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Accurately predicting the quality of depth-image-based-rendering (DIBR) synthesized

images is of great significance in promoting DIBR techniques. Recently, many

DIBR-synthesized image quality assessment (IQA) algorithms have been proposed to

quantify the distortion that existed in texture images. However, these methods ignore

the damage of DIBR algorithms on the depth structure of DIBR-synthesized images and

thus fail to accurately evaluate the visual quality of DIBR-synthesized images. To this end,

this paper presents a DIBR-synthesized image quality assessment metric with Texture

and Depth Information, dubbed as TDI. TDI predicts the quality of DIBR-synthesized

images by jointly measuring the synthesized image’s colorfulness, texture structure,

and depth structure. The design principle of our TDI includes two points: (1) DIBR

technologies bring color deviation to DIBR-synthesized images, and so measuring

colorfulness can effectively predict the quality of DIBR-synthesized images. (2) In the

hole-filling process, DIBR technologies introduce the local geometric distortion, which

destroys the texture structure of DIBR-synthesized images and affects the relationship

between the foreground and background of DIBR-synthesized images. Thus, we can

accurately evaluate DIBR-synthesized image quality through a joint representation of

texture and depth structures. Experiments show that our TDI outperforms the competing

state-of-the-art algorithms in predicting the visual quality of DIBR-synthesized images.

Keywords: depth-image-based-rendering, image quality assessment, colorfulness, texture structure, depth

structure

1. INTRODUCTION

With the advent of the 5G era and the advancement of 3-dimensional display technology, video
technology moves from “seeing clearly” to the ultra-high definition and immersive virtual reality
era of “seeing the reality.” Free-viewpoint videos (FVVs) have broad applications in entertainment,
education, medical treatment, military applications for its ability to provide users with visual
information of integrity, immersion, and interactivity (Selzer et al., 2019; Yildirim, 2019). Thus,
FVV is also regarded as the vital research direction of next-generation video technologies
(Tanimoto et al., 2011). Due to hardware conditions, cost, and bandwidth constraints, it is
feasible to collect a certain number of viewpoint images in realistic environments. Still, it is often
impractical to collect a full range of 360-degree viewpoint images. Therefore, it is necessary to
synthesize virtual viewpoint images from existing reference viewpoint images by relying on virtual
viewpoint synthesis techniques (Wang et al., 2020, 2021; Li et al., 2021a; Ling et al., 2021).
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Because depth-image-based-rendering (DIBR) technologies
only require a texture image and its corresponding depth
map to generate the image at any viewpoint, it becomes the
most popular virtual viewpoint synthesis technique (Luo et al.,
2020). Unfortunately, because the performance of existing DIBR
algorithms is not perfect, some distortions are often introduced
during the warping and rendering processes, as shown in
Figure 1. The quality of DIBR-synthesized images directly
influences the visual experience in FVV-related applications,
determining whether these applications can be successfully put
into use. Hence, studying the quality evaluation methods for
virtual viewpoint synthesis has important practical significance.

Image quality assessment (IQA) has been a crucial frontier
research direction in image processing in recent decades.
Massive IQA algorithms for natural images have been proposed,
divided into full-reference, reduced-reference, and no-reference
according to the required full, partial, and no information
of the reference image. For instance, Wang et al. (2004)
proposed a full-reference IQA metric based on comparing
the structural information between the reference and distorted
images, namely Structural SIMilarity (SSIM). Zhai et al. (2012)
quantify psychovisual quality of images based on free-energy
interpretation of cognition in brain theory. Min et al. (2018)
proposed a pseudo-reference image (PRI) based IQA framework,
which is different from the traditional full-reference IQA
framework. The standard full-reference IQA framework assumes
that the reference image is a high visual quality image. In contrast,
the framework proposed by Min et al. assumes that the reference
image suffers the most severe distortion in related applications.
Based on the PRI-based IQA framework, Min et al. measures the
similarity between the distorted image’s and the PRI’s structures
to estimate blockiness, sharpness, and noisiness.

In recent years, researchers have realized that IQA algorithms
for natural images have difficulty in estimating the geometric
distortion prevalent in DIBR-synthesized images. For this
problem, Bosc et al. (2011) calculated the difference map
between the synthesized image and the reference image based
on SSIM and adopted a threshold strategy to detect the
disoccluded area in the synthesized image. Then, the quality
score of a synthesized image is obtained by measuring the
average structural similarity of the disoccluded region. Conze
et al. (2012) used SSIM to generate a similarity map between

FIGURE 1 | Examples of the local geometric distortion and the color deviation distortion in the synthesized images. (A) is the ground-truth image. (B,C) are the

synthesized images, which includes the local geometric distortion and the color deviation distortion compared to the ground-truth image.

the reference image and the synthesized image and further
extracted the texture, gradient direction, and image contrast
weighting maps based on the obtained similarity map to predict
the synthesized image quality score. Stankovic et al. designed
the Morphological Wavelet Peak signal-to-noise ratio (MW-
PSNR) for assessing the synthesized image quality (Dragana
et al., 2015b). Meanwhile, the authors proposed a simplified
version of MW-PSNR called MW-PSNR-reduce (Dragana et al.,
2015b), which only uses the PSNR value of the higher-level
scale image to predict the synthesized image quality. For
better performance, Stankovic et al. adopted morphological
pyramid decomposition to replace the morphological wavelet
decomposition in the above-mentioned MW-PSNR (Dragana
et al., 2015b) and MW-PSNR-reduce (Dragana et al., 2015b),
which successively produce MP-PSNR (Dragana et al., 2015a)
and MP-PSNR-reduce (Dragana et al., 2016). Although these
methods for the synthesized images have better performance than
the IQA algorithms devised for natural images, their performance
still misses the actual requirements.

Over the past few years, researchers have been aware of a close
relationship between quantifying the local geometric distortion
and the quality assessment of DIBR-synthesized images and the
screen content images (Gu et al., 2017b). Gu et al. (2018a),
Li et al. (2018b), Jakhetiya et al. (2019), and Yue et al. (2019)
have arranged the idea in the design of DIBR-synthesized
IQA methods, respectively. In literature (Gu et al., 2018a), Gu
et al. adopted an autoregression (AR)-based local description
operator to estimate the local geometric distortion. Specifically,
the authors measure the local geometric distortion by calculating
the reconstruction error between the synthesized image and
its AR-based prediction. In literature (Jakhetiya et al., 2019),
assumed that the geometric distortion behavior is similar to
the outliers and further proved this hypothesis using ROR
statistics based on the three-Sigma rule. Based on this view,
the authors highlight the local geometric distortion through a
median filter and further fuse these prominent distortions to
assess the synthesized image quality.

Moreover, based on the local geometric distortion
measurement, Yue et al. (2019)’s and Li et al. (2018b)’s
methods introduce global sharpness estimation to predict the
synthesized image quality. Yue et al. (2019) considered three
major DIBR-related distortions, including the disoccluded
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region, the stretching region, and global sharpness. The authors
first detect disoccluded regions by analyzing the local similarity.
Then, the stretching regions are determined by combining the
local similarity analysis and a threshold solution. Finally, the
authors measure inter-scale self-similarity to estimate global
sharpness. Li et al. (2018b) designed a SIFT-flow warping based
disoccluded region detection algorithm. Then, the geometric
distortion is measured by combining with the size and distortion
intensity of local disoccluded areas. Moreover, a reblurring-based
solution is developed to capture blur distortion. We find two
critical problems from the above-mentioned DIBR-synthesized
IQA methods. First, these methods ignore the influence of color
deviation distortion on the visual quality of DIBR-synthesized
images. Second, These methods only focus on estimating the
geometric distortion and blur distortion from textured images
without considering the local geometric distortion’s adverse
effects on the synthesized image’s depth structure.

Inspired by these findings, we present a newly synthesized
image quality assessment metric that combines Texture and
Depth Information, namely TDI. Specifically, we adopt the
colorfulness module proposed by Hasler and Suesstrunk (2003)
to extract the color features of a synthesized image and its
reference image (i.e., the ground-truth image) and then calculate
the feature error to estimate the color deviation distortion. We
perform discrete wavelet transform on the texture information
of the synthesized image and its reference image and further
calculate the similarity of the high-frequency subbands of a pair
of synthesized and reference images. The similarity result is used
to estimate the local geometric distortion and global sharpness.
Meanwhile, we use SSIM to compute the structural similarity
between the depth maps of a pair of synthesized and reference
images to represent the effects of the local geometric distortion
and blur distortion on the depth of field of the synthesized image.
In addition, TDI develops a linear weighting scheme to fuse the
obtained features. We verify the performance of our TDI metric
on the public IRCCyN/IVC DIBR-synthesized image database
Bosc et al. (2011), and the experimental results prove that our
TDI metric performs better than the competing state-of-the-
art (SOTA) IQA algorithms. Compared with the existing works,
the highlights of the proposed algorithm mainly include two
aspects: (1) we integrate the color deviation distortion caused
by DIBR algorithms into the development of DIBR-synthesized
view quality perception model; (2) This paper estimates the
quality degradation brought by the local geometric distortion and
blur distortion from the texture and depth information of the
synthesized view.

The remaining chapters of this paper are organized as follows.
Section 2 introduces the proposed TDI in detail. Section 3
compares our TDIwith SOTA IQAmetrics for natural andDIBR-
synthesized images. Section IV summarizes the whole research.

2. PROPOSED METHOD

The design philosophy of our TDI is based on quantifying
the local geometric distortion, global sharpness, and color
deviation distortion. After extracting the corresponding features,

a linear weighting strategy fuses the above features to infer
the final quality score. Figure 2 shows the framework of the
proposed TDI.

2.1. Color Deviation Distortion Estimation
The human visual system (HVS) is susceptible to color, so the
measurement of color deviation distortion has a direct impact on
the visual experience (Gu et al., 2017a; Liao et al., 2019). As shown
in Figure 1, compared to the high-quality reference image, the
synthesized image has the color deviation distortion. However,
since it is not the main distortion in the synthesized image, most
existing DIBR-synthesized IQA algorithms ignore the impact
of the color deviation distortion on the visual experience. To
more accurately evaluate the synthesized image quality, this
paper takes the measurement of color deviation distortion into
account in the proposed TDI metric. In the literature (Hasler and
Suesstrunk, 2003), Hasler and Suesstrunk devised a highly HVS-
related image colorfulness estimation based on psychophysical
category scale experiments. The image colorfulness estimation
model is specifically defined as follows:

C = (σ 2
rg + σ 2

yb)
1
2 + 0.3 · (µ2

rg + µ2
yb)

1
2 , (1)

where σrg , σyb, µrg and µyb are the variance and mean of the rg
and yb channels, respectively. The calculation method of rg and
yb channels is shown in formula 2.

rg = R− G, yb =
1

2
(R+ G)− B (2)

Then, we calculate the absolute value of the colorfulness
difference between a synthesized image and its associated
reference image (i.e., formula 5) as the quantized result of the
color deviation distortion that existed in the synthesized image.

Q1 = |Csyn − Cref |, (3)

where Csyn and Cref represent the colorfulness of the synthesized
image and its reference image, respectively.

2.2. Local Geometric Distortion and Global
Sharpness Measurement
The proposed TDI extracts structural features from the texture
image and its corresponding depth image and designs a linear
pooling strategy for information fusion to achieve a more
accurate measurement of the local geometric distortion and
global sharpness. This part explains in detail how TDI extracts
structure features from texture and depth images.

2.2.1. Structure Feature Extracting From Texture

Domain
We first use the Cohen-Daubechies-Fauraue 9/7 filter (Cohen
et al., 1992) to perform discrete wavelet transform on the
synthesized and reference images. Figure 3 shows some examples
of high-frequency wavelet subbands (i.e., HL, LH, and HH
subbands) of two synthesized images and their reference image.
From Figure 3, we observe that the geometric distortion regions
(such as the red box area) of the synthesized and reference
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FIGURE 2 | Framework of the proposed TDI metric for predicting the quality of DIBR-synthesized images.

FIGURE 3 | Examples of the high-frequency wavelet subbands (i.e., HL, LH, and HH subbands) of two synthesized images and their reference image. From left to

right, the images in each row are a synthesized/reference image and its corresponding HL, LH, and HH wavelet subbands. Note that the synthesized image of the first

row has only the warping process.

images in the HH subbands differ significantly. Motivated by
this, we measure the local geometric distortion by computing the
similarity between the HH subbands of a pair of synthesized and
reference images, which is defined as follows:

Q2 =
1

N

N
∑

i=1

[

2 ·HHsyn(i) ·HHref (i)+ ǫ

HHsyn(i)+HHref (i)+ ǫ

]

, (4)

where HHsyn and HHref represent the HH subbands of a
synthesized image and its corresponding reference image. i and
N are the pixel index and the number of pixels of a given
image, respectively. A small constant ǫ avoids the risk of zero
denominator. Moreover, since blur distortion usually causes
loss of high-frequency information in images, the energy of
high-frequency wavelet subbands has been widely used for no-
reference image sharpness estimation (Vu and Chandler, 2012;
Wang et al., 2020). Therefore, the developed similarity between
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FIGURE 4 | Examples of the depth maps of two synthesized images and their reference image. From top to bottom, the images in each column are a

synthesized/reference image and its corresponding depth map. Note that the synthesized image of the first column has only the warping process.

the HH subbands of the synthesized image and its reference
image can also effectively estimate the global sharpness of the
DIBR-synthesized image.

2.2.2. Structure Feature Extracting From Depth

Domian
Considering that local geometric distortion and global sharpness
damage the structural information of the synthesized view in the
texture domain and affect the depth structure of the synthesized
view. Thus, we measure the structural similarity between the
depth maps of a pair of synthesized and reference views in the
depth domain to estimate the depth degradation introduced by
the local geometric distortion and blur distortion. The depth
map prediction algorithm computes the depth map at the virtual
viewpoint. At present, massive deep learning-based depth image
estimation algorithms have been proposed (Atapour-Abarghouei
and Breckon, 2018; Li et al., 2018a; Zhang et al., 2018; Godard
et al., 2019). In our TDI, we employ Clément Godard’s depth
prediction network for estimating the depth maps of the DIBR-
synthesized image and its reference image. Figure 4 shows some
examples of the depth maps of two synthesized images and their
ground-truth image estimated by Clément Godard’s method.
From the green box area in Figure 4, it can be easily observed
that the local geometric distortion is very destructive to the depth
structure of the synthesized image. So the geometric distortion
contained in a synthesized image can be effectively estimated
by measuring the structural similarity between the depth maps
of a pair of synthesized and reference images. In particular, the
structural similarity between the depth maps of a synthesized
image and its reference image is computed as follows:

Q3 =
1

N

N
∑

i=1

(SSIM(Dsyn(i),Dref (i))), (5)

where Dsyn and Dref represent the depth maps of a synthesized
image and its reference image predicted by Clément Godard’s
algorithm. SSIM is an image quality evaluation index based on
the structural similarity between the reference and distorted
images (Wang et al., 2004; Jang et al., 2019).

2.3. Linear Pooling Scheme
To evaluate the visual quality of DIBR-synthesized views more
efficiently, this paper extracts three features from the texture
and depth domains to estimate the color deviation distortion,
the local geometric distortion, and global sharpness. Since the
features Q1, Q2, and Q3 are complementary, we propose a novel
linear pooling scheme to fuse the texture and depth information
to form the final TDI model. A smaller Q1 value shows the
difference between the colorfulness of the synthesized image
and its reference image is smaller. That is, the quality of the
synthesized image is higher. The Q2 and Q3 are the texture
and depth structure similarity between a pair of synthesized
and reference images, respectively. The values of Q2 and Q3

are higher, indicating that the quality of a pair of synthesized
and reference views is more similar. That is, the quality of
the synthesized image is better. With this fact, a linear pooling
scheme is developed to fuse the obtained features, which is
defined as follows:

S = −
α

1+ α + β
· Q1 +

1

1+ α + β
· Q2 +

β

1+ α + β
· Q3, (6)

where the parameters α and β are used to adjust the contribution
of Q1, Q2, and Q3. In section 3, we detail the selection of
parameters α and β .
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TABLE 1 | Performance comparison of 21 SOTA IQA measures on the IRCCyN/IVC database (Bosc et al., 2011).

Metric Type SRCC PLCC RMSE

PSNR Natural Images 0.3095 0.3976 0.6109

SSIM (Wang et al., 2004) Natural Images 0.4368 0.4850 0.5823

IW-SSIM (Wang and Li, 2011) Natural Images 0.4053 0.5831 0.5409

ADD-SSIM (Gu et al., 2016) Natural Images 0.4672 0.5512 0.5556

PSIM (Gu et al., 2017a) Natural Images 0.4576 0.5315 0.5640

NIQE (Mittal et al., 2013) Natural Images 0.3739 0.4374 0.5987

IL-NIQE (Zhang et al., 2015) Natural Images 0.5348 0.4998 0.5767

ARISM (Gu et al., 2015) Natural Images 0.3728 0.3994 0.6104

BIQME (Gu et al., 2018b) Natural Images 0.6770 0.7271 0.4571

MW-PSNR (Dragana et al., 2015b) DIBR-synthesized Images 0.5757 0.5622 0.5506

MP-PSNR (Dragana et al., 2015a) DIBR-synthesized Images 0.6227 0.6174 0.5238

MP-PSNR-reduce (Dragana et al., 2016) DIBR-synthesized Images 0.6634 0.6772 0.4899

NIQSV+ (Tian et al., 2018) DIBR-synthesized Images 0.6668 0.7114 0.4679

APT (Gu et al., 2018a) DIBR-synthesized Images 0.7157 0.7307 0.4546

CLGM (Yue et al., 2019) DIBR-synthesized Images 0.6528 0.6750 0.4620

STD (Wang et al., 2021) DIBR-synthesized Images 0.7729 0.7901 0.4082

LMS (Zhou et al., 2019) DIBR-synthesized Images 0.8050 0.7690 0.3940

IDEA (Li et al., 2021b) DIBR-synthesized Images — 0.7796 —

GANs-NRM (Ling et al., 2020) DIBR-synthesized Images 0.8070 0.8260 0.3860

OUT (Jakhetiya et al., 2019) DIBR-synthesized Images 0.7036 0.7678 0.4266

TDI (Pro.) DIBR-synthesized Images 0.7905 0.7992 0.4002

The best performance in each type is highlighted in bold.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this part, we construct experiments on the IRCCyN/IVC
database to test the performance of the proposed TDI method
and other SOTA IQA algorithms.

3.1. Experimental Setup
3.1.1. Competing IQA Metrics
In this paper, we collect twenty SOTA IQA algorithms for natural
images and DIBR-synthesized images as competing algorithms.
The competing IQA metrics designed for natural images include
PSNR, SSIM (Wang et al., 2004), IW-SSIM (Wang and Li, 2011),
ADD-SSIM (Gu et al., 2016), PSIM (Gu et al., 2017a), NIQE
(Mittal et al., 2013), ILNIQE (Zhang et al., 2015), ARISM (Gu
et al., 2015), and BIQME (Gu et al., 2018b). The competing IQA
methods devised for DIBR-synthesized images consist of MW-
PSNR (Dragana et al., 2015b), MP-PSNR (Dragana et al., 2015a),
MP-PSNR-reduce (Dragana et al., 2016), NIQSV+ (Tian et al.,
2018), APT (Gu et al., 2018a), CLGM (Yue et al., 2019), STD
(Wang et al., 2021), LMS (Zhou et al., 2019), IDEA (Li et al.,
2021b), GANs-NRM (Ling et al., 2020), andOUT (Jakhetiya et al.,
2019).

3.1.2. Testing Dataset
In this paper, we test the performance of the proposed
TDI metric and twenty SOTA IQA algorithms on the public
IRCCyN/IVC database (Bosc et al., 2011). The IRCCyN/IVC
DIBR-synthesized image database contains 12 reference images

TABLE 2 | Ablation experiments about the proposed components.

Metric SRCC PLCC RMSE

Q1 0.4412 0.4971 0.5777

Q2 0.6126 0.6133 0.5259

Q3 0.4470 0.5346 0.5627

TDI (overall model) 0.7905 0.7992 0.4002

and its corresponding 84 synthesized images generated via seven
DIBR algorithms. In the subjective experiment, the authors adopt
the absolute category rating-hidden reference method to mark
DIBR-synthesized images. The images in the IRCCyN/IVC image
dataset are from three free-view sequences (i.e., “Book Arrival,”
“Lovebird,” and “Newspaper”) with a resolution of 1,024× 768.

3.1.3. Performance Benchmarking
In this paper, three commonly used indicators, including
Spearman Rank-order Correlation Coefficient (SRCC), Pearson
Linear Correlation Coefficient (PLCC), and Root Mean Square
Error (RMSE), are used to evaluate the performance of the
proposed TDI metric and other competing IQA algorithms
devised for natural images and DIBR-synthesized images. The
SRCC index evaluates the monotonic consistency between
subjective scores and objective scores predicted by IQA metrics.
The PLCC and RMSE indicators evaluate the accuracy of
the scores predicted by IQA algorithms. The larger values of
SRCC and PLCC, and the smaller value of RMSE, indicate the
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FIGURE 5 | The impact of the parameters α and β on the robustness of the proposed TDI metric.

performance of the corresponding IQA metric is better. The
PLCC is defined as follows:

PLCC =

∑

i(ai − ā)(li − l̄)
√

∑

i(ai − ā)2
∑

i(li − l̄)2
, (7)

where ai and ā are the estimated quality score of the i-th
synthesized image and the average value of all ai, respectively.
li and l̄ are the subjective quality label of the i-th synthesized
image and the average value of all li, respectively. The SRCC is
computed as follows:

SRCC = 1−
6
∑Q

q=1 d
2
q

Q(Q2 − 1)
, (8)

where Q is the number of pairs of predicted quality scores and
subjective quality labels. dq represents the ranking difference
between the predicted quality scores and the subjective quality
labels in each group. Before calculating the above indicators, we
need to map the quality scores of all IQA methods to the same
range through a non-linear logistic function (Min et al., 2020a,b),
which is defined as follows:

f (x) = τ1(
1

2
−

1

1+ eτ2(x−τ3)
)+ τ4x+ τ5, (9)

where τ1, τ2, τ3, τ4, and τ5 are the fitting parameters. x and
f (x) are the quality scores predicted by IQA algorithms and their
corresponding non-linear mapping results, respectively.

3.2. Performance Comparisons With SOTA
IQA Metrics
As shown in Table 1, our TDI metric achieves SRCC value of
0.7905, PLCC value of 0.7992, and RMSE value of 0.4002 on
the IRCCyN/IVC dataset, which outperforms most competing
IQA metrics designed for natural images and DIBR-synthesized
images. In terms of SRCC, the performance of our proposed

method is very close to that of the best-performing GANs-NRM.
From Table 1, we observe two important conclusions:

1. The performance of the IQA algorithms for natural images
on IRCCyN/IVC is far inferior to the IQA methods designed
for DIBR-synthesized images. The SRCC, PLCC, and RMSE
values of the best BIQME (Gu et al., 2018b) on the
IRCCyN/IVC dataset (Bosc et al., 2011) are 0.6770, 0.7271,
and 0.4571, respectively, and its SRCC value still does not
reach 0.7. Regarding SRCC, PLCC and RMSE, the proposed
TDI metrics are 16.77, 9.92, and 12.45% higher than the top
BIQME methods, respectively.

2. The APT (Gu et al., 2018a) and OUT (Jakhetiya et al., 2019)
metrics, existing best performing IQA algorithms on the
IRCCyN/IVC (Bosc et al., 2011) database based on geometric
distortion quantization, achieve SRCC value of 0.7157, PLCC
value of 0.7678, and RMSE value of 0.4266, respectively. Our
proposed TDImetric increases the values of SRCC, PLCC, and
RMSE by 10.45, 4.09, and 6.19% on this result. Experiments
show that the proposed TDI metric, combining colorfulness,
texture structure, and depth structure, can efficiently predict
DIBR-synthesized image quality.

3.3. Ablation Study
In this part, we conduct some ablation experiments to verify
the contributions of the proposed key components (i.e., Q1, Q2,
and Q3). Table 2 shows the test results of the components Q1,
Q2, Q3, and the overall module on the public IRCCyN/IVC
data set. From the results, we observe the performance of
the overall TDI model is far superior to each component,
which shows that the proposed sub-modules can complementally
evaluate the quality of the synthesized view. That is, the fusion
of texture and depth information is of great significance to
the view synthesis quality perception. Moreover, we further
analyze the influence of the parameters α and β in equation
(6) on the robustness of the proposed TDI metric, and
the experimental results are shown in Figure 5. Obviously,
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when the parameters α and β are smaller, the performance
of the proposed TDI metric is better, that is, compared to
the components Q1 and Q3, the component Q2 is more
important, which is also in line with the test results in Table 2.
According to the robustness analysis, the parameters α and β

are set to 0.1 and 0.2, respectively, to optimize the proposed
TDI module.

3.4. Applications in Other Fields
With the rapid development of computer vision, the three-
dimensional-related technologies can be implemented in
numerous practical applications. The first application is
abnormality detection in industry, especially the smoke detection
in industrial scenarios which has received an amount of attention
from researchers in recent years (Gu et al., 2020b, 2021b; Liu
et al., 2021). The process of abnormality detection relies on
images, therefore combining three-dimensional technology with
this can make the image acquisition equipment obtain a more
accurate, intuitive and realistic image information, so as to
enable the staff to monitor the abnormal situation in time and
then avoid bad things from happening. The second application
is atmospheric pollution monitoring and early warning (Gu
et al., 2020a, 2021a; Sun et al., 2021). The three-dimensional
visualized images contain more detailed information, thus
enabling efficient and accurate air pollution monitoring. The
third application field is three-dimensional vision and display
technologies (Gao et al., 2020; Ye et al., 2020). Compared with
the ordinary two-dimensional screen display, three-dimensional
technology can make the image is no longer confined to the
plane of the screen (Sugita et al., 2019), as if it can come out
of the screen, so that the audience has a feeling of immersion.
The fourth application is road traffic monitoring (Ke et al.,
2019). Three-dimensional technology can monitor the traffic
flow information of major intersections in an all-round and
intuitive way. All in all, there are several advantages of DIBR
technology, so it is necessary to extend this technology to
different fields.

4. CONCLUSION

This paper presents a novel DIBR-synthesized image
quality assessment algorithm based on texture and depth

information fusion, dubbed as TDI. First, in the texture
domain, we evaluate the visual quality of the synthesized
images by extracting the differences in colorfulness and
HH wavelet subband between the synthesized image
and its reference image. Then, in the depth domain, we
estimate the impact of the local geometric distortion on
the quality of the synthesized views by calculating the
structural similarity between the depth maps of a pair of
synthesized and reference views. Finally, a linear pooling
model is developed to fuse the above features to predict
DIBR-synthesized image quality. Experiments on the
IRCCyN/IVC database show that the proposed TDI algorithm
outperforms each sub-module and most competing SOTA
image quality assessment methods designed for natural and
DIBR-synthesized images.
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