of machine learning algorithms makes it possible
for them to pick up on batch effects between sites rather than the
underlying biology of a problem.

These MRQy factors were used to audit the susceptibility
of the different ML algorithms to scan quality factors. For
each of the MRI sequences, MRQy features were calculated
independently on the original NIFTI files. The features used
per modality were: MEAN, RNG, VAR, CV, PSNR, SNR1,
SNR2, SNR3, SNR4, CNR, CVP, CJV, EFC, TSNEX, TSNEY,
UMAPX, UMAPY (For metric definitions, Sadri et al., 2020).
The metadata and size features were excluded as they were not
available, and the sizing was consistent across all the images.
The average true positive probability of a tumor pixel having
a tumor label was calculated, as well as for true negative, false
positive and false negative pixels. These were calculated on a
per patient level and then averaged across all the patients in
the test set. These values along with Dice score and AUROC
were then assessed for their correlation with the MRQy features
using Spearman correlation coefficient. MRQy features that
are correlated with model performance are potential quality
control metrics that might be used to flag problematic cases.
False discovery rate (FDR) correction was then performed using
Benjamini-Hochberg correction at an alpha of 0.25 (Benjamini
and Hochberg, 1995). We used this correction as it is less
stringent than a more aggressive Bonferroni correction and was
still found to eliminate the uncorrected p-values.

Additionally, independent of the metrics, batch effects were
investigated using the MRQy parameters to compare TCGA
site codes in the combined testing data set (DALL). The MRQy
features were normalized then decomposed using principal
component analysis (Tipping and Bishop, 1999). The first two
MRQy principal components and their relationship to institution
were investigated using ANOVA and paired T-tests in the
statsmodels python package (Seabold and Perktold, 2010). We
hypothesized that some site differences within the data sets might
be captured by this dimensionality reduction.

4. RESULTS

In this section, we present and analyze the results of the four
experiments in section 3. We discuss their implications in
section 6. Note that we perform these experiments for the pixels
within the skull-stripped brain.

4.1. Metrics Alone Do Not Sufficiently
Describe the Nature and Severity of
Segmentation Mistakes
True Negative (TN) panel in Figure 2 indicates all models
perform equally well in identifying benign pixels. MALL has
the highest percentage TP, indicating the best performance at
correctly identifying tumor pixels. On average, due to a higher
percentage of False Negatives than False Positives, all algorithms
(MLGG,MGBM ,MALL) under-segment tumor more often than they
over-segment. The FP value is highest for MLGG. Thus, out of
all models, MLGG classifies benign regions as tumor the most
(over-segments). The FN value is highest for MGBM , on average.
MGBM thus, under-estimates tumor pixels and classifies them as
benign (under-segments).

The training of the algorithms further explains these findings.
MLGG learns to pick up subtle patterns in the training phase, and
when evaluated on DGBM , classifies normal-appearing tissue as
part of a tumor. In contrast, MGBM is used to seeing dominant
contrast patterns, which explains why it misses a lot of tumor
pixels in LGG.

In Figure 3, all models have similarly worse performance
on some patients, indicated by red rows. This is visible across
all test datasets. This could be due to multiple confounding
variables such as different vendors, field strengths, parameters
of imaging, strength of the imaging magnet, type of machine,
and it is difficult to pinpoint the contributing factor. Metrics
show similar trends in all conditions. Models have a high
specificity, low sensitivity, and a high AUROC. There is an
overall trend of NPV being higher than PPV. These findings
reflect the effect of class imbalance in the dataset, and the
models’ ability to recognize benign areas much more easily than
tumor regions.

4.2. Example Illustrations
Here, we present example patients (Figures 4–7) with
the Ground Truth (GT) tumor and tumor segmentation
contours of MGBM ,MLGG, and MALL. We selected good
and bad segmentation examples from DGBM and DLGG

each for qualitative analysis. One of the authors, who
is a board-certified neuroradiologist of more than a
decade of experience in brain tumor diagnosis, interpreted
these images.

4.3. MLGG Has the Greatest Confidence for
Segmentation Across All Datasets
Violin plots were constructed to analyze average model
confidence across all patients. Figure 8 depicts the average
prediction intervals for the skull-stripped brain region. Models
have approximately the samemedian average prediction intervals
(API) on each test dataset. Figure 9 represents model confidence
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FIGURE 2 | Confusion Matrix to assess the performance of MGBM, MLGG, and MALL across stratified and composite datasets. The y-axis denotes percentage of total

pixels in a test dataset classified as TP, FN, FP, TN. MLGG has the tendency to over-segment (high %FP), while MGBM has the tendency to under-segment tumor(high

%FN), relative to each other. Note that metrics such as Dice coefficient routinely ignore the background (TN) in a segmentation context, so a 0.1% difference in false

positives should be understood relative to the 6–9% of the volume that is tumor.

while identifying tumor regions. Models have wider inter-
quartile range and greater variability compared to Figure 8.
This indicates models have low confidence in identifying
tumors as compared to non-tumor. MGBM and MALL have
similar distributions of API across patients, indicating both
models are similarly confident while segmenting both GBM
and LGG tumor. MLGG has the lowest median prediction
interval widths, and their distribution has the lowest variability
and highest concordance. This indicates MLGG is the most
confident model while segmenting both LGG and GBM patients.
Out of all models, MLGG is consistently confident while
making predictions.

MLGG has the highest confidence, even though it makes
mistakes (over-segments) in segmentation, suggestive of an
aggressive approach. MGBM also makes mistakes (under-
segments) but has lower confidence, which suggests a cautious
approach. LGG may be monitored for a longer period of time,
so a high rate of false positives can overburden clinicians, going
against the goal of reducing their burden. If mistakes are very
obvious, it can cause a high degree of frustration and eventual

abandonment of the algorithm (Beede et al., 2020). Previous
works have proposed monitoring cases with low confidence
(Kompa et al., 2021). However, in a case where a model makes
mistakes with high confidence, a confidence-based screening
approach might cause the reviewer to miss important areas of
model failure.

4.4. Models Trained on DGBM Deteriorated
the Most Under Adversarial Attacks
The three models (MGBM , MLGG, MALL) were each evaluated
on the three test datasets under FGSM attack across a range
of epsilons from 0 to 1. The 95% confidence intervals are also
included for each of the metrics that were evaluated on a per
patient level. MGBM was the least robust to this type of FGSM
attack, across all three test datasets for AUROC, Dice score,
and Sensitivity. This might be due to the somewhat consistent
imaging presentation of glioblastomas. It was marginally more
robust to attack on its own datatype (DGBM). All three models
failed by losing sensitivity instead of specificity, indicating that
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FIGURE 3 | Heat maps indicating patient-level performance metrics. Rows represent test datasets (DGBM, DLGG, DALL) and columns represent ML algorithms (MGBM,

MLGG, MALL). DALL is formed by concatenating the first two rows. In each individual heat map, rows represent model performance on a particular test dataset and

columns represent segmentation metrics. Patients for whom all models perform similarly worse are indicated in red.
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FIGURE 4 | Patient TCGA-06-0168 is diagnosed with GBM in the right temporal operculum. MLGG has low performance on Dice Coefficient (Dice = 0.6847) than

MGBM (Dice = 0.8103) and MALL (Dice = 0.8616). AUROC for all models is high despite unequal performance. The boundary of the edema on FLAIR sequence shows

where MLGG over-segments and MGBM under-segments tumor.
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FIGURE 5 | Patient TCGA-HT-7874 belongs to DLGG and has a tumor in the right frontal lobe. We selected this patient as it has consistently worse performance for

metrics (Sens, B.Acc, Dice, Jac.C) across all models. Segmentation plot indicates MAll and MGBM under-segment in this case, whereas MLGG over-segments. MALL

appears to be missing a central part of the tumor, as seen in the coronal and sagittal image planes. MLGG appears to extend well beyond the region of FLAIR

enhancement to over-segment the tumor. This LGG was significantly larger than most LGGs, and that may contribute to the difficulty of segmentation.
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FIGURE 6 | Patient TCGA-12-1093 belongs to DGBM and has a tumor in the left parietal lobe. We selected this patient as an example because it has consistently

good performance for metrics (Sens, B.Acc, Dice, Jac.C) across all models. This GBM has clear margins, and a sharp boundary on FLAIR enhancing regions. The

enhancing tumor core is central and distinct, and the models all perform relatively consistently in segmentation.
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FIGURE 7 | Patient TCGA-DU-6400 belongs to DLGG and has a tumor in the left temporal parietal region. We selected this patient as an example because it has

consistently good performance for metrics (Sens, B.Acc, Dice, Jac.C) across all models. This LGG has clear margins, and the classic signature of FLAIR enhancement

and no T1-Gd enhancement.
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FIGURE 8 | The violin plot indicates models have equal median confidence while segmenting GBM and LGG patients due to greater number of non-tumor pixels in

the datasets. The x-axis represents the datasets. The y-axis represents average prediction intervals. Models are sorted by hues and grouped together by test dataset.

FIGURE 9 | Violin plots constructed to correct for effects of class imbalance and analyze model confidence while identifying tumor pixels only. Plots indicate models

confidence is less consistent in identifying tumors due to wider inter-quartile range and greater spread of prediction interval distribution. Plot indicates MLGG is the

most confident model while segmenting both LGG and GBM patients.

the models began drastically under-segmenting the tumor under
high levels of noise. Figure 10 highlights the model behavior
under different levels of noise. Under smaller amounts of noise
(Figure 11), the all model had the best performance generally,

though not significantly. MLGG and MGBM had the highest
AUROC values of the three models for DLGG and, DGBM

respectively, though the differences did not reach the significance
threshold of (p < 0.05).
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FIGURE 10 | Robustness of each model under FGSM attack, across the full range of epsilons (0–1.0) for four selected metrics. Ninety-five percent confidence

intervals are provided to each model, and each of the three data sets were evaluated. MGBM was least robust to FGSM attack at higher epsilon values with regard to

AUROC, Dice score, and sensitivity.
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FIGURE 11 | Robustness of each model under FGSM attack, zoomed in on the early range of epsilons (0–0.2) for four selected metrics. Ninety-five percent

confidence intervals are provided to each model, and each of the three data sets were evaluated. Models had more similar performance in the less aggressive levels of

attack, with all model having marginally better performance, except with MLGG and MGBM models performing better with AUROC on their own test data sets.
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FIGURE 12 | MRQy features after principal component analysis, plotted against site code, and Dice scores of three models. The DALL test dataset has the first two

principal components of the MRQy features plotted. Pairwise t-tests found that three clusters had significant differences in PCA space (06, 08, 12), (HT, DU, CS, and

FG), and (02). Notably, these numeric codes happen to correspond to GBM studies, and the letter codes happen to correspond to LGG studies.

We found that the models trained only on DGBM were
less robust to adversarial noise, particularly at high levels of
adversarial noise. These levels of noise may be extreme, but do
give some sense of the performance of the models under duress.
Other types of attacks that might be worthwhile to investigate
include: adversarial patch attacks, Carlini and Wagner attacks,
projected gradient descent, as well as GAN based attacks (Carlini
and Wagner, 2017; Brown et al., 2018; Ren et al., 2020). This
is not the only way of assessing robustness of models, as it
assumes a motivated attacker to guide attacks, as opposed to
natural sources of error, but it addresses how the margins of
the tumor are affected on a consistent scale across the models.
Natural sources of error are less coherent, comparable, and not
as well computationally modeled in MRI as the body of work on
adversarial attacks.

4.5. MRQy Features Vary Between Data
Sets and Institutions, but Are Not
Significantly Correlated With Metrics
The calibrated models’ metrics and probabilities were evaluated
for correlations with MRQy parameters, across the different
test datasets. While there were some limited parameters that

had significant correlations with model metrics, this was before
FDR correction. One Thousand two hundred and twenty-four
parameter to metric comparisons (17 MRQy parameters, 4
sequences, 6 metrics, 3 models) were performed, and none of the
parameter-metric pairs were significantly correlated after FDR
correction (p < 0.05). The MRQy features were collected before
preprocessing, and were shown to be different across different
institutions. However, the model used preprocessed data, and the
MRQy features were not significantly correlated with the models’
predictions and performance. This negative result adds more
confidence to the predictions of the machine learning pipeline.

The PCA analysis showed that there were significant
differences between three groups of site codes. The first cluster
of institutions was 12, 06, and 08, the second was HT, DU, CS
and FG, and the last was 02. Paired t-tests showed that the first
principal component created splits with significant differences (p
< 0.05). Notably, the numerical codes (02, 06, 08, 12) correspond
to GBM studies, and alpha codes corresponded to LGG studies
(HT, DU, CS, FG). However, within these clusters, the differences
didn’t reach significance. Figure 12 shows the site codes plotted
in PCA space, and then the three models with Dice coefficient.
The fact that Henry Ford Hospital (06 for GBM and DU for
LGG) had more in common with other GBM and LGG sites

Frontiers in Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 740353

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Prabhudesai et al. Holistic Brain Tumor Segmentation Evaluation

than between those two groups is notable, though hard to explain
with such a limited sample size. Site 02 was also an outlier
from both other clusters in this PCA space, and had relatively
poor performance, though with one case it’s hard to draw a
firm conclusion.

The BraTS 2018 test datasets (Menze et al., 2015) did not
have significant correlations after FDR correction between scan
quality and metrics. This could be due to the high-fidelity
curation and good consistency of the dataset. Another potential
explanation could be the limited size of the dataset. Still, these
data quality metrics show significant correlations with TCGA
sites after PCA analysis, indicating batch effect differences, at least
between the GBM and LGG datasets. Other data quality issues
that models should be tested for include bias based on race, sex,
and socioeconomic status. The rise of federated learning models
makes this more urgent, because they allow for training models
across collaborators without sharing data (Kairouz et al., 2021).
Since sensitive data is not shared between sites, tracking batch
effects and sources of bias requires more work and planning than
if all the data were shared and managed centrally.

5. DISCUSSION

In this work, we used publicly available data and compared
three U-Net-based algorithms in a stratified manner. Our main
finding is that traditional segmentation performance metrics
do not capture all aspects of an algorithm’s performance, and
can be potentially misleading. In this section, we first discuss
the limitations of segmentation metrics, and how our proposed
evaluation framework leads to a better understanding of model
performance. We discuss the four axes of evaluation—diagnostic
performance, model confidence, robustness, and analysis of batch
effects in detail. Finally, we address the practical utility of our
framework and list recommendations for model evaluation.

5.1. Limitations of Segmentation Metrics
Despite the technological advancements of Machine Learning
(ML), the adoption of Ml in clinical workflows remains
limited (Caruana et al., 2015; Strickland, 2019; Beede et al.,
2020). This divide between the development and adoption of ML
algorithms has been termed the “translation gap” (Steiner et al.,
2021). This limitation is in part due to lack of holistic evaluation
of the performance of those ML systems.

Majority of existing algorithms are statistically validated
only using segmentation metrics (van Kempen et al., 2021),
such as Dice Coefficient (Dice, 1945). In our experiments,
we followed guidelines (Taha and Hanbury, 2015) to compute
several segmentation metrics and test the differences between
segmentation of GBM and LGG patients. We hypothesized that
segmentation of LGG patients would be more difficult than
GBM patients. LGG is diffuse and has low proliferation, which
makes accurate segmentation of submicroscopic tumor tissues
and tendrils, a difficult task. In contrast, GBM has greater
signal intensity and characteristic presence of necrotic cavities,
which makes segmentation comparatively more obvious. Our
results found that metrics alone were insufficient to highlight
the severity of mistakes that models make in segmentation.

Only when segmentation contours were interpreted by a board-
certified neuroradiologist, the degree, and types of errors of these
models were evident. Similarly, in a recent systematic review
of glioma segmentation algorithms, van Kempen et al. (2021)
expected to find performance differences in segmentation of
HGGs and LGGs but found that reported metrics could not
capture such differences.

This points to a bigger concern raised by Reinke et al.
(2021) that metrics alone are insufficient to evaluate all aspects
of segmentation performance. While metrics are important for
objective performance evaluation, they have several limitations
for clinical utility (Maier-Hein et al., 2018). Difference in
consequences of an algorithm’s errors cannot be uncovered
by metrics alone, and requires a clinical expert to elucidate
them. For example, the consequences of under-segmenting in
DGBM might be more severe than under-segmenting in DLGG

due to the prognosis and management of the two diseases.
As LGGs may merit a more conservatory, “wait-and-watch”
approach, tumor that might be previously missed can be
caught with additional tests. However, segmentation in case
of GBM has more immediate consequences for resection and
radiotherapy. Under-segmentation in this case would result in
non-total resection, and perhaps if tumor tissue remains, would
increase the likelihood of recurrence. Over-segmentation on
the other hand would cause removal of non-tumor regions of
the brain, or subject them to higher levels of radiotherapy,
potentially causing functional impairments for patients. In
case of glioma, the Dice Coefficient has a limited utility for
evaluation of multifocal lesions (Giannopoulos and Kyritsis,
2010) because it cannot represent over-segmentation and under-
segmentation (Yeghiazaryan and Voiculescu, 2018), does not
support segmentation of multiple structures (Yeghiazaryan and
Voiculescu, 2018), and is not immune to imaging artifacts and
shape differences (Reinke et al., 2021). This serves as a cautionary
tale that metrics alone are insufficient for reporting model
performance, and there is clearly a need for better evaluation and
reporting standards (Nagendran et al., 2020).

Since medical data is tightly controlled to protect patient
privacy, federated learning has risen as a methodology to train
models without exposing data. However, while the cross-site
training structure has it’s advantages, it requires thoughtful
planning of model evaluation since model designers will not
have access to the underlying data from other sites. Any metrics,
quality control features, and batch effect monitoring will have to
be carefully pre-planned to judge any resultingmodels. Thorough
and holistic evaluation is especially important as site variability
in protocol and patient populations is a known confounding
factor. Our framework also helps illuminate the axes on which
a federated learning network should judge their models beyond
simple metrics like accuracy or AUROC.

5.2. Dimensions of the Evaluation
Framework
The goal of our work is to inform how researchers can holistically
evaluate their segmentation algorithms, and consider other
axes of model performance than metrics alone. A problem
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faced by model developers in this domain is the lack of large
datasets to effectively train and evaluate their algorithms. To
realistically recreate this, we worked with smaller test datasets
from TCGA-GBM and TCGA-LGG. Our work explores the
effects of working with limited data, and informs how to
interpret results meaningfully in such scenarios. Our experiments
and methodology stand independently of whether the model
evaluator has pre-built models, or is yet to train them.
Our framework considers tumor heterogeneity, limitations of
metrics and evaluates other axes such as model confidence,
robustness, and batch effects. We don’t suggest completely
abandoning metrics—they would be important as a start, to
get some level of insight. However, we caution against solely
relying on metrics, and propose a more holistic evaluation
of algorithms. In Figure 1, we map the axes of evaluation
onto the standard ML pipeline. We provide other potential
experiments that researchers can choose for model evaluation
along specific axes. For example, techniques such as model
ensembles and k-fold cross validation can be used to evaluate
model confidence.

In our experiments, we evaluate model robustness with
adversarial attacks. Recent work has shown the importance to
evaluate the models’ abilities to withstand adversarial attacks,
especially in high-stakes scenarios such as radiology (Wetstein
et al., 2020). These attacks can arise due to strong financial
interests or technical infrastructure.We designed this experiment
to test how and in what way could models fail in deployment
under such an attack. This could lead to appropriate safeguards
being put in place. Adversarial attacks also help shed light
on the decision boundary of a neural network (Woods
et al., 2019), which is otherwise something of a black box.
Other sources of noise could be added, but have their own
complications. Adding Gaussian noise to the inputs can be
difficult to calibrate and variable due to randomness. Addition
of artifacts, such as motion artifacts, is complex to model, and
tools for doing so are not publicly available. Further research
should investigate models using these failure modes, but is
outside the scope of this paper. Another axes we investigate
is analyzing the dataset for batch effects. In the context of
tumor segmentation, batch effects could occur when image
acquisition parameters or technical variations correlate with
measurement quantity (Sadri et al., 2020). This may become a
major problem when it leads to incorrect conclusions (Leek et al.,
2010), especially when ML algorithms learn to pick up on these
patterns. Analyzing for batch effects thus becomes important,
as model predictions can be correlated with confounding
factors. Our experiments found that pre-processing might
help in making MRI scans more homogeneous and reduce
these correlations.

We demonstrated our evaluation framework on ML
algorithms trained with reliable, high-fidelity. expert-annotated
BraTS Datasets. To further simplify the process of model
development, we used straightforward implementations such
as fixed dataset split (testing/validation) and 2D segmentation
to work with limited data. Model developers can certainly use
more sophisticated techniques that result in higher accuracy.

Despite these limitations, our experiments are aligned to the
overall goal of this work. Another limitation is we consider LGG
for evaluation of generalizability. While there are significant
imaging differences as compared to GBM, LGG is a broad
category consisting of a range of tumor types. A more clinically
useful investigation would be to evaluate performance on
WHO recognized genetic subtypes such as IDH-mutant vs
IDH-wt or 1p/19q codeleted tumors, as the literature on tumor
subtypes evolves (Louis et al., 2016). However, we defer this
as future work.

5.3. Recommendations for Evaluation of
Tumor Segmentation Algorithms
Here, we summarize our work and presented the following
recommendations for holistic evaluation of ML algorithms:

Accounting for tumor heterogeneity in evaluation: We
focus on a specific problem of glioma, and evaluate for differences
in models trained by stratification of GBM and LGG Data. The
first stage in standard of care for glioma is the identification
of the type, which further dictates the prognosis and treatment
planning. However, there is high variability in this stage, and
experts often don’t reach immediate consensus. It is thus
important for ML algorithms to generalize well across all tumor
grades. We set out to investigate this question, by performing
holistic evaluation on LGG, GBM, and mixed data. Researchers
should consider unique imaging presentations of each patient
and evaluate on a patient-level, as important differences might be
diminished upon aggregation of data. Researchers should avoid
evaluation on a dataset-level.

Adoption of tools in other domains to investigate glioma

segmentation: Domains such as adversarial robustness and
statistics have highly specialized tools (e.g., FGSM, conformal
prediction intervals) to interrogate different aspects of model
performance. In this work, we demonstrate the value of adopting
such tools for the problem of performance evaluation of glioma
segmentation. Our results indicate clear differences in these
experiments. We found model trained on LGG Data to be more
confident, and model trained on GBM to suffer the most under
adversarial attacks. Researchers should evaluate their algorithms
on each of the evaluation axes, by performing at least one
experiment on each of the axes (Figure 1).

Exploring limitations of metrics in clinical utility: In
recent years, the community has started to acknowledge the
clinical limitations of standard segmentation metrics. Our work
demonstrates why evaluation by metrics alone is limiting in
investigating heterogeneity in clinical populations (i.e., GBM vs.
LGG patients), and our findings further support recent literature.
Researchers should avoid relying solely on metrics to evaluate
their models.

The framework can further shed light on the practical utility
of an algorithm, and serve as a decision-support tool. It is not
meant to replace the triaging mechanisms already in place. Since
the action that accompanies a decision is different, researchers
should know the situations and the patient case before use of
these algorithms. If the algorithm’s prediction would be followed
by a high-stakes action component such as surgery, tumor

Frontiers in Neuroscience | www.frontiersin.org 18 October 2021 | Volume 15 | Article 740353

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Prabhudesai et al. Holistic Brain Tumor Segmentation Evaluation

resection, or radiation therapy, accuracy of segmentation is
critical. Our results indicate that algorithms trained on a specific
glioma grade group do not generalize well out of distribution,
so it is best to use specifically-trained models. For example, if
a patient with GBM is to undergo surgery, use of MGBM as a
decision-support tool would be best. In low-stakes scenarios such
as accessing the extent of tumor infiltration, generalizability is
more important at the cost of accuracy. The use of MALL, which
has knowledge of all glioma grade groups, would be best in
this scenario.

Establishing a close collaboration with a clinical expert is
crucial to ensure that results of the framework are appropriately
interpreted. In this work, the authors collaborated with experts
in neuroradiology and radiation oncology to deep-dive into the
problem of brain tumor segmentation and present the limitations
of metrics in a clinically meaningful way. Researchers should
similarly consult a clinical expert to understand how tumor
heterogeneity manifests in imaging presentations between the
subgroups of the tumor they are interested to investigate. The
use of this framework in other domains would thus require a
close collaboration between ML researchers and clinicians for
effective investigation.

6. CONCLUSION

In this work, we proposed a framework to evaluate the
performance of tumor segmentation algorithms. To illustrate the
framework, we investigated the generalizability of algorithms in
different glioma grade groups. Institutions such as the American
College of Radiology, Data Science Institute (ACR DSI) often
lay out guidelines to researchers for best practices before model
deployment. However, it is often not clear to researchers on how
to evaluate models. We take a more granular view and present
a tutorial of sorts, in addition to proposing a holistic framework
for better model evaluation. In addition, we provide the following
recommendations to researchers: (1) Perform at least one
experiment on model confidence, diagnostic performance, data
quality and robustness. (2) Perform analysis on a per-patient
basis. (3) Gather representative images informed by the results
of such analysis. (4) Collaborate with a clinical expert to perform
qualitative evaluation of these images to get deeper insight on
model performance.
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