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Electroencephalogram (EEG) is widely used for the diagnosis of neurological

conditions like epilepsy, neurodegenerative illnesses and sleep related disorders. Proper

interpretation of EEG recordings requires the expertise of trained neurologists, a resource

which is scarce in the developing world. Neurologists spend a significant portion of their

time sifting through EEG recordings looking for abnormalities. Most recordings turn out to

be completely normal, owing to the low yield of EEG tests. To minimize such wastage of

time and effort, automatic algorithms could be used to provide pre-diagnostic screening

to separate normal from abnormal EEG. Data driven machine learning offers a way

forward however, design and verification of modern machine learning algorithms require

properly curated labeled datasets. To avoid bias, deep learning based methods must be

trained on large datasets from diverse sources. This work presents a new open-source

dataset, named the NMT Scalp EEG Dataset, consisting of 2,417 recordings from unique

participants spanning almost 625 h. Each recording is labeled as normal or abnormal

by a team of qualified neurologists. Demographic information such as gender and age

of the patient are also included. Our dataset focuses on the South Asian population.

Several existing state-of-the-art deep learning architectures developed for pre-diagnostic

screening of EEG are implemented and evaluated on the NMT, and referenced against

baseline performance on the well-known Temple University Hospital EEG Abnormal

Corpus. Generalization of deep learning based architectures across the NMT and the

reference datasets is also investigated. The NMT dataset is being released to increase the

diversity of EEG datasets and to overcome the scarcity of accurately annotated publicly

available datasets for EEG research.

Keywords: open-source EEG dataset, automated EEG analytics, pre-diagnostic EEG screening, computer aided

diagnosis, computational neurology, convolutional neural networks, deep learning, generalization performance
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1. INTRODUCTION

Neurological disorders are among the major causes of disability
and death worldwide and place a significant burden on the global
health system. Studies published recently (Feigin et al., 2017,
2019) indicate that neurological disorders were the leading cause-
group of disability-adjusted life-years (DALYs) which is a metric
employed to measure the overall number of years lost due to ill-
health, disability, or early death. The global median of the total
neurological workforce (including neurologists, neurosurgeons
and child neurologists) is 3.1 per 100,000 population (WHO and
World Federation of Neurology, 2017); consequently, reliable
technological solutions that can assist in reducing the load
currently placed on the neurological workforce are needed.
This need is quite desperate in low-income countries where
the median total neurological workforce currently stands at a
dismal 0.1 per 100,000 population (WHO and World Federation
of Neurology, 2017). Electroencephalogram (EEG) is a non-
invasive method used to record the brain’s spontaneous electrical
activity over a period of time. Signals are collected by mounting
a certain number of electrodes (e.g., 32, 64, 128) on the scalp
according to the standard montages (Chatrian et al., 1985).
It is used widely in medical practice as an inexpensive tool
for diagnosis of neurological disorders and observing patterns
in various medication conditions due to excellent temporal
resolution as compared to other brain imaging techniques such as
magnetic resonance imaging (MRI) and computed tomography
(CT). The low maintenance and hardware costs of EEG make it
an appealing tool for providing neurological care to patients in
low-income countries. Clinically, it is generally employed as the
standard test for diagnosis and characterization of epilepsy and
prognostication of patients in intensive care (Yamada and Meng,
2012; Tatum, 2014). Most hospitals and clinics now generate EEG
data in digital formats; if this data is curated, labeled, and stored,
then the resulting repositories can be very useful for training
automated EEG analytic tools that can eventually be employed
to assist neurologists and physicians in providing better care to
patients with neurological disorders.

Deep neural networks have received a lot of attention over

the last decade and have been the primary tool of choice for
automation in several application areas, including biomedical
engineering. In EEG applications deep neural networks have
been employed for emotion recognition (Zhang et al., 2020) and
motor imagery classification (Wu et al., 2019). However, deep
neural networks are known to be data hungry and require a
significant amount of labeled data for training. Unfortunately,
most of the EEG data generated by hospitals is either discarded
or is not saved in a well-curated repository. Recently some efforts
have been made to build large repositories of EEG data; one of
the largest repositories of EEG data is the Temple University
Hospital (TUH) dataset (Obeid and Picone, 2016). This work
introduces our efforts to contribute to the cause of high-quality
repositories of EEG data. Our repository is called the “NMT”
(NUST-MH-TUKL EEG) dataset. At this time, the NMT dataset
is divided into normal and abnormal EEG records and can be
used for training to identify two classes, i.e., patients with normal
and abnormal EEG. This dataset is open-source, consisting of

2,417 recordings from unique patients (1,608 male, 808 female,
1 gender unknown) spanning around 625 h. There are 2002
normal EEG recordings and 415 abnormal EEG recordings in
NMT dataset version 1.0. More data is continuously being added
and our plan is to release more data with future versions of
the dataset.

Data labeling was performed by a team consisting of two
qualified Neurologists, assisted by a technician at Military
Hospital, Rawalpindi. More detailed labeling of EEG records
is currently underway and will eventually be added to the
repository. This dataset adds diversity to the existing public
repositories of EEG data and will contribute to improving the
generalization performance of analytic solutions designed for
EEG. We would like to emphasize here that lack of diversity
in datasets can severely limit the generalization performance
of deep learning algorithms. We provide evidence of this by
demonstrating severe degradation in classification performance
on the NMT dataset when deep neural networks are exposed to
only the TUH dataset during training and vice versa.

In addition to providing a repository of EEG data we
also compare the performance of state-of-the-art deep learning
algorithms on the task of EEG abnormality classification on the
NMT and the TUH datasets. These algorithms can be employed
for pre-diagnostic screening of normal and abnormal EEGs
in under-serviced areas where neurological workforce is not
available. Source-code for all our experiments is available in a
publicly accessible GitHub repository (link available at: https://
dll.seecs.nust.edu.pk/downloads/). This source-code is shared
to ensure that our research is transparent and reproducible.
Furthermore, it will also help deep learning and EEG researchers
quickly generate baseline results on the NMT, TUH (and other)
EEG data repositories.

The primary contribution of this work is the NMT
EEG dataset consisting of 2,417 anonymized EEG recordings
containing around 625 h of data is shared in the public
domain. Each recording in the NMT dataset is labeled as
either normal or abnormal (pathological) by a team of expert
neurologists. Furthermore, the following experiments have also
been conducted:

• Validation of the NMT dataset is achieved by comparing
classification performance of deep learning algorithms on
this dataset with the baseline achieved on the existing TUH
EEG dataset.

• Performance of state-of-the-art deep learning algorithms
by Schirrmeister et al. (2017b) and Roy et al. (2019) is
investigated at the task of classification of EEG records
as normal or abnormal, using the NMT dataset. For the
purpose of reproducibility of results presented here, the code
for the deep learning algorithms we used for classification
of normal and abnormal EEG records is shared in the
public domain.

• Preliminary results are presented on the impact of variation in
data sources on the generalization performance and transfer
learning of the algorithms and datasets. To the best of our
knowledge, this is the first study of its kind to investigatemodel
bias in classifying normal/abnormal EEG.
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The rest of this paper is organized as follows: The salient
features of the NMT dataset and the data collection and labeling
protocols are described in section 2. The problem of pre-
diagnostic screening of normal and abnormal EEGs is introduced
in section 3; this is followed by a description of the various
deep learning approaches employed for this problem. Results
and discussion are presented in sections 4 and 5, respectively.
Conclusions are presented at the end in section 6.

2. THE NMT DATASET

Availability of a large repository of data from numerous sources is
critical for the development of robust analytic solutions. Building
such a repository is quite difficult and requires investment of
significant effort, time, and financial resources. The TUH corpus
(Obeid and Picone, 2016) is one of the few existing publicly
available datasets that is large enough for training large-scale deep
neural networks. This dataset, although quite extensive, consists
of records from only a single hospital. We believe that availability
of data from more hospitals will be beneficial for development
of robust analytic solutions for EEG applications since, such
data will expose learning algorithms to variations introduced
by different acquisition hardware, data recording protocols, and
population demographics. To the best of our knowledge, the
NMT is the only open-source EEG dataset collected from a
South-Asian demographic.

2.1. Data Collection Protocol
Data collection for this work was done at the Pak-Emirates
Military Hospital (MH), Rawalpindi, Pakistan. Details of project
proposal were submitted to the hospital’s institutional review
board (IRB) for review and data collection began after the IRB
consented to approve the project (IRB number 51214MH, dated
March-15-2019). The hardware used for data collection was the
KT88-2400 system manufactured by Contec Medical Systems.
Recording sessions were conducted between 11:00 and 17:00
h. All adult patients were advised to get a full night’s sleep
before the recording session. For children aged 2 years or less,
recording sessions were conducted while they were asleep. All
patients were instructed to avoid taking any sedatives or sleep
medication before coming in for a recording session. Patients on
anti-epileptic drugs were instructed to continue consuming them
according to their prescription. All patient identity information
was removed before uploading the EEG records to the project
database. Before recording sessions, patients were given a consent
form containing a summary of the project and asking whether
they would consent to contributing their EEG data for the
project repository. This form was available both in English and
in Urdu (Pakistan’s national language). Patients who consented
to contributing their data provided written approval by signing
the consent forms. Our target during this project is to use the
NMT dataset for training machine learning algorithms that can
be employed for screening of normal and abnormal EEGs. Such
screening tools could possibly be deployed in rural areas of
Pakistan (and other developing countries) to identify patients
in need of neurological care and forwarding their cases to
neurologists in larger hospitals in cities for further examination

and consultation. EEG recording session were administered by a
qualified technician with 5 years of experience of managing the
hospital’s EEG recording room. Each EEG record was marked
as either normal or abnormal by the neurological staff of
hospital trained in EEG interpretation. To improve the intra-
rate-agreement, this data was then forwarded to two expert
neurologists, who either accepted or modified the label assigned
by the staff. Both neurologists had to agree on a label before it
was included in the dataset. In case of disagreement, between
the neurologists, the record in question was not included in
the dataset.

2.2. Data Statistics
The NMT dataset consists of 2,417 EEG records at this time. The
EEG montage used for recordings consists of the standard 10-20
system and is shown in Figure 1. There are 19 channels on the
scalp, channels A1 and A2 are reference channels on auricle of
the ear. The sampling rate of all channels is 200 Hz. The average
duration of each record is 15 min. The histogram of recording
lengths is given in Figure 2. The histograms of age distributions
of males and female subjects in the dataset are shown in Figure 3.
The age ranges from under 1 year old up to 90 years old; 66.56
and 33.44% of the records are collected from male and female
subjects, respectively. 16.17% of EEG recordings from males
are abnormal/pathological whereas, in case of females, 19.18%
records are abnormal/pathological.

2.3. Pre-processing
NMT data set is acquired using standard linked ear reference
at sampling rate of 200 Hz. A linked ear reference means that
the electrodes on the ears are linked together and serve as the
reference for the signals recorded from all other electrodes.

FIGURE 1 | Linked ear referenced standard electrode montage.
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FIGURE 2 | The number of recordings in the NMT dataset for each range of

duration in minutes.

FIGURE 3 | Histogram of age distribution in the NMT dataset. The shaded

regions indicate the standard deviations of the age of male and female

subjects in the dataset.

Although there is no significant superiority of one montage
over others, we re-referenced the NMT dataset offline to average
reference for comparability with TUH dataset, resulting in
21 EEG channels for each record. Pre-processed recordings
consist of average referenced channel signals in European Data
Format (EDF).

2.4. Dataset Structure
The EEG records are available in the open-source EDF format.
The directory structure of the NMT dataset is as follows.

1. ./abnormal: This directory contains all EEG records labeled
as “abnormal” by the team of neurologists. Files within
in this directory are organized under two sub-directories
(1) “./abnormal/train” which contains all abnormal EEG
records that were used for training in all our experiments

and (2) “./abnormal/eval” which contains all abnormal EEG
records that were used for evaluating the performance of the
algorithms discussed in this paper. This division is provided to
allow reproducability of presented results.

2. ./normal: This directory contains all EEG records labeled
as “normal” by the team of neurologists. Files within in
this directory are organized in the same manner as in
the abnormal directory.

3. Labels.csv: This file contains a list of the EEG records along
with demographic information and the ground-truth label.
Below is a brief description of each column in this file.

(a) recordname: This column contains the name of
each record.

(b) label: The ground-truth label assigned to the record by the
team of neurologists. This column contains one of two
labels: “normal” and “abnormal.”

(c) age: Age of the patient (in years).
(d) gender: Gender of the patient. This column contains one of

three labels: “male,” “female,” or “not specified.”
(e) loc: Location of the file, indicating if this record is included

in the “training” or “evaluation” set.

For example, record 0000024.edf has label = normal and
loc = eval; it means that this record may be found in the
“./normal/eval” directory. Similarly, the record 0000025.edf
has label = abnormal and loc = train; meaning that this record
can be found in the “./abnormal/train” directory.

4. DataStat.py: This is a python script which can be used to
plot the population Pyramid of the demographic information
given in the “Labels.csv” file and saves it as a .png image. This
file can also be employed to examine different statistics about
the dataset. The authors plan to continue adding records to
the NMT dataset and this script maybe useful for obtaining
statistics of future iterations of the dataset.

The EDF file format, apart from the physiological data, includes
related information such as channel names and number of
channels, the sampling rate and the low/high cut off frequencies
of the bandpass filters. The date and time mentioned in the files
correspond to the time when the files were saved in this particular
format, and do not relate to the time of the recording.

3. PRE-DIAGNOSTIC SCREENING OF EEG

As mentioned previously, the median neurological workforce
in low-income countries is 0.1 per 100,000 population. This
means that one member of this workforce must provide service
to one million people. In 2013, for example, there were only
134 qualified neurologists in Pakistan (Siddiqui et al., 2015),
a country of 212 million people. Furthermore, most of these
qualified doctors are concentrated in only three major cities of
the country. Non-availability of qualified neurologists generally
leads to patients in remote areas receiving little to no neurological
care. In these conditions, automated EEG screening tools can be
invaluable in providing at least some form of care to patients in
under-served areas. Coupled with custom-built, low-cost EEG
hardware these tools can be used to perform pre-diagnostic
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TABLE 1 | Related works on classification of normal/abnormal EEGs based on

the TUH Abnormal EEG Corpus.

Automated diagnosis Architecture Accuracy

López et al., 2017 CNN + MLP 78.8

Schirrmeister et al., 2017a Deep CNN 85.4

Roy et al., 2019 ChronoNet 86.6

Amin et al., 2019 AlexNet + SVM 87.3

Alhussein et al., 2019 3 x AlexNet + MLP 89.1

Gemein et al., 2020 RG 85.9

Gemein et al., 2020 BD-TCN 86.2

van Leeuwen et al., 2018 Deep CNN 82.0

van Leeuwen et al. (2018) did not use TUH dataset. Boldface indicates highest value.

screening of normal and abnormal EEG so that patients with
abnormal EEGs can be referred to neurologists for more detailed
examination and investigation. However, to ensure reliable
performance these screening tools must be trained on diverse and
well-curated EEG datasets.

There have been some attempts dedicated to classification of
normal and abnormal EEG; these are listed in Table 1. López
et al. (2017) used handcrafted features. Pre-trained models
were used in Amin et al. (2019) and Alhussein et al. (2019).
Apart from Roy et al. (2019) and Gemein et al. (2020), all
approaches evaluated only CNN based architectures. With the
exception of van Leeuwen et al. (2018), all these approaches were
trained using the TUH Abnormal EEG corpus1 which consists
of 2,978 EEG recordings (1,506 normal and 1,472 abnormal).
The most extensive evaluation of this task was conducted in
Gemein et al. (2020) where multiple (conventional) handcrafted
and (deep learning based) end-to-end architectures were tested.
Among the approaches listed in Table 1 we tested three (using
publicly available code) on the NMT data and examined whether
we could generate results similar to those reported on the
TUH data. There were multiple reasons for using existing deep
learning approaches.

• First, achieving classification accuracy similar to an existing,
well-reputed, dataset verifies the general correctness of the
new dataset.

• Second, this exercise enables generation of baseline results for
comparison in this and future extensions of our work.

• Third, reproduction of results in reference papers by a third
party (us) contributes to the cause of reproducible research.

• Fourth, implementation of multiple approaches enables
performance comparison and allows us to rank existing
algorithms based on their performance on the NMT dataset.

Following the same convention as the TUH abnormal corpus,
we extracted an independent, test set which was used for final
performance evaluation of a network architecture after learning
parameter using the training and validation folds.

1Amin et al. (2019) and Alhussein et al. (2019) augmented the TUH Abnormal

dataset with an additional 10,000 normal recordings.

3.1. ChronoNet
The ChronoNet architecture was purpose-built for EEG data
analysis (Roy et al., 2019); it uses recurrent neural networks
(RNNs) and was inspired by state-of-the-art image classification
techniques like inception (Szegedy et al., 2015) and dense
connections (Huang et al., 2017). It uses inception layers with
exponentially varying kernel lengths for 1D convolution layers
in combination with densely connected recurrent layers. It was
experimentally demonstrated that exponentially varying filter
lengths enabled the network to extract information over multiple
timescales and lead to improved performance. It was surmised
that in the EEG time series data, the range of timescales in
which features exist was much wider compared to those captured
in the images. Roy et al. (2019) reported that they were able
to classify normal and abnormal EEG records, from the TUH
dataset, with an accuracy of 86.57%. The Temporal Central
parietal (TCP) montage was used for all experiments in Roy et al.
(2019). We employed referencing and pre-processing techniques
that were identical to Roy et al. (2019) in all experiments that
used the ChronoNet architecture. The ChronoNet architecture
was trained using the open-source implementation developed by
Patel et al. (2018). Results are presented in section 4.

3.2. Deep and Shallow CNNs
The “Deep” and “Shallow” CNN architectures were proposed
in Schirrmeister et al. (2017b) with the objective to customize
CNN based architectures, typically used for image analysis,
for decoding and analysis of EEG data. However, attempts to
incorporate domain knowledge into deep learning architectures
can be counter-productive as well, since they can easily turn
into handcrafting which goes against the data-driven principles
that lie at the core of deep learning. Consequently, some
caution needs to be exercised when customizing deep learning
architectures for applications. The Deep CNN architecture
consists of a special first block that is designed to handle EEG
data; it works by applying convolution twice: first across time
and then across the EEG channels. This block is followed by
three blocks of standard convolution and max-pooling layers.
The final layer is a fully connected, dense layer that uses
softmax functions for classification. This architecture employs
exponential linear units (ELUs) as activation functions. ELUs use
the following activation function:

f (x) =

{

x ∀ x > 0

ex − 1 ∀ x ≤ 0
(1)

Compared to theDeep CNN architecture, which is rather generic,
the shallow CNN architecture is tailored to learn band-power
features. It employs pre-designed spatial filters and temporal
filters inspired from the filter bank common spatial patterns
(FBCSP) approach first presented in Ang et al. (2008). This is
followed by a squaring function, a mean pooling layer and a
logarithmic activation function.

Just like the Deep CNN model, it uses ELUs as activation
functions and alternating convolution-and-pooling layers.
Maximum overlapping crops are used for capturing time
dependencies. By maximum overlapping we mean that adjacent
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crops had only one non-overlapping time sample. The ConvNet
parameters are optimized using stochastic gradient descent
with the Adam optimizer. Maximum overlapping crops were
used for capturing time dependencies where crop-wise training
(Schirrmeister et al., 2017a) forced models to learn the anomalies
rigorously and were shown to be effective by the authors. We
trained the models by using the Braindecode library developed
by Schirrmeister et al. (2017b). The minimal pre-processing
techniques of downsampling, clipping voltage, and scaling were
used in same fashion.

3.3. Hybrid Deep CNN and LSTM
We also developed a novel hybrid model that added a layer
of Long Short-Term Memory (LSTM) units on top of the
Deep CNN architecture. Our hybrid architecture is illustrated
in Figure 4; it treats the Deep CNN architecture as a “Feature
Extractor.” This model is obtained by removing the final softmax
layer of the Deep CNN architecture and then taking features
from all 1-min windows of a recording and feeding them to
an LSTM for sequence classification. The Deep CNN model of
Schirrmeister et al. (2017b) uses simple statistical averaging of
classifier scores over short, time windows to obtain a final label
for the whole EEG record. In contrast, our hybrid architecture
uses LSTMs to make decisions by taking into account temporal
dependence between windows spaced far apart from each other.
The motivation behind the hybrid architecture is to see if
replacing the simple averaging based decision making (of the
Deep CNN) with a more learnable approach (introduced by the
LSTMs) delivers an improvement in performance.

3.4. Fine-Tuning
Fine-tuning (or transfer learning) is a technique that is often
employed when moving across applications or datasets (Tan
et al., 2018). A typical deep neural network has millions of
learnable parameters that are learnt by feeding it a large number
of labeled training examples. Unfortunately, building large-scale
repositories of labeled training examples for medical applications
is an expensive exercise. Therefore, researchers in the medical
domain often take a deep neural network that has been pre-
trained on a larger size dataset, often from a non-medical
application, and fine-tuning its parameters on the relatively
smaller (application specific) medical dataset. For example, in
medical imaging applications a deep CNN is first trained on
millions of natural images and then fine-tuned on the relatively
smaller dataset of medical images in most applications (Shin
et al., 2016).

Fine-tuning often works because the vast majority of learnable
parameters of the network are learnt during the initial training
on the larger dataset; only a small subset of parameters need to be
learnt during the fine-tuning phase and the smaller application
specific dataset is often sufficient for this purpose. In some
applications fine-tuning is also performed across two datasets
from the same domain as well. This type of approach can help to
ameliorate the impact of variation in data sources and acquisition
devices. To investigate whether this hypothesis is valid in the
EEG domain as well we examined the efficacy of fine-tuning
across the TUH and NMT datasets. More specifically, we first

trained the Shallow and Deep CNN architectures from scratch
on the, larger, TUH dataset. Training from scratch means that
the weights of all layers were initialized to random values and
then learned using the TUH dataset. After training the network
from scratch on the TUH dataset we fine-tuned its weights using
the NMT dataset. This was done by starting with the weights
learned by training on the TUH dataset and updating them using
the data in the NMT dataset. Early stopping was employed to
monitor the loss function on the (NMT) training and validation
data to ensure overfitting was avoided. In general, fine-tuning on
a certain dataset requires a smaller number of epochs compared
to training it from scratch on the same dataset.

3.5. Performance Evaluation Metrics
We employed three distinct metrics to evaluate the performance
of different algorithms in our experiments. These metrics are
summarized below:

• Accuracy: Accuracy is defined as the total number of
EEG records correctly predicted as normal/negative
or abnormal/positive, divided by the total number of
EEG records.

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Where, TP denotes the number of true positives, TN denotes
the number of true negatives, FN denotes the number of false
negatives and FP denotes the number of false positives.

• F1-score: The F1-score is defined as the harmonic mean of
precision and recall.

F1 = 2×
precision× recall

precision+ recall
(3)

Where, precision = TP/(TP+FP) and recall = TP/(TP+FN).
• AUC: The AUC represents the area under the ROC-curve and

varies between the lowest value of the 0 and the highest value
of 1. AUC is often employed to evaluate the performance of
binary classification and tends to work well even when class
distributions are unbalanced.

4. EXPERIMENTS AND RESULTS

Performance of the different architectures described in section 3
was individually tested on both the TUH and the NMT datasets
for comparison purposes. We also examined the generalization
performance of different architectures across the two datasets.
Out of the total 2,417 recordings, a set of 185 recordings (90
abnormal and 95 normal) have been set aside as an independent
“Test” (or evaluation) set. The purpose of keeping a fixed test set
is to allow future users the ability to compare the performance of
their work with the algorithms reported here and in subsequent
research. For the purpose of all experiments in this paper, the
performance was evaluated on the independent test set. The
remaining set of 2,232 recordings was further subdivided into
“Training” and “Validation” folds, using a 90–10% split. Each
network was trained in two phases. During phase-I, a network
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FIGURE 4 | Architecture of our hybrid model.

was trained until accuracy on the validation fold saturated and
did not improve for a predefined number of epochs. At this
point, the learnt model was saved, the value of the loss function
was noted and training and validation folds were merged. In
phase-II, the model saved at the end of phase-I was reloaded and
training recommenced on the entire training set until the loss
function dropped back to the value it was at when phase-I ended.
Training was then stopped and performance was evaluated on
the, previously unseen, independent test set. The majority of files
in the TUH dataset have a sampling rate of 250 Hz. However,
it also contains some files sampled at 256, 400, and 512 Hz.
Therefore, for the purpose of all experiments in this paper all EEG
records (from both TUH and NMT datasets) were downsampled
to 100 Hz before training and testing.

4.1. Baseline Implementation
The first set of experiments conducted were to reproduce the
results of existing deep learning architectures on the benchmark
TUH dataset. Matching the performance reported in reference
work validated our implementation and allowed us to compare
the performance of different approaches on the task of pre-
diagnostic EEG screening. Furthermore, once we were able
to match the reported performance on the TUH dataset, we
repeated the same learning protocol on the NMT dataset to
evaluate whether we could obtain similar performance. The
performance obtained for different architectures on the TUH
and the NMT datasets are presented in Tables 2, 3, respectively.
The accuracy achieved by ChronoNet on the TUH dataset was
reported to be 86.75% in Roy et al. (2019); the highest accuracy
that we obtained in our implementation of this architecture
was lower at 81% resulting in a noticeable gap between the
results reported by Roy et al. (2019) and what we observed.
This performance gap could possibly be due to small variations
in the experimental setup between our implementation and
the reference implementation. This architecture was able to
obtain an accuracy of around 76% on the NMT dataset. The
accuracies reported in Gemein et al. (2020) on the TUH dataset
using the Shallow and Deep CNN architectures are 84.1 and
84.6%, respectively; our implementations of these architectures
delivered similar performance on the TUH dataset (accuracy =

TABLE 2 | Performance of different architectures on the TUH dataset.

Architecture F1-score Accuracy AUC

ChronoNet 0.78 0.81 0.83

Shallow-CNN 0.82 0.85 0.93

Deep-CNN 0.82 0.84 0.92

Hybrid 0.84 0.85 0.94

Boldface indicates highest value.

TABLE 3 | Performance of different architectures on the NMT dataset.

Architecture F1-score Accuracy AUC

ChronoNet 0.75 0.76 0.77

Shallow-CNN 0.70 0.72 0.72

Deep-CNN 0.77 0.77 0.84

Hybrid 0.78 0.79 0.86

Boldface indicates highest value.

84%). When we tested these architectures on the NMT dataset,
the Deep CNN architecture demonstrated an accuracy of 77%,
whereas the performance of the Shallow architecture was slightly
lower at 72%. In case of the shallow architecture the degradation
in performance on the NMT dataset could possibly be due to the
reliance of the shallow architecture on a handcrafted approach.
In case of the Deep CNN the performance degradation could be
due to the smaller size of the NMT dataset in comparison to the
TUH dataset. The hybrid approach delivered an accuracy of 85%
on the TUH dataset and 79% on the NMT dataset.

4.2. Generalization Performance and
Fine-Tuning
In actual deployment scenarios any automated screening
algorithm is highly likely to be presented with data from unseen
sources. It is therefore, critical to examine the generalization
performance of different architectures to investigate whether
they are robust to variations in acquisition devices and sources.
Ideally, the performance of deep learning algorithms should
remain consistent from one dataset to another. However, this
is not always observed. Evaluating performance of abnormal

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 755817

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Khan et al. The NMT Scalp EEG Dataset

TABLE 4 | Performance of CNN architectures fine-tuned on the NMT dataset after

training on the TUH dataset.

Architecture F1-score Accuracy AUC

Shallow-CNN 0.70 0.71 0.82

Deep-CNN 0.82 0.82 0.87

EEG detection across datasets has not been possible so far since
there was only one publicly available dataset specifically for this
problem. We evaluated the generalization performance of the
Deep and Shallow CNN architectures by training them on the
TUH dataset and then evaluating performance on the NMT
dataset. We observed that there was a noticeable degradation
in performance with accuracy and AUC reducing to 45% and
0.48, respectively for the Shallow CNN architecture and 48%
and 0.46 for the Deep CNN architecture. A similar degradation
in performance was observed when these architectures were
trained on the NMT dataset and tested on the TUH dataset.
These results highlight the need for collection of diverse datasets
from multiple sources since algorithms trained on data from
only a single source do not generalize well in the case of
EEG data.

The results for fine-tuning are presented in Table 4. To the
best of our knowledge, these are the first results of fine-tuning
across multiple EEG datasets. When compared with the baseline
setup (Table 3), in which a network is trained and tested on the
same dataset; fine-tuning across datasets delivers a performance
gain in case of the Deep CNN architecture. However, no gains
are observed for the Shallow CNN architecture. The number
of parameters in the Shallow CNN architecture is quite small
and no performance gain after fine-tuning is not surprising. In
case of the Deep CNN architecture which has more learnable
parameters, the gains delivered by fine-tuning are substantial and
illustrate the benefit of exposing deep learning architectures to
multiple datasets.

5. DISCUSSION

We have presented a new publicly accessible repository of EEG
data, collected specifically for development of data analytic tools.
The suitability of this dataset for deep learning applications was
investigated in detail. Several existing deep learning architectures
were used for performance analysis on a sample task of pre-
diagnostic screening of abnormal EEG records. Comparative
analysis demonstrated that CNN based architectures and the
Hybrid architecture delivered the best performance on the TUH
dataset. On the NMT dataset we were able to obtain similar
performance trends, with scores obtained for each architecture
being slightly lower than the corresponding scores on the TUH
dataset. The degradation in performance of all architectures
when applied to the NMT dataset can be attributed to the
following factors:

1. The number of normal and abnormal records in the TUH
dataset is more or less balanced. In contrast, only about
15% (325) of the records in the NMT training set are

abnormal. This means that a network trained only on the
NMT dataset is exposed to a comparatively smaller number
of abnormal records. Therefore, lower performance compared
to a dataset with more abnormal examples is not unexpected.
We did not take any measures to suppress the unbalanced
distribution of the NMT data because we want it to reflect the
natural frequency of abnormalities within the population. This
naturally occurring unbalanced distribution data distribution
is more realistic and also more challenging to deal with.
It also highlights the need for development of novel data
augmentation and (synthetic) generation strategies which are
commonly used in computer vision applications but have been
investigation in the EEG context only recently (Luo and Lu,
2018; Lashgari et al., 2020).

2. Different demographics can also be a potential contributing
factor. The NMT dataset contains data from a relatively
younger population (average age = 24.64 years) whereas the
TUH abnormal dataset contains data from an older population
(average age= 49 years).

3. Use of different hardware for data collection is also another
factor that can have an impact on the results. The NMT
and TUH datasets were collected using different EEG
acquisition devices. Therefore, small differences in signal
characteristics could have contributed to the difference
in performance.

Taking the above factors into account, the performance gap is
not surprising however, the results in Table 3 are close enough
to the reference dataset to give us confidence about the quality
of the NMT dataset. In addition to the factors listed above, one
may argue that differences in the training protocol of the deep
learning architectures could also be a contributing factor. This
argument might be valid in case of the ChoronoNet architecture
(Patel et al., 2018) since the original authors did not publicly
release their code. However, we believe that this is unlikely
in the case of the Shallow and the Deep CNN architectures
(Schirrmeister et al., 2017b; Gemein et al., 2020) since we
used the libraries provided by the original authors and closely
followed the guidelines provided in their work. We also want
to highlight that we are working on adding more data to the
NMT dataset and are confident that this performance gap will
reduce as the size of our dataset increases as part of future
updates. An interesting research direction can be to explore
whether data augmentation and generation strategies can bridge
the performance gap between the unbalanced NMT dataset and
the balanced TUH dataset.

In order to evaluate the generalization performance of deep
learning algorithms we evaluated their performance on EEG
data sources which they were not exposed to during training.
Algorithms trained on only the TUH data and tested on the
NMT data demonstrated degradation in performance. A similar
degradation was observed when training was performed using
the NMT data and testing was done using the TUH data. This
indicates that despite achieving high classification performance
on individual datasets, the performance of current deep learning
algorithms degrades when applied to data from different sources.
This also implies that prior to being deployed in real life
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scenarios, these algorithmsmust be extensively trained and tested
on data from multiple sources. We believe that the NMT dataset
can play a role in enabling the development of robust deep
learning based EEG analysis tools. More detailed analysis is
required to further investigate the underlying reasons behind the
degradation in performance.

Fine-tuning on NMT data after initial training on TUH data
delivered a noticeable performance gain in case of the Deep CNN
architecture whereas, no performance gain was observed for the
Shallow CNN architecture. This is not surprising since the Deep
CNN has more tunable parameters, compared to the Shallow
CNN, and thus benefits from exposure to more data. With the
creation of NMT dataset, the research community is in a position
to conduct detailed examinations of the generalization and fine-
tuning performance across different EEG datasets. We expect
such studies to provide valuable insights about the application of
deep learning to EEG data analysis.

6. CONCLUSIONS

We have presented the NMT dataset which consists of a large
repository of EEG recordings labeled as normal and abnormal.
At this time, the NMT dataset can be employed to train machine
learning algorithms for pre-diagnostic screening of normal and
abnormal EEG recordings. The performance of deep learning
architectures was verified using this new dataset. Furthermore,
we have also investigated the generalization performance of these
approaches. Our analysis indicates that existing deep learning
approaches work well when trained and tested on data from
the same source(s) but their performance degrades significantly
when they are tested on data sources to which they don’t have any
prior exposure. Consequently, there is a need to simultaneously
collect more extensive and diverse datasets and to develop
robust deep learning algorithms that can handle variations
in data sources and acquisition devices. Preliminary analysis
also indicates that fine-tuning delivers performance gains when
applied across different EEG datasets.We hope that this work will
motivate researchers to examine the generalization performance
and fine-tuning of deep learning models on EEG data in more
detail as an important future direction.
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