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We describe the utility of a standardized index (Z-score) in quantitative EEG (QEEG)
capable of when referenced to a resting-state, sex- and age-differentiated QEEG
normative database (ISB-NormDB). Our ISB-NormDB comprises data for 1,289
subjects (553 males, 736 females) ages 4.5 to 81 years that met strict normative data
criteria. A de-noising process allowed stratification based on QEEG variability between
normal healthy men and women at various age ranges. The ISB-NormDB data set that is
stratified by sex provides a unique, highly accurate ISB-NormDB model (ISB-NormDB:
ISB-NormDB-Male, ISB-NormDB-Female). To evaluate the trends and accuracy of the
ISB-NormDB, we used actual data to compare Z-scores obtained through the ISB-
NormDB with those obtained through a traditional QEEG normative database to confirm
that basic trends are maintained in most bands and are sensitive to abnormal test data.
Finally, we demonstrate the value of our standardized index of QEEG, and highlight it’s
capacity to minimize the confounding variables of sex and age in any analysis.
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INTRODUCTION

Electroencephalograms (EEGs) measure electrical activity in the brain and can detect functional
abnormalities in the form of abnormal brain waves and signal components. Quantitative EEGs
are an advanced digital form of EEGs that make possible more fine-grained, user-independent,
complex, and subtle analyses for the differential diagnosis and grading of functional abnormalities.

A growing literature has documented the role of QEEG in novel discoveries and biomarker
development for brain diseases including Dementia (Livinţ Popa et al., 2020), Parkinson’s disease
(He et al., 2016; Baik et al., 2021), acute ischemic stroke (Bentes et al., 2018), epilepsy (Tedrus et al.,
2018), and in clinical psychological syndromes such as ADHD (Arns et al., 2012; Snyder et al., 2015;
Angelidis et al., 2016), depression (Kaiser et al., 2018; Arikan et al., 2019), and anxiety (Pavlenko
et al., 2009). Much of the previous research used resting-state QEEG to search for novel biomarkers
(Angelidis et al., 2016) for the diagnosis and treatment of brain-related diseases.

However, these efforts met with limited success due to lack of standardization of the QEEG
databases, and to the complexity of analysis prior to the advent of AI-driven QEEG systems.
Standardization of QEEG is essential for it to more fully take its place among the established
methods for biomarker development. While standardization of a reference set is essential for
any normative comparison, and it is especially so in the case of QEEG, which varies widely
from individual to individual. Many factors affect QEEG, such as age, sex, measurement method,
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and measurement device. All these variables must be carefully
considered and controlled for in QEEG, a precaution that was
under-appreciated in the first-generation of QEEG research and
database development.

The QEEG patterns of normal subjects, carefully constructed
into a QEEG normative database, must also include a high N
(number of subjects) to fully empower QEEG analysis. Only then
can one rely upon the accuracy of parameters such as predicted
mean and predicted standard deviation. A properly designed
QEEG standardized index can quantify an individual subject’s
unique characteristics relative to normal QEEG values, which can
be represented by the Z-score, a familiar statistical measure in
normal distributions.

Several recent studies (Keizer, 2019; Valdes-Sosa et al., 2021)
have described the use of a QEEG normative database. However,
these studies describe QEEG normative databases that only
account for effects of the age variable on the QEEG distribution.
The sex variable has not been considered or controlled in building
these traditional QEEG normative databases despite recent
studies confirming sex-dependent variation in EEG patterns
(Matthis et al., 1980; Karlsgodt et al., 2015; Tomescu et al., 2018;
Gartstein et al., 2019), some of which affect the interpretation of
pathological findings, thus obscuring details that might be clearly
revealed in a sex-differentiated QEEG database (Arns et al., 2016;
Rice et al., 2019).

Here, we discuss these studies and highlight the crucial role
of the sex variable in the utility of our analyses. We further
highlight the value of building each QEEG normative database
(ISB-NormDB: ISB-NormDB-Male, ISB-NormDB-Female) with
sensitivity to sex, and demonstrate the value of a well-constructed
QEEG reference point extracted from the QEEG normative
database that demonstrates the value of controlling for sex.

We also propose a modeling process for the resting state
QEEG normative database and present validation results for the
database that controls for sex and age. Finally, we discuss the
utility of our QEEG standardized index obtained by the more
sensitive ISB-NormDB.

MATERIALS AND METHODS

The ISB-NormDB was systematically developed according to the
process outlined in Figure 1.

ISB-NormDB: Data Preprocessing
Participants
To build the ISB-NormDB, EEG data from 1797 human
subjects were collected between 2014 and 2019 at the Korean
EEG Center at Seoul National University. All procedures were
approved by the Research Ethics Committee of the Seoul National
University Hospital and informed consent was obtained from
each participant or their guardian prior to the study (IRB
number: 1801/002-006, 1711/003-004).

Subject ages ranged from 4.5 to 81 years, which included
a wide distribution from infants to the elderly. The final ISB-
NormDB resulted from a strict screening process that yielded a

total of 1289 healthy subjects for inclusion in the database. The
age distribution of the healthy subjects is as follows (Figure 2).

The rejected subjects were excluded to minimize the influence
of confounding variables other than age and sex, and to increase
the influence of well-characterized EEG variables on any analyses.

For the strict determination of healthy individuals, four
evaluation criteria were established, which included several
pre-screening factors, as well as cognitive, emotional, and
behavioral factors.

In the pre-screening stage, each subject was evaluated to
exclude those with any history of psychiatric or neurological
disease, and or a history of problematic academic or social
activities. Further, subjects were excluded if there was a history
of head trauma or epilepsy, significant behavioral or conduct
disorders, or of medical treatment that may have reasonably
affected brain function.

In the evaluation stage for cognitive function, the assessments
and exclusion criteria differed across four age groupings: infants
(4–6 years), children (7–19 years), Adult 1 (20–49 years), and
Adult 2 ( ≥ 50 years).

Wechsler Preschool and Primary Scale of Intelligence (K-
WPPSI), CNS Vital Signs (CNSVS), and Mini-Mental State Exam
(MMSE) were used to measure cognitive function.

The K-WPPSI is a cognitive function test for preschoolers aged
4 to 6 years. The major tests include block Design (block), maze,
picture concepts (picture), vocabulary, and similarities tests. The
percentile score is obtained using the raw score (mean = 100,
standard deviation = 15).

The evaluation criteria for the raw score of each test are as
follows.: 70 or less (percentile score < 2%) is “Extremely Low,”
70–79 is “Borderline” (2% ≤ percentile score < 8%), 80–89 is
“Low Average”, 90–109 is “Average”, 110–119 is “High Average”,
120–129 is “Superior”, and 130+ is “Very Superior.”

The CNSVS is a neurocognitive test for children aged ≥7
years. It mainly consists of symbol digit coding, reasoning,
verbal memory, and visual memory tests. The evaluation
criteria for the percentile score of each test are as follows:
“Above Average” (raw score ≥ 109) for 74% or more,
“Average” for 25–74% (90≤raw score < 109), and “Low
Average” for 9–24% (80≤raw score < 90), 2–8% is “Low”
(70≤raw score < 80), and less than 2% is “Very Low”
(raw score < 70).

The MMSE test measures cognitive impairment in adults
aged≥ 50 years. Scores at 24–30 are classified as “Normal,” scores
at 20–23 are “Mild Dementia,” scores at 10-19 are “Moderate
Dementia,” and scores at 9 are “Severe Dementia.” A raw score
with a percentile score of 7% is 25.

Table 1 presents the function criteria used to establish the
cognitive health of subjects for each age group.

Child Behavior Check List (K-CBCL), State Trait Anxiety
Inventory (STAI-KYZ), Child Depression Inventory (CDI), and
Beck Depression Inventory (BDI) were used as evaluation tests
for emotional function.

The K-CBCL 1.5–5 test identifies problematic behaviors in
children aged 18 months to 5 years. The main evaluations include
depression and anxiety. The evaluation criteria for the percentile
scores of each test are as follows: More than 98% falls under
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FIGURE 1 | Flow chart for development of the ISB-NormDB.

TABLE 1 | Criteria for inclusion based on cognitive function.

Age group Infants (4–6 y) Children and adolescents (7–19 y) Adult 1 (20–49 y) Adult 2 ( ≥ 50 y)

Cognitive
function test

K-WPPSI Block CNSVS Symbol Digit
coding

CNSVS Symbol Digit
coding

CNSVS Symbol Digit
coding

Maze Reasoning Reasoning Reasoning

Picture Shift Attention
Test

Shift Attention
Test

Shift Attention
Test

Vocabulary Verbal Memory
IR and DR

Verbal Memory
IR and DR

Verbal Memory
IR and DR

Similarity Visual Memory
IR and DR

Visual Memory
IR and DR

Visual Memory
IR and DR

Digit Span MMSE

Exclusion
criteria

K-WPPSI and Digit Span one out of six CNSVS one out of five tests percentile < 2% or CNSVS and MMSE one out of six

tests percentile < 2% or three tests < 7% CNSVS three out of five tests percentile < 7% tests percentile < 2% or three tests < 7%

“Clinical Range,” 93–98% represents “Borderline Clinical Range,”
and less than 93% is considered as the “Normal range.”

The STAI-KYZ is a test to measure emotional state and anxiety
levels in children aged ≥ 6 years. The test measures state anxiety
and trait anxiety. The classification criteria for determining the
“Risk Group” and “High-risk Group” differ according to age and
sex. The highest score is 80, and the classification criteria are as
shown in Table 2 below.

The CDI measures the degree of depression in children
aged≥ 6 years. The BDI measures that in adults aged≥ 20 years.
For CDI, the highest score is 54, and scores below 21 are classified

as “Normal,” those with scores of 22 to 25 are classified as “Mild,”
those with scores of 26 to 28 are classified as “Risk,” and those
with scores of 29 or higher are classified as “High-risk.” For BDI,
the highest score is 63. A score of ≤ 9 is classified as “Normal,”
10-15 is classified as “Mild,” 16–23 is classified as “Risk,” and≥ 24
is classified as “High-risk.”

Table 3 presents the emotional function criteria used to
establish the emotional health of subjects in each age group.

For the behavioral evaluation, the K-CBCL 1.5-5 for infants
and the K-CBCL 6-18 for children and adolescents were used.
The behavioral evaluations comprised direct observation by a
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TABLE 2 | Classification criteria of STAI-KYZ.

Test name Age group 7 ≤ age < 20 20 ≤ age < 30 Age ≥ 30

State anxiety risk group
(male/female)

59–63/62–66 58–62/62–66 56–60/56–60

high-risk group
(male/female)

64–/67– 63–/67– 61–/61–

Trait anxiety risk group
(male/female)

63–67/65–69 58–62/62–66 60–64/60–64

high-risk group
(male/female)

68–/70– 63–/67– 65–/65–

clinician or a report by a guardian. Table 4 presents the behavioral
function criteria used to establish the behavioral health of the
infant and child/adolescent groups.

The evaluation and screening process identified 553 males
and 736 females, comprising 1,289 subjects that passed the strict
health criteria.

Electroencephalogram Data Measurement and
Denoising Procedures
Electroencephalogram (EEG) was measured in 19-channels (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, Ñ4, T4, T5, P3, Pz, P4,
T6, O1, O2) from subjects’ scalps at sites corresponding to the
international 10-20 system. The measurement consisted of 4 min
with eyes closed, and another 4 min with eyes open, all in
a resting state.

Electroencephalogram (EEG) preprocessing was performed
to denoise all data and minimize the effects of artifacts.
During the first stage of EEG preprocessing, the signals
were sampled at 250 Hz and filtered with a bandpass
filter of 1∼45.5 Hz range. The EEG were then passed
through a notch filter in preparation for downstream
processing, including re-referencing (CAR), bad epoch
rejection (ASR), and advanced mixture independent
component analysis (amICA). Finally, artifacts identified
via electromyogram (EMG) and electrooculogram (EOG) were
removed to yield cleaned QEEG normative data. All EEG
preprocessing processes, sensor-level data, source-level data
calculation and extraction were performed using a cloud-
based AI-driven auto-analyzing platform (iSyncBrainTM,
iMediSync, Inc.1).

ISB-NormDB: Modeling Process
Electroencephalogram Correlation Analysis With
Consideration of Sex and Age Variables
To identify variations between males and females in EEG features
with respect to age, two experiments were conducted for two
different age groups: a young group (15 < age < 20) and an adult
group (20 < age < 40), using the source-level data-theta power
band (4∼8 Hz). The theta wave was targeted because it has been
widely investigated as a biomarker for disease states related to
cognitive and memory performance. Previous studies (Klimesch,
1999; Angelidis et al., 2016; Baik et al., 2021) have indicated that
this band is uniquely sensitive to abnormal changes in the brain.

1https://isyncbrain.com

In the first experiment, a total of 170 subjects (85 males,
85 females) from the young group were used; in the second
experiment, a total of 176 subjects (88 males, 88 females) from
the adult group were used.

For the sex difference test, we applied Student’s t-test in
cases where the source-level features passed both the Shapiro-
Wilk normality test and the Levene’s equality of variance test.
Otherwise, Welch’s T-test was performed. A nonparametric
Mann–Whitney U test was performed for features that did not
satisfy normality.

NormDB Modeling
Previous Modeling Process
When the distribution of QEEG data was checked before
modeling, it was clearly skewed to the left where skewness
was over 1. Since this would be considered a severely biased
distribution, it would be impossible to obtain the optimal
predicted mean when modeling in this distribution. To solve this
problem, log transformation of QEEG data features, involving
sensor-level and source-level data, was performed to alleviate the
bias observed when combining ages, which made it possible to
obtain the optimal predicted mean.

Modeling Methods
After log transformation to address the distribution bias
in the QEEG features, the resulting predicted mean values
were curve-fitted using several different methods. After
several trials, the best modeling method was chosen. The
discarded QEEG normative database modeling methods
divided the QEEG data distributions by age band, wherein
the mean and standard deviation are calculated to obtain
a standardized score, in this case a Z-score, to correct
the effect of age.

However, this sort of age band method risks disconnection
problems between successive age bands. For example, if the age
of 50 is at the boundary between bands, the difference between
49.9 and 50.1 is only 0.2 years. However, since these two numbers
belong to different bands, there may be cases where a mean and
standard deviation with a large difference must be used.

For this reason, the curve fitting method, which is a
continuous method, was selected.

There are three main methods for constructing a curve
fitting model: linear regression, nonlinear regression, and
black box machine learning (neural network). Among
these three, we selected nonlinear regression – generalized
additive models (GAM) using the spline method (Hastie
and Tibshirani, 1986). The nonlinear regression method
is an intermediate model that combines the advantages of
linear regression with those of black box machine learning
(neural network).

Linear regression is a method in which variables are
linearly connected and produce predicted values. While this
has some advantages in interpreting the model, it also has
disadvantages due to the simplicity of the model which only
allows good fitting on data with simple tendencies. This
increases the possibility of underfitting EEG data having
complex tendencies. Likewise, while a black-box machine
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TABLE 3 | Criteria for inclusion based on emotional function.

Age group Infants (4–6 y) Children and adolescents (7–19 y) Adult (20–81 y)

Emotional evaluation test K-CBCL 1.5-5 Depression, anxiety STAI-KYZ State anxiety STAI-KYZ State anxiety

Trait anxiety Trait anxiety

K-CDI Depression BDI Depression

Exclusion criteria Depression, anxiety percentile > 98% One of the three subdomains is a high-risk group,

or two or more at-risk groups.

learning (neural network) model may have good prediction
capability for data with complex nonlinear tendencies, it
may be insufficient for analyzing and inferring the process
behind the model.

Nonlinear regression (GAM), which combines the strengths of
these two models, can fit more complex nonlinear relationships
than linear regression because it uses the spline method. In
addition, statistical inference allows us to better understand and
explain the structure of the model.

ISB-NormDB: Model Validation
Effectiveness Evaluation
To compare trends between the two QEEG normative databases,
148 subjects aged 5 to 90 years (eyes-closed data) and 96
subjects aged 5 to 90 years (eyes-open data) were randomly
selected. Their EEG data were input to each QEEG standard
database and Z-scores were extracted. A correlation analysis
was then performed on the z-scores extracted from each QEEG
normative database.

The Z-score is a standardized score that minimizes the
influence of variables affecting the EEG in each QEEG normative
database, which follows a standard normal distribution with a
mean of 0, a variance of 1, and is denoted as Z∼N (0,1).

A main benefit of z-score analysis is that it permits
comparison between databases that have marked
differences in modeling methods and data compositions.
When z-scores of two QEEG normative databases are
compared on same standard normal distribution, a trend
comparison can be performed. Moreover, a high correlation
between database Z-scores suggests that two databases
capture the same basic normal-state trends, in spite of
differences in data composition, measurement method, and
de-noising method.

To compare trends with our ISB-NormDB database,
we selected the “qEEG-Pro” database, an FDA-approved
commercial database. Table 5 summarizes the characteristics of
the two databases.

TABLE 4 | Criteria for inclusion based on behavioral function.

Age group Infants (4– 6 y) Children and
adolescents (7–19
y)

Behavior evaluation K-CBCL 1.5-5 K-CBCL 6-18

Exclusion criteria Expert evaluation Expert evaluation

Accuracy Evaluation
To evaluate the accuracy of the ISB-NormDB (ISB-NormDB-
Male, ISB-NormDB-Female) in controlling for the effects
of sex and age, the Z-score of ISB-NormDB-Total (ISB-
NormDB-Male+Female), which controls age variables without
discriminating by sex, was compared with the Z-score of ISB-
NormDB.

We analyzed data on a male with developmental disabilities
(aged 10.2 years), a male diagnosed with amnestic mild cognitive
impairment (aMCI) (aged 78 years), and a female with anxiety
(aged 43 years) excluded from the ISB-NormDB.

First, zscore1 was extracted by inputting it into the ISB-
NormDB (ISB-NormDB-Male or ISB-NormDB-Female) suitable
for the sex of each subject, and zscore2 was extracted by
inputting it into the ISB-NormDB-Total. The two Z-scores
were then compared.

Source-level data–theta band power was used as the test
feature of a male with developmental disorder and a male
diagnosed with aMCI, and Source-level data–beta3 was used as
the test feature of a female with anxiety. The theta and beta3
bands were used because the theta band is known to be sensitive
to developmental disorders and aMCI, and the beta3 band is
known to be sensitive to anxiety.

Subjects suffering anxiety exhibit greater beta3 power than do
normals (Ribas et al., 2018; Tarrant et al., 2018).

Likewise, children with developmental disorders exhibit
greater theta power than do normal children (Snyder and Hall,
2006; Arns et al., 2008; Robertson et al., 2019). There is also
a tendency toward greater theta power in those with aMCI
compared with normals (Wolf et al., 2003; Roh et al., 2011;
Musaeus et al., 2018). Notably, the increased theta power also
entails slowing down of the wave.

TABLE 5 | Characteristics of the ISB-NormDB database and the
qEEG-Pro database.

ISB-NormDB qEEG-Pro

Eyes closed
(n = 1289)

Eyes open
(n = 1290)

Eyes
closed
(n = 1232)

Eyes open
(n = 1482)

Age range 4.5 ∼ 81 6 ∼ 83

Data collection
period

2012∼2019 2004 ∼ 2013

Montage Average reference Linked ear reference

Age regression
method

Nonlinear regression (GAM) Sliding window
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FIGURE 2 | Age distribution of ISB-NormDB.

RESULTS

Correlation Analysis With Consideration
of Sex and Age Variables
Figure 3 shows the results of each sex difference test for
source-level theta band power by separating the young group
(15 < age < 20) from the adult group (20 < age < 40). This result
shows a sex differences as a function of age.

Two key insights were provided by these two experiments.
First, it can be seen that the brain areas showing significant
differences between males and females differ markedly between
the young group and the adult group (Figures 3C,F). Second,
the results of each experiment with the young and adult
groups reveal that brain areas show differences of varying
significance levels between males and females within each
group (Figures 3A,B,D,E). This suggests that, although the sex
differences are almost negligible when considered across the
entire age range, they become evident when the age groups are
separated into smaller ranges wherein significant differences are
evident between the two sex groups.

Thus, the importance of sex as a variable affecting
interpretations of QEEG becomes apparent, and this underscores
the importance of building a sex-discriminated normative
database. We suggest that a well-designed QEEG normative
database must be capable of discriminating both age and sex.

NormDB Modeling
In the present study, QEEG normative database models (GAM
models), which minimizes the effects of sex and age, were built
for each band: delta (1∼4 Hz), theta (4∼8 Hz), alpha (8∼12 Hz),
and beta (12∼30 Hz).

Three statistical trends were observed in Figure 4:

1. Delta and theta waves, which are slow waves, show a
sharp decline in infants, children, and adolescents (ages
4.5 to 19 years), followed by relatively stable trends
after the age of 20.

2. Alpha waves fluctuate in infants, children, and
adolescents (4.5∼19 years), followed by a steady decrease
after the age of 20.

3. Beta waves decrease in infants, children, and adolescents
(4.5∼19 years), followed by a steady increase
after the age of 20.

The rapid EEG changes in children and adolescents, the
relative stability of EEG characteristics in adulthood, and the
decrease in delta, theta, and alpha, combined with the increase
in beta with age, are patterns that have been well established in
previous studies (Smit et al., 2011; Barry and De Blasio, 2017).
Thus, the present model is consistent with the prior research.

Therefore, the predicted mean EEG and standard deviation
EEG corresponding to all consecutive ages can be obtained
with the estimated mean and prediction interval of the ISB-
NormDB model. Further, by calculating the Z-score with the
mean and standard deviation obtained, a QEEG standardized
index can be extracted.

Model Validation
Effectiveness Evaluation
To evaluate the effectiveness of the ISB-NormDB database, the
results of examining the correlation of Z-scores of each band
of the same data with the FDA approved database qEEG-
Pro are as follows.

The Z-score comparison between the two QEEG standard
databases, including analysis of all QEEG band features (delta,
theta, alpha, beta, gamma) in both the eyes-closed (EC) and eyes-
open (EO) conditions revealed a correlation of r > 0.7. Thus, the
Z-scores of the two QEEG normative databases can be considered
to be highly correlated as a whole (Figure 5).

This analysis suggests that the ISB-NormDB database and the
qEEG-Pro database share the same basic normal-state trends.
Further, these findings suggest that the ISB-NormDB can be
considered to be a cross-validated QEEG normative database
across a wide range of ages.

Accuracy Evaluation
To evaluate the capacity of the ISB-NormDB to minimize
the effects of sex and age, we compared the ISB-NormDB-
Total Z-score and the ISB-NormDB (ISB-NormDB-Male or ISB-
NormDB-Female) Z-score for abnormal data, as follows.

In one first case, we determined the Z-score of a young
male (aged 10.2 years) with developmental disabilities. We
compared zscore1 calculated with parameter values (mean,
standard deviation) of ISB-NormDB-Male using only male data,
with zscore2 calculated with parameter values (mean, standard
deviation) of ISB-NormDB-Total using both male and female
data. In this comparison, the left middle frontal area and both the
posterior cingulate and para-hippocampal areas showed a zscore1
that was higher than zscore2 (Figure 6).

Consistent with previous studies, the left middle frontal area
is known to show higher theta power in ADHD relative to
normal subjects (Hermens et al., 2005). Likewise, abnormalities
in the posterior cingulate area are known symptoms of ADHD
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FIGURE 3 | 3D brain images of both female and male groups showing median source-level theta band power by color: (A) males in young group, (B) females in
young group, (D) males in adult group, (E) females in adult group, (C,F) Visualization of statistical differences by T-test highlighting zones having p-values ≤ 0.1.

FIGURE 4 | Trend line of GAM curve fitting model: The estimated log-transformed sensor-level feature as age changes. The interval is the 95% prediction interval of
the GAM model. Y axis: ln (Sensor-level feature – band power) (band = delta, theta, alpha, beta), X axis: age. Red line: estimated mean line for females, blue line:
estimated mean line for males.

(Leech and Sharp, 2013), and the corresponding Z-score changes
shown here are consistent with those reports.

As a second case, we determined the Z-score of a male (aged
78 years) with aMCI (Figure 7).

These data reveal a typical aMCI pattern, wherein abnormality
in the left temporal lobe and in the overall frontal lobe (higher
theta band power than normal) (Roh et al., 2011; Bian et al.,
2014) is present. As evident in Figure 7, the zscore1 shows
temporal lobe and frontal lobe abnormality (Figure 7A) more
clearly than does the zscore2 (Figure 7B). So, as a result of
comparing the Z-score of the source power-theta band, the
zscore1 (Figure 7A) of ISB-NormDB-Male (normative database
with minimal influence of sex) could detect a more certain

abnormal ROI than the zscore2 (Figure 7B) extracted from
ISB-NormDB-Total.

As a third case, we analyzed the Z-score of a female (aged 43
years) with anxiety (Figure 8).

As a result of comparing the Z-score of the source power-
beta3 band, zscore2 (Figure 8B) of ISB-NormDB-Total shows an
ambiguous ROI as the central region including some portions of
the frontal and parietal lobes. On the other hand, it can be seen
that zscore1 (Figure 8A) is associated with a specific ROI.

These three test cases offer further support for the claim that
a QEEG normative database that considers both sex and age is
more sensitive and accurate than one that only considers for one
of these two variables.
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FIGURE 5 | Scatter plots and least squares lines to assess correlation of Z-scores between the ISB-NormDB and the qEEG-Pro databases.

FIGURE 6 | 3D brain images of both ISB-NormDB-Male and ISB-NormDB-Total showing Z-score of source-level theta band power of test data with ADHD by color:
(A) Z-score extracted from ISB-NormDB-Male and (B) Z-score extracted from ISB-NormDB-Total.

FIGURE 7 | 3D brain images of both ISB-NormDB-Male and ISB-NormDB-Total showing Z-score of source-level theta band power of test data with aMCI by color:
(A) Z-score extracted from ISB-NormDB-Male and (B) Z-score extracted from ISB-NormDB-Total.
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FIGURE 8 | 3D brain images of both ISB-NormDB-Female and ISB-NormDB-Total showing Z-score of source-level beta3 band power of test data with anxiety by
color: (A) Z-score extracted from ISB-NormDB-Female and (B) Z-score extracted from ISB-NormDB-Total.

DISCUSSION

Previous attempts (Thatcher et al., 2003; Keizer, 2019; Valdes-
Sosa et al., 2021) to improve the utility of QEEG normative
databases focused on controlling for confounding results
attributable to the age variable. We’ve extended this effort to
include control of the sex variable as well. We empirically
tested the value of controlling for the sex and age variables by
comparing Z-scores between QEEG normative databases. Our
findings revealed a trend line of the model that is consistent with
previous findings (Smit et al., 2011; Barry and De Blasio, 2017),
and we found a high correlation between z-scores extracted from
two different QEEG normative databases for the same data. The
present results comprise a cross-validation of the ISB-NormDB
across a wide range of ages. In addition, it was confirmed
that anomaly detection performance was improved by detecting
abnormal values more sensitively or accurately when the age and
sex variables were controlled together as compared to when only
age was controlled (Figures 6–8). Thus, the ISB-NormDB, which
uniquely minimizes the confounding influences of both age and
sex, is capable of extracting a standardized index (Z-score) that
is highly sensitive to anomalies, making it highly promising for
research, monitoring, and treatment of brain-related diseases
affected by age and sex.

Comparison to Previous Studies
Among the QEEG normative databases, there are several
previously developed databases such as EEGPro, Neuroguide,
HBI, BrainDx, etc. Comparing the characteristics of these
databases with our ISB-NormDB is as follows.

The present QEEG normative database analyses highlight the
most essential characteristics of EEG by minimizing the influence
of variables other than those of EEG spectra power. Normal
people were selected through four strict standards of normality,
and were classified according to sex. QEEG normative database
modeling was performed according to age using subjects’ EEG
data, minimizing the effects of abnormal factors, sex, and age

on the QEEG. Further, any anticipated confounds due to this
being a Korean-subjects database were addressed by minimizing
the influence of race and ethnic factors. Finally, by presenting
a standardized distribution of gamma bands that were not
considered in previous QEEG normative database studies, the
present study represents a significant methodological advance
over that in previous studies.

Application and Potential Contribution of
Quantitative Electroencephalogram
Standardization Index
The QEEG standardized index(Z-score) can be applied in
many medical fields.

Application of Diagnosis and the Direction Treatment
First, it can provide quantitative biodata for the diagnosis of
various mental disorders identified by DSM-5, the standardized
and diagnostic tool for psychiatric disorders (American
Psychiatric Association, 2013; Wakefield, 2016). Z-score
assessments linked to an improved QEEG normative database
can also provide more granular data and localization to
support individualized medical treatment in psychiatric and
neurodegenerative disorders. For example, diagnostic and
treatment choices in ADHD might be guided by Z-score
variations across locations, such as frontal versus occipital lobe
variations, as opposed to blinded or whole brain treatments.

Application of Treatment Using Neurofeedback
A QEEG standardization index (Z-score) is commonly used in
EEG neurofeedback by expressing statistically abnormal EEG
power and matching it to anatomical locations. Neurofeedback
is a training that normalizes brain function by conditioning
subjects to suppressor strengthen EEG components in specific
regions of the brain. It is capable of addressing disease states
through repetitive training that can transform some abnormal
neural functioning to normal functioning. Neurofeedback as a
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clinical intervention has been developed over many years by
several pioneering clinicians (Thatcher, 1998; Cantor, 1999).
Many previous studies have focused on the effectiveness
of Z-score-based neurofeedback for treating a wide range
of diseases. In the case of attention deficit/hyperactivity
disorder (ADHD) (Medici, 2018), greater improvement in
executive function, behavior, and attention were associated with
QEEG neurofeedback compared with conventional treatment
[Methylphenidate (MPH) treatment]. In the case of traumatic
brain injury (TBI), several studies have shown the efficacy of
neurofeedback for improving cognition, behavior, and physical
dysfunction (Bennett et al., 2017; Gray, 2017; Brown et al.,
2019; Gupta et al., 2020; Faridi et al., 2021). There is active
ongoing research into expanding the applications of QEEG
neurofeedback for the treatment of other psychiatric and brain-
related diseases. Further, findings such as those in the present
study, should expand the application of QEEG neurofeedback
using Z-score analysis derived from age- and sex-differentiated
QEEG normative databases.

Finally, this and future AI-driven QEEG indexes will play
crucial roles in drug development strategies, patient response
monitoring, patient selection, biomarker development, and
myriad other applications, especially in conditions where the
effects of sex, age, and other variables influence their presentation
(Hermens et al., 2005; Tement et al., 2016; Rice et al., 2019).

Limitation
There are several limitations in this study. In an experiment in
which correlation analysis was performed with z-scores obtained
from each database for the same EEG data, a high correlation was
obtained when compared with the qEEG-Pro database. However,
since the z-score of ISB was compared with the z-score of qEEG-
Pro, a separate database, additional verification of ISB-NormDB
through more comparisons with several other QEEG normative
databases would provide wider verification.

It is noteworthy that a previous study (Keizer, 2019)
has confirmed a high correlation between Z-scores derived

from qEEG-Pro and those of “NeuroGuide,” which is another
commercial database. Thus, one may expect a similarly high
correlation between “NeuroGuide” and ISB-NormDB using
similar analyses, which will be the subject of future research.
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