
ORIGINAL RESEARCH
published: 06 January 2022

doi: 10.3389/fnins.2021.767953

Frontiers in Neuroscience | www.frontiersin.org 1 January 2022 | Volume 15 | Article 767953

Edited by:

Yimao Cai,

Peking University, China

Reviewed by:

Hongwu Jiang,

Georgia Institute of Technology,

United States

Zhong Sun,

Peking University, China

*Correspondence:

Seyoung Kim

kimseyoung@postech.ac.kr

†Present address:

Chaeun Lee,

NAVER Clova, Seongnam-si,

South Korea

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 31 August 2021

Accepted: 26 October 2021

Published: 06 January 2022

Citation:

Lee C, Noh K, Ji W, Gokmen T and

Kim S (2022) Impact of Asymmetric

Weight Update on Neural Network

Training With Tiki-Taka Algorithm.

Front. Neurosci. 15:767953.

doi: 10.3389/fnins.2021.767953

Impact of Asymmetric Weight Update
on Neural Network Training With
Tiki-Taka Algorithm

Chaeun Lee 1†, Kyungmi Noh 1, Wonjae Ji 1, Tayfun Gokmen 2 and Seyoung Kim 1*

1Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang-si, South Korea,
2 IBM Research AI, Yorktown Heights, NY, United States

Recent progress in novel non-volatile memory-based synaptic device technologies and

their feasibility for matrix-vector multiplication (MVM) has ignited active research on

implementing analog neural network training accelerators with resistive crosspoint arrays.

While significant performance boost as well as area- and power-efficiency is theoretically

predicted, the realization of such analog accelerators is largely limited by non-ideal

switching characteristics of crosspoint elements. One of the most performance-limiting

non-idealities is the conductance update asymmetry which is known to distort the

actual weight change values away from the calculation by error back-propagation and,

therefore, significantly deteriorates the neural network training performance. To address

this issue by an algorithmic remedy, Tiki-Taka algorithm was proposed and shown to

be effective for neural network training with asymmetric devices. However, a systematic

analysis to reveal the required asymmetry specification to guarantee the neural network

performance has been unexplored. Here, we quantitatively analyze the impact of update

asymmetry on the neural network training performance when trained with Tiki-Taka

algorithm by exploring the space of asymmetry and hyper-parameters and measuring

the classification accuracy. We discover that the update asymmetry level of the auxiliary

array affects the way the optimizer takes the importance of previous gradients, whereas

that of main array affects the frequency of accepting those gradients. We propose a novel

calibration method to find the optimal operating point in terms of device and network

parameters. By searching over the hyper-parameter space of Tiki-Taka algorithm using

interpolation and Gaussian filtering, we find the optimal hyper-parameters efficiently and

reveal the optimal range of asymmetry, namely the asymmetry specification. Finally, we

show that the analysis and calibration method be applicable to spiking neural networks.

Keywords: resistive memory, update asymmetry, Tiki-Taka algorithm, neural network, deep learning accelerator,

analog AI hardware

1. INTRODUCTION

Rapid advances in artificial neural network-based machine learning techniques enable significant
performance boost in various artificial intelligence (AI) applications exemplified by image
classification and natural language processing. As the larger and deeper neural networks trained
with more data generally show higher performance in such cognitive tasks, there is an increasing
demand for higher computing power and memory bandwidth to support the large number of

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.767953
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.767953&domain=pdf&date_stamp=2022-01-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kimseyoung@postech.ac.kr
https://doi.org/10.3389/fnins.2021.767953
https://www.frontiersin.org/articles/10.3389/fnins.2021.767953/full

Lee et al. Impact of Asymmetric Weight Update

operations and data processing required for neural network
training and inference. Therefore, improving speed and energy-
efficiency in AI computing hardware is one of the key challenges
to realize more advanced AI applications and to extend the
AI application space on low-power systems such as internet of
things (IoT) and edge computing devices (Verhelst and Moons,
2017). To address the issue, various optimization techniques
such as quantization (Guo, 2018) and compression (Han et al.,
2015) are proposed to reduce the size and number of required
computations. Along with such techniques for maximizing the
efficiency of the existing hardware, there have been efforts to
improve the digital hardware architecture (Chen et al., 2020) for
energy-efficient AI computing (Zhou et al., 2019).

As an alternative to the existing digital approaches, analog
crosspoint array-based neural network computation accelerators
have been intensively studied due to the advances in resistive
memory device technologies (Haensch et al., 2018; Tsai et al.,
2018; Kim et al., 2019b) and their feasibility for various matrix-
involved computations such as inversion, eigenvector solving,
matrix pseudoinverse (Sun et al., 2019; Wang et al., 2020) and
matrix-vector multiplication (MVM). Especially with MVM, by
storing weight matrix in the crosspoint array of resistive memory
devices and applying voltages corresponding to the input
vector values, one can perform fully-parallel neural network
computations in analog domain. As the time complexity ofMVM
with a resistive crosspoint array is approximately O(1) (Sun
and Huang, 2021), such analog AI hardware is expected to
have significant acceleration factor and higher energy efficiency,
compared to those of digital counterparts (Agarwal et al., 2016;
Gokmen and Vlasov, 2016). While the concept of the resistive
crosspoint array-based neural network computation accelerator
is promising, the actual implementation of such system has been
difficult due to the non-ideal memory device characteristics.
One of the major non-idealities which dramatically degrades
the system performance is the conductance update asymmetry
which indicates the nonidentical amount of up and down
conductance changes at a given conductance level (Islam et al.,
2019; Xiao et al., 2020). The update asymmetry causes an
unexpected dynamic biasing during the training and prevents
the weights from reaching the optimum values (Kim et al.,
2019a). One obvious direction to resolve this issue is to build
a memory device which features symmetric update property.
However, the device with an ideal update symmetry is still under
development (Lee et al., 2020). The other direction is to develop
a special training algorithm which can train the neural network
even with asymmetric devices. Tiki-Taka algorithm (Gokmen
and Haensch, 2020) resolves the asymmetry issue by adopting an
auxiliary array, which stores the information about the history
of gradients, along with the main array to store weight values.
It is shown that this algorithm minimizes the performance drop
caused by update asymmetry and allows robust neural network
training even when significant asymmetry presents. However,
detailed quantitative study to reveal the relation between degree
of update asymmetry and network performance has yet to
be explored.

In this work, we dissect the impact of update asymmetry
existing in main and auxiliary arrays on neural network

performance when Tiki-Taka algorithm is used to train a
neural network. We show that update asymmetry in the
system is, indeed, a hyper-parameter of the neural network
in the optimization point of view, affecting its convergence
and performance. Our analysis shows that the auxiliary
array is virtually a part of the optimizer to train a neural
network; the degree of update asymmetry in the auxiliary
array changes the configuration of the optimizer, similar to
the case of momentum SGD where a decay factor determines
the optimizer (Rumelhart et al., 1986). To further support
this point, we compare the performance of different training
algorithms on a convex problem and analyze the role of
asymmetry in weight optimization process. On the other hand,
if device characteristics such as update symmetry work as
an hyper-parameter, it is important to fabricate devices with
the hardware-side hyper-parameter in the range where the
neural network performance is robust against other software-
side hyper-parameters. We propose a method to identify the
best asymmetry range by introducing a metric, robustness score,
which provides a concrete rule for comparing the efficiency
of training neural networks. By comparing robustness score
among the different combinations of asymmetry levels in two
arrays, it is possible to find the optimal asymmetry range
for each array while maximizing the training efficiency and
neural network performance. Optimized asymmetry range for
each array can relieve the hardware constraints further hence
hardware implementation of the algorithm can be accelerated.
Finally, our approach can be applied to domains beyond deep
neural networks (DNN), including spiking neural networks
(SNN) which can be mapped into the resistive crosspoint arrays.

2. PRELIMINARIES

2.1. Stochastic Gradient Descent With
Resistive Crosspoint Array
Stochastic gradient descent (SGD) is a widely-used, first-order
optimization method for training neural networks. During
forward pass, a neural network infers output and estimates loss
by comparing the output with expected values. Based on the loss,
gradients of weights in a neural network are calculated during
backward pass and later updated during the weight update phase
by error back-propagation algorithm. The amount of weight
update is proportional to the calculated gradient with the scaling
factor called learning rate, η:

wij ← wij − η∇ijL = wij − ηxiδj, (1)

where wij indicates a weight from pre-synaptic neuron i to
post-synaptic neuron j, L is the loss of a neural network, and
∇ij,kL indicates the derivative of L with respect to wij. xi is the
input activation of pre-synaptic neuron i, and δj is the error of
post-synaptic neuron j propagated from output neurons.

Analog computation with a resistive cross-point array
resembles fixed point or quantized number system unlike the
digital computation done with floating point number system.
For the forward pass, the input activation, xi is converted to

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

a corresponding discrete voltage, x
q
i , through analog-to-digital

converter (ADC). Then, xi is encoded into a pulse, PWM(x
q
i), by

pulse width modulation (PWM). As the pulse trains are applied
to the rows, currents flowing through the devices are summed at
each column line, and one can obtain the weighted sum, zj:

zj =
∑

i

PWM(x
q
i) ∗ gij, (2)

where operation “∗" includes the integration of currents through
the time domain and gij is conductance value of i

th column and

jth row device. Then, analog-valued zj is again quantized into z
q
j

by ADC, and z
q
j propagates to the next layer as inputs. For the

backward pass, the error of pre-synaptic neuron i, ei, is calculated
in a similar fashion to the errors of post-synaptic neurons, δ

q
j :

ei =
∑

j

PWM(δ
q
j) ∗ gij (3)

In the update phase, x
q
i is converted to a pulse train, SPG(x

q
i),

by stochastic pulse generator (SPG) for stochastic update of
a resistive memory device. In compliance with the rules in
Equation (1), the update of gij is determined by xi and δj.

gij ← gij−ηxiδ
T
j ≈ gij−

BL∑

n=1

(
SPG(ηxx

q
i)∧SPG(ηδδ

q
j)

)
·△gij(gij),

(4)
where SPG function is defined by pulse bit length (BL) and
parameters for pulse probability, satisfying η = ηxηδ . ηx and ηδ

can be modulated, such that two SPGs will have similar pulse
generating probability (Gokmen and Vlasov, 2016; Gokmen
et al., 2017). △gij(gij) is the amount of conductance change
of gij as a function of gij, which is dependent on the update
characteristics of the specific memory device. Here, we assume
a linear model for△gij(gij) which is described in section 2.2.

When mapping a neural network into resistive cross-point
arrays for analog operations, we note that each weight can be
expressed with a single or multiple memory cells depending
on the architecture or weight mapping scheme (Xiao et al.,
2020). As an example, a pair of memory cells, gij and gij,ref ,
can be read differentially to represent a single weight: wij =

K(gij − gij,ref), where K is a factor that scales the weight into the
conductance (Gokmen and Haensch, 2020).

2.2. Asymmetric Conductance Update in
Resistive Memory Devices
Practical resistive memory devices feature various types of non-
ideal characteristics such as asymmetric conductance response
(or update asymmetry), short retention time, device-to-device
variation and limited number of states. Among them, update
asymmetry is known to hamper the convergence (Huang et al.,
2020) of SGD-based neural network training and causes a
significant performance drop. As shown in Equation (4), it is
the △gij(gij) term which distorts the actual update from the

ideal update behavior defined in Equation (1). That is, gij will
represent a weight value distorted form ideal software calculation
after several cycles of weight update unless △gij(gij) is unity.
For most variants of resistive memory devices, as illustrated in
Figure 1A, △gij(gij) scales up or down the amounts of updates,
which results in inconsistent updates of the conductance of
devices (or weights). This type of behavior not only misguides
the direction of updates, but also reduces the effective number of
states in resistive memory devices.

Figure 1A illustrates the conductance(g) and the conductance
change behavior (△g) which can be described by the following
equations, Equation (5):

gij ← gij +△gij (5)

△gij = dij · (sij · gij +△g0,ij)

=





dij ·

(
△g+0,ij
gmax,ij

· gij +△g
+
0,ij

)
when△gij > 0

dij ·

(
△g−0,ij
gmin,ij
· gij +△g

−
0,ij

)
when△gij < 0

(6)

gmin,ij and gmax,ij is the minimum and maximum conductance

state of resistive device and △g±0,ij is the amount of △gij
when gij of the device is at g0,ij = (gmax,ij + gmin,ij)/2. sij,

namely slope, is defined as 1g±0,ij/gmax(min),ij for nonlinear device,

which represents the reciprocal of approximate number of
states of the device. For ideal device, i.e., perfectly symmetric
and linear device, slope is defined zero. dij,k is number
of pulse needed to achieve desired amount of wij,k (see
Supplementary Materials section 1.1 for the details).

To embody the update asymmetry of a device, we introduce a
parameter called asymmetry factor, AF(> 0), which is associated
with existing parameters: △g0,ij = AFij · △̂g0,ij, where △̂g0,ij is a
unit amount of △g0,ij. Thus, Equation (6) can be rewritten into
Equation (7):

△gij =

{
dij · (AFij · △̂g

+
0,ij) · (

1
gmax,ij

· gij + 1) when△gij > 0

dij · (AFij · △̂g
−
0,ij) · (

1
gmin,ij
· gij + 1) when△gij < 0

(7)
Equation (7) shows that symmetry of device is solely defined
with AF · △̂g0,ij, if gmin,ij, gmax,ij and △̂g

±
0,ij is fixed. Therefore,

we can compare the asymmetry of device within the same range
by modulating AF. In the case of ideal device, slope equals zero
and △g0,ij is constant regardless of AFij. However, to make the
notation consistent, we denote this case asAFij = 0. For instance,
there are three different cases in Figure 1A, namely, AFij =
0;AFij = 2.0; and AFij = 6.0. All three cases have the same
gmin,ij, gmax,ij and △̂g0,ij. We note that many devices show non-
zero AF behavior (Brivio et al., 2018; van De Burgt et al., 2018;
Islam et al., 2019; Kim et al., 2019b).

2.3. Tiki-Taka Algorithm
Tiki-Taka algorithm (Gokmen and Haensch, 2020) is proposed
to resolve the performance degradation issue in neural network

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 1 | (A) Normalized conductance of three resistive memory devices with different AF values as a function of pulse number when 4,000 positive pulses (+V)

and 4,000 negative pulses (−V) are applied. The conductance change (△g) with respect to the normalized conductance (g) is shown below. (see

Supplementary Materials section 3.1 for the details of experimental environments.) (B) Comparison of conductance update process between SGD and Tiki-Taka

algorithm. In case of SGD, an array, W, is updated with two parameters, x and δ in the update phase. In Tiki-Taka algorithm, there are two steps: (1) update and (2)

occasional transfer. In the update phase, like SGD, the auxiliary array, WA, is updated. In the following transfer phase, its state is occasionally transferred and updates

WC.

training caused by the update asymmetry in the crosspoint
elements. We showed that the asymmetric update prevents
devices from being accurately updated by the amount of
calculated gradients. Figure 1B illustrates the key difference
between SGD and Tiki-Taka algorithm in the weight update
phase. In the case of SGD, an array,W, stores the weight vectors
of a neural network. In the update phase, a weight, wij, is updated
with the gradient ∇ijL(= xiδj). On the other hand, Tiki-Taka
algorithm requires one additional array, namely A, and it stores
△W by accumulating gradient vectors, ∇L. The weight vectors
stored in the array A are denoted as WA and the array, C,
stores the weight vectors denoted as WC. When compared to
SGD, Tiki-Taka algorithm accumulates the gradient, ∇ijL, in
wA
ij . Then, the accumulated gradient is transferred to update the

weight, wC
ij at every ns steps. Tiki-Taka algorithm supports sparse

update by adopting cell-selection vector, uπ , where uπ (i) is the
ith element of a sparse vector, u, such as a one-hot vector and π

is a permutation, π :{1, · · · , n} → {1, · · · , n}. Finally, Tiki-Taka
algorithm allows the array A to participate in the forward pass by
introducing a parameter, γ ∈ [0, 1]: wij = γwA

ij + wC
ij . Therefore,

the effective weight wij depends on γ : if γ = 1, wA
ij + wC

ij replace

the effective weight vector. Otherwise, if γ = 0, then the effective
weight is wij = wC

ij . In summary, Tiki-Taka algorithm can be

formulated as follows:

wA
ij ← wA

ij − η∇
γ
ij L (8)

wC
ij ←

{
wC
ij + λwA

ij · uπ (i) , every ns step

wC
ij , otherwise

, (9)

where ∇
γ
ij L indicates the derivative of the L with respect to

wij = γwA
ij+w

C
ij . η and λ indicates SGD learning rate and transfer

learning rate, respectively.

3. TIKI-TAKA ALGORITHM AND UPDATE
ASYMMETRY

3.1. Mismatch Factor and Weight Update
Formulation
Here, we formulate the impact of asymmetry by adopting even-
odd function decomposition, with which any function can
be represented (Gokmen and Haensch, 2020), and integrate
the model into the SGD update rule in Equation (1) (see
Supplementary Materials section 1.2 for the details):

wij ← wij − η∇ijL · Sym(wij)+ η|∇ijL| · Asym(wij)

Sym(wij) = AFij, Asym(wij) = AFij
wij

wmax,ij

(10)

where the function Sym represents symmetry of the devices and
the function Asym corresponds to asymmetry. The weight, wij, is
scaled with a factor K from the conductance, gij: wij = K · (gij −
gref ,ij) and △ŵ0,ij = K · △̂g0,ij. wmax,ij is a correspond weight to
themaximum amount of conductance, gmax,ij. To analyze it in the

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

aspect of optimization, Equation (10) is reformulated as follows:

wij ← wij − η∇ijL · Sym(wij)+ η|∇ijL| · Asym(wij)

= wij − η∇ijL ·
(
Sym(wij)+ sgn(∇ijL) · Asym(wij)

)

= wij − η∇ijL ·MF
(
wij, sgn(∇ijL)

)
(11)

Definition 3.1 (Mismatch factor (MF)). Mismatch factor (MF)
is an additional factor appeared in the original SGD weight update
rule, originated from the update asymmetry of the weight storage
device:

MFij = MFij(wij, sgn(∇ijL)) = Sym(wij)+ sgn(∇ijL) · Asym(wij)

= AFij ·
(
1+ sgn(∇ijL) ·

wij

wmax,ij

)

(12)

MF is multiplied to the gradient of a weight, ∇ijL, and affects the
weight optimization process. As observed in the Definition 3.1,
MFij scales with AF, and is dependent on the sign of gradient
and the current weight state, wij, of a device. The dependence on
the sign of gradient can create fluctuation of MFij if sgn(∇ijL)
changes the sign, and AFij magnifies the fluctuation of MFij.
Therefore, there can be abrupt change inMFij affecting the neural
network training.

3.2. Impact of Asymmetry: Case Studies
Figure 2 displays the classification error in MNIST handwritten
digit recognition problem as a function of training epoch
for various scenarios of training algorithm and AF values.
We perform the experimental simulation using the open-
source toolkit aihwkit (Rasch et al., 2021) and further
details about the experimental environment can be found in
Supplementary Materials section 3.3. First, performing SGD
with asymmetric devices results in severe accuracy drop both
for the train and test datasets when compared with the software
baseline. Since the update asymmetry leads to non-unity MF
and consequent unfavorable behavior in weight update process,
a sharp drop in performance is found during the training. On
the other hand, the cases with Tiki-Taka algorithm and finite
asymmetry show robust performance reaching to the floating
point baseline (Gokmen and Haensch, 2020). As shown in
Figure 2, when AFA = AFC = 1.0, the train and test error
gradually decrease and can reach to the baseline. However, the
remaining question is howmuch asymmetry Tiki-Taka algorithm
can tolerate. Other cases shown in Figure 2 with various pairs
of AFA and AFC answer the question. The train error does not
gradually decrease, which indicates that the weight vectors of
neural networks are stuck at bad local optima. Interestingly,
the case with AFA = AFC = 0 shows higher train and test
error than those of SGD with asymmetric non-linear devices.
This result indicates that there exist optimal pairs of AF, and a
reliable method to determine the optimal pair of AFA and AFC

is necessary. To find the method, it is necessary to quantify and
understand how MF affects the optimizer, Tiki-Taka algorithm,
during the neural network training.

4. OPTIMIZATION BASED ON HISTORY OF
GRADIENTS

4.1. General Formulation for Gradient
History-Based SGD Variants
Recent variants of SGD introduce the concept of history-
dependent update and utilize gradient information at each step,
including momentum and adaptive gradient, to overcome the
issues of vanilla SGD (Kandel et al., 2020). In such methods, the
weight update is determined not only by the current gradient
calculation, but also by the history of previous gradients and their
importance at the current step. For instance, if the current weight
update includes only the first-order gradient, then the history
dependent update is composed of first-order gradient vectors and
their respective importance for each step.

Definition 4.1 (Gradient Scheduler). History-dependent
optimization algorithm is generalized by the governing rules
including nth order gradients:

wij,T+1 ← wij,T −△wij,T

= wij,T − ηEt[sgn(∇ij,tL),∇ij,tL, · · · , (∇ij,tL)
n]. (13)

t = t(k) (k = 1, · · · ,T) is a gradient scheduler or scheduler,
which contains information on the importance of the kth gradients,
sgn(∇ijL),∇ijL, · · · , (∇ijL)

n.

Therefore, the scheduler, t(k), defines how the gradients of
previous steps for k < T affect the update of current step at
k = T, since t(k) contains information on weighting of the
gradients dependent on the step, k.

4.2. Gradient Scheduler in Tiki-Taka
Algorithm
From the Definition 4.1, we can find the t(k) for Tiki-Taka
algorithm as follows (see Supplementary Materials section 2.2

for the detailed derivation):

t(k) = 1T≡ns0 · uπ (i), (14)

where 1T≡ns0 is an indicator function which returns 1 every
ns steps, t(k) is controlled by three hyper-parameters (Gokmen
and Haensch, 2020): γ , ns, and uπ . These parameters cause the
weight matrixW to be updated sparsely and asynchronously.

Figure 3 compares the gradient schedulers in three
algorithms: vanilla SGD, momentum-based optimizer, and
Tiki-Taka algorithm. The parameters of Tiki-Taka used are
ns = 1, u = 1, and γ = 0, and the ideal, symmetric and
linear, switching characteristics are assumed for the devices
in both arrays (i.e., AFAij = AFCij = 0). With ideal devices,

Tiki-Taka algorithm memorizes all the previous gradients with
equal importance. Therefore, it resembles the momentum-based
optimizer if β → 1. However, it should not be confused with the
momentum-based optimizer, because the scheduler of Tiki-Taka
algorithm with asymmetric devices depends not only on the step,
but also on the history of gradients and slopes of devices unlike
the momentum-based optimizer.

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 2 | The train error (A) and test error (B) on handwritten digits images (MNIST) dataset with MLP. The baseline indicates the averaged error of the last 3 epochs

with symmetric linear device, and the neural network is trained with SGD. In the case of SGD with asymmetric non-linear device, the error is averaged over various

AF > 0. In the case of Tiki-Taka algorithm, the error is averaged over various pair of SGD and transfer learning rates. The shaded area indicates standard deviation.

FIGURE 3 | (A) Comparison of gradient scheduler, t(k), of SGD, momentum-based optimizer, and Tiki-Taka algorithm with respect to steps, k. t(k) is normalized by

the value of t(T). (B) Summarized table of gradient scheduler of optimizers from (A).

By including the update asymmetry, we can reformulate
the scheduler of Tiki-Taka algorithm, Equation (14), as follows
(see Supplementary Materials section 2.2) for the detailed
derivation):

t(k) = 1T≡ns0(uπ (i)) ·MFAij,k ·MFCij,T . (15)

Equation (15) indicates that both MFA and MFC play an critical
role in weight optimization. MFA kicks in every step of k, and
MFC provides a factor until the last step of T in the scheduler

of Tiki-Taka algorithm. Therefore, the optimizer of Tiki-Taka
algorithm is uniquely determined by twoMF’s. Considering that
wA
ij,T is determined by the history of gradients, ∇L

γ
ij,1, · · · ,∇L

γ

ij,T ,

the scheduler of Tiki-Taka algorithm is parameterized by the
step and the history of the first-order gradients. MFC affects
the optimization process for different T,T + 1, · · · steps in
common by scaling all the ideal t(k). Therefore, MFC is one of
key components in building the optimizer, and MFA determines
the optimizer of Tiki-Taka algorithm.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 4 | (A) An example of linear regression model and sampled data: y = ax + b+ ǫ, where a ∈ R and ǫ ∼ N(0, σ 2). In this example, a = 0.5, b = 0.5, and

σ = 0.05. (B) Trajectories of weights in the log-scaled loss surface. A “target” point indicates a closed-form solution of linear regression model. i.e., (a b)T =

(XTX)−1XTy, where X is the N× 2 input matrix and y is the N× 1 output vector. The “ideal” trajectory indicates a trajectory of a neural network optimized by vanilla

SGD using ideal device. We denote it as “ideal” only in reference to the problem of convex optimization (see Supplementary Materials section 3.2 for the details of

experimental environments).

FIGURE 5 | Trajectories of weights in the log-scaled loss surface for convex problem where the data is sampled from the same distribution as described in Figure 4A

and the normalized schedulers, t(k), of a variable b described in Figure 4A. (A) AFC is fixed with 2.0 and (B) AFA is fixed with 2.0. The points of each trajectory are

marked for every epoch.

5. LINEAR REGRESSION ANALYSIS

To analyze the impact of update asymmetry in neural network

training, we perform a series of linear regression experiments

with different algorithms and display the results in Figure 4.
With the presence of update asymmetry, the weight vectors of
a neural network are stuck at sub-optima (Kim et al., 2019a)
as shown in Figure 4B, and the linear regression is unable to

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

approach the global optimum in this convex problem. Since the
expected change of a weight around the sub-optima region over
the given distribution of data D, EX∼D[△wij], is 0 on average,
there is no room for the weight to progress further (Gokmen and
Haensch, 2020). If the asymmetry factor of a crosspoint element,
AF, is large, then the weight vector will converge to the region
further away from the global optimum. This is because larger AF
values cause larger variations inMF and equilibrium region to be
formed away from the global optimum.

In Figure 5, we repeat the linear regression experiments with
Tiki-Taka algorithm and different combinations of AF values
and observe the impact of update asymmetry on the linear
regression results. Unlike the previous results with vanilla SGD,
neural networks trained by Tiki-Taka algorithm with certain
combinations of AFA and AFC are able to converge to the
global optimum, even with the update asymmetry. Since Tiki-
Taka algorithm can accumulate gradients of previous steps in the
auxilary array and utilize the information for optimization, the
weight vector can escape from the sub-optima dug by MF and
converge to the global optimum.

To analyze the impact of update asymmetry in the array A
and C independently, we modulate AFA (Figure 5A) and AFC

(Figure 5B) in an alternating fashion and compare the neural
network training performance. The corresponding t(K) andWA

value as a function of training step for each case are visualized
in Figure 6. Figure 5A shows the trajectories of weight vectors in
three cases where AFA values are 0.0, 2.0 and 4.0, respectively,
and AFC is fixed at 2.0. First, if AFA = 0, then MFA

ij,k
≃ 1 at all

steps k, which indicates that t(k) ≃ MFCij,T . In this case, the large

oscillation and deviation from the path by SGD are observed
in the weight trajectory since the optimizer memorizes all the
history of gradients with equal importance in the array A and the
previous gradients wA

ij can only be changed slowly. On the other

hand, when AFA is 2.0 or 4.0, t(k) abruptly changes curvature
near the 150th step point as illustrated in Figure 6. If ∇ijL < 0
for T − 1 steps, then MFA

ij,k
(k < T) decreases as wA

ij increases

as discussed in Definition 3.1. After the T steps, MFA
ij,k

(k ≥

T) abruptly increases as sgn(∇ijL) is inverted. The implication
of the “abruptness" is that the optimizer is likely to forget the
gradients of previous steps right before sgn(∇ijL) is inverted, and
accept newly updated gradients. The “abruptness" amplifies with
devices with larger AFA. In other words, the optimizer has an
“easy come, easy go" memory that stores the history of gradients,
and t(k) determines the speed of accumulating and forgetting
the gradients. This behavior resembles that of the first order
momentum optimizer. However, Tiki-Taka algorithm decides to
decay the gradients by accumulating the successive gradients
of same sgn(∇ijL) while the first order momentum optimizer
merely decays the gradients far from the current step. In Figure 5,
the trajectories with large AFA are less inclined to oscillate and
deviate as the optimizer forgets the information right before
sgn(∇ijL) is inverted. It helps the weight vector to converge to
the global optimum. However, it also fades out the regularization
effect. Thus, there exists optimal range of AFA that guarantees
convergence and regularization.

Modulating AFC impacts differently on the weight vector
trajectories as shown in Figure 5B, where the trajectories of
weight vectors with AFC = 0.0, 2.0, and 4.0 are displayed while
AFA is fixed at 2.0. As AFC increases, the weight update becomes
less frequent with larger update steps, and, consequently, the
frequency and magnitude of the oscillation in the weight vector
becomes larger. This observation is expected from the fact that
Var[△wC

ij] ∝ (AFCij)
2 and E[△wC

ij] ∝ AFCij . With large AFC,

the array A value fluctuates by frequently changing signs as
shown in Figure 6 and cannot driveWC in a consistent manner,
which leads to a large oscillation in WC. In that sense, array
A can capture the gradient history better when AFC is smaller.
However, with larger AFC,MFC

k
gradually decreases as a function

of step k, if the signs of WA
k

are the same. This observation
shows the similar effects of the adaptive gradient (Duchi, 2011;
Zeiler, 2012; Kingma and Ba, 2014), which can help the weight
vector to converge by decreasing the amount of updates around
the global optimum when AFC is set within the proper range.
Therefore, the impact of AFA and AFC becomes highly entangled
during optimization process, and it is a challenging task to find
the optimal AF value for each array. A systematic method to find
the optimal values of AFA and AFC, which are highly dependent
on the specific dataset and neural network architecture, is
required for the convergence and performance of the neural
network training.

6. IMPACT OF UPDATE ASYMMETRIES ON
NEURAL NETWORK PERFORMANCE

6.1. Experimental Results
As we discussed in the previous sections, the update
asymmetry in array A and C plays an important role in
neural network training with Tiki-Taka algorithm as an
optimizer. To experimentally explore the impact of AFA and
AFC on training neural networks, we perform a series of
experiments by varying AFA and AFC values and training a
multi-layer perceptron (MLP) with MNIST dataset. For this
experiment, we set (wmin, wmax) = (–1,1) and △ŵ0 = 0.001
for all devices in the array as mentioned in section 2.2,
which illustrates the device reaching wmax = 1 from
initial weight value of wmin = −1 within 600 updates
if (x

q
i , δ

q
j) = (1, –1) is given during update phase (see

Supplementary Materials section 3.2 for the details of
experimental environments).

Figure 7 shows the heat map of train (Figure 7A) and test
accuracies of MLP as a function of AFA and AFC values
and with two different set of SGD and transfer learning rates
(Figures 7B,C). The results show the consistent observations
as analyzed in section 5. First, when AFC is fixed, the train
and test accuracies peak at AFA = 1.78 and decrease as it
becomes larger or smaller. Smaller AFA causes the optimizer
to accumulate the history of gradient with equal importance,
which hampers the convergence of the weight vectors due to
oscillation. However, this effect is reduced with largerAFC thanks
to the adaptive gradient impact. In contrary, larger AFA values

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 6 | Comparisons of approximated t(k) and WA of three cases in (A) Figure 5A and (B) Figure 5B. Raw data of t(k) and WA was averaged using exponential

moving average and approximated with natural smoothing spline method.

FIGURE 7 | The (A) train and (B,C) test accuracy of a multi-layer perceptron as a function of AFA and AFC. The displayed values are averaged over the last three

epochs of the training and also three different initialization conditions. The mini-batch size is 1. The transfer learning rate and SGD learning rate is (0.01 and 0.02) for

(B) and (0.02 and 0.01) for (C).

disallow accumulation of the full history of gradients, which

results in reduction of the regularization effect. This tendency is

more significant for larger AFC values, where the variance and
expectation of updates for the array C is large enough not to

store the entire history of gradients. Considering that larger AFA

causes memorization of short-term gradients, the regularization
effect becomes weakened.

6.2. Impact of Learning Rates and
Robustness Score
The optimal combination of AF values, which provide the best
accuracy, can be changed when the combination of learning rates
vary. For example, in Figure 7B, the test accuracy peaks at the
combinations, (AFA,AFC) ∈ {(1.0, 1.0), (1.78, 1.0), (1.0, 1.78)}
when the transfer learning rate and SGD learning rate is (0.01,

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 8 | (A) The robustness score based on the test accuracy with a given threshold, 97.0%, where the number indicates how many cases with the test accuracy

over the threshold. dwmin is set at 0.001. (B) The post-processed robustness score, where the step size of each domain in AF is 0.2 and σ = 0.2. (C) The regions

with high robustness score are highlighted to visualize the area where the test accuracy is universally high as the learning rates change.

0.02). However, as shown in Figure 7C, the combination of AF
is optimal when (AFA,AFC) ∈ {(3.16, 1.0), (5.62, 1.0), (10.0, 1.0)}
if the neural network is trained with different pair of learning
rates, (0.02, 0.01). Considering that AF of each device is typically
pre-determined at the moment of device fabrication, it is crucial
to find the robust AFA and AFC values over the learning rate
space which do not degrade the accuracy. From this perspective,
finding the robust region of AF without searching the best pair of
learning rates can be guaranteed by introducing the thresholds
of certain measurements such as test accuracy. The following
robustness score provides the hard-bound threshold for finding
the optimal combination of AF over the space of learning rates.

Definition 6.1 (Robustness score). Suppose that m is a neural
network model, and Meas(·) is a measurement such as accuracy
or loss of the model m after training for a given dataset D. H
is a hyper-parmeter space for software training, H = {(η, λ),
where η = SGD learning rate andλ = transfer learning rate}.
A Robustness score, RS(m), for the given threshold, th, is defined
as follows:

RS(m) =
∑

h∈H

1(Meas(m(h)) > th) (16)

Figure 8 illustrates the robustness score, RS(m), over a learning
rate space, H = {(η, λ)}, where η ∈ {0.01, 0.02, 0.04} and
λ ∈ {0.01, 0.02, 0.04}. As discussed in section 3.2, AF of
each array affects the test accuracy of the network using Tiki-
Taka algorithm. Test accuracies do not reach sufficient value
when AF of each array is too small (AFA,C = 0) or large
(AFA,C = 10). Therefore, optimal AF value pairs which
maximize the robustness score exist near AFA,C = 1 as shown
in Figure 8. The score map has two implications. First of all,
if the minimum requirement of test accuracy (threshold) is
determined, the region whose robustness scores are over a certain
criteria could be used to define the minimum specifications of
update asymmetry. Therefore, one can obtain the range of AF
value for each array which gurantees the minimum test accuracy.

Second, by scanning over various pairs of learning rates, one
can identify the region which provides the AF values which are
most independent on the learing rates. To find such region, the
score is post-processed with interpolation and gaussian filtering.
The robustness score is approximated by piece-wise linear
interpolation in the domain of AFA and AFC. The interpolated
data is smoothed by gaussian filtering (g(AFA,AFC))) to obtain
the robust region in the domain: g(AFA,AFC) = (2πσ 2)−1/2 ·
exp(−(((AFA)2 + (AFC)2)/(2σ 2)), where we define the degree
of “robustness" of the score map by modulating σ of a gaussian
filter. Finding the robust region with a gaussian filter is consistent
with the definition of variations in AF of devices. In Figure 8C,
the robust region is around AFA = 1.2 and AFC = 1.0 with
the score greater than 8.95. As we experiment with a total of
9 scenarios of learning rates, the region with the score greater
than 8.95 displays the required test accuracy within the given
range of learning rate pairs. When compared to the region with
RS(m) = 4.5, the region with RS(m) ≥ 8.95 shows almost
doubled efficiency during on-device training. In other words, it
requires half of the resources to find the optimal pair of learning
rates. This calibration method to find the best combination of
AF is applicable to other types of hyper-parameters if the hyper-
parameters spaceH can be expanded to include them.

6.3. Inspection on Optimal Range of Slope
for Different Thresholds
In practical applications, the target performance of the network,
such as the test accuracy of the MNIST classification task using
MLP, is one of the most significant design choices as some tasks
require the maximum accuracy while others do not. Considering
that the robustness score, RS(m), varies as target accuracy
changes, studying the relationship between RS(m) and the target
threshold value can provide insights on the choice of AF for each
array. Figure 9 illustrates the robustness score maps with two
different threshold values, 97.0 and 97.5%. When the threshold is
set to 97.0%, the score is robust against the change in AFC value
and the efficiency of searching over the hyper-parameter space,

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

FIGURE 9 | Post-processed test robustness score on various thresholds: (A) 97.0% and (B) 97.5%. The green-colored regions are highlighted with different light and

shade. Red cross point indicates the pair of asymmetric factors for baseline model used in original Tiki-Taka algorithm (Gokmen and Haensch,2020). Boxes on the left

side of (A) show the asymmetry of device response in accordance with each asymmetric factor.

H with AFA is not degraded in the proper region. However, in
the case of the threshold being 97.5%, the best choice is to fix
AFC around 1.0. Then the asymmetry requirement for the array
A is lifted. Although the robustness scores of the case with the
threshold being 97.5% are relatively lower than those of 97.0%,
selecting AFA and AFC of the region has comparative advantages
over the other regions.

Consistent with the analysis in sections 5 and 6.1, Figure 9A
describes that the neural networks are able to find the optimum
with a wide range of AFC values over H if AFA is in the proper
region. This observation is due to the adaptive gradient effect
that AFC brings, which helps the convergence around the nearest
local optimum. In this case, the neural network converges to
the local optimum instead of further exploring the loss surface.
This results in the high robustness score region along the wide
range of AFC, though it does not guarantee higher accuracy. In
Figure 9B, on the other hand, the region satisfying over 97.5%
accuracy is spread along the axis of AFA, which indicates that the
specification for AFC value is strict. If AFC value is within the
specification, then the robustness score depends on the choice of
AFA. With smaller AFA values, the optimizer allows the weights
of neural networks to explore over loss surface, which enables to
find better optimum.

6.4. Application to SNN
Recent research on SNN and its implementations using
resistive memory devices have shown that the devices are
designed explicitly to be embedded with the learning algorithm
for SNN such as Spike-timing-dependent plasticity (STDP)
and equilibrium propagation (Scellier and Bengio, 2017).
Accordingly, the update asymmetry of devices is more likely to
affect the process of training neural networks (Kwon et al., 2020).
Inspired by this motivation, they demonstrated that asymmetric

non-linear devices are more powerful than symmetric linear
devices (Brivio et al., 2018, 2021; Kim et al., 2021). Our analytical
tools and calibration method can be applied to illustrate the
relationship between the update asymmetry of devices and its
impact on training in detail. Therefore, it is worthwhile to pursue
further studies on the relationship in more extensive range of
cases of learning algorithms.

7. CONCLUSION AND DISCUSSION

In this work, the impact of update asymmetry in array A and C
and learning rates on network performance when training neural
networks with Tiki-Taka algorithm is quantitatively analyzed.
We introduced the concept of gradient scheduler, which defines
the weights of previous gradient values, to explain how the
update asymmetry impacts on solving a convex problem. With
update asymmetry, we derived that asymmetry factor involved in
gradient scheduler that the training of neural networks is affected.
As we inspected on the gradient schedulers, larger asymmetry
factor of A accelerates accumulating and forgetting the history
of gradients while that of C brings adaptive gradient effects.
We showed that the update asymmetry levels in the main and
auxiliary arrays impact differently on training neural networks,
indicating that requirements for asymmetry on each array are
different.We also proposed a novel calibrationmetric,Robustness
Score, to quantify and visualize the performance of the network
as a function of device asymmetry and network parameters with
respect to the target accuracy threshold. By searching over the
hyper-parameter space of Tiki-Taka algorithm, we quantified the
specification of device asymmetry for A and C arrays depending
on the target accuracy value of choice. Our analysis shed light
on further relaxing device specifications for the realization of

Frontiers in Neuroscience | www.frontiersin.org 11 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

analog neural network accelerators in hardware and provide a
guideline to realize the resistive switching devices with robust
training performance over the space of hyper parameters.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SK conceived the original idea. CL formulated the theory.
CL, KN, and WJ developed methodology and conducted
experiments. CL, TG, and SK analyzed and interpreted results.
All authors drafted and revised the manuscript.

FUNDING

This work was supported by Samsung Science & Technology
Foundation (grant no. SRFC-IT2001-06).

ACKNOWLEDGMENTS

We thank Malte J. Rasch and Diego Moreda for many useful
discussions and technical supports.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.767953/full#supplementary-material

REFERENCES

Agarwal, S., Quach, T.-T., Parekh, O., Hsia, A. H., DeBenedictis, E. P., James,

C. D., et al. (2016). Energy scaling advantages of resistive memory crossbar

based computation and its application to sparse coding. Front. Neurosci. 9:484.

doi: 10.3389/fnins.2015.00484

Brivio, S., Conti, D., Nair, M. V., Frascaroli, J., Covi, E., Ricciardi, C., et al. (2018).

Extended memory lifetime in spiking neural networks employing memristive

synapses with nonlinear conductance dynamics. Nanotechnology 30, 015102.

doi: 10.1088/1361-6528/aae81c

Brivio, S., Ly, D. R., Vianello, E., and Spiga, S. (2021). Nonlinear memristive

synaptic dynamics for efficient unsupervised learning in spiking neural

networks. Front. Neurosci. 15:27. doi: 10.3389/fnins.2021.580909

Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T. (2020). A survey of

accelerator architectures for deep neural networks. Engineering 6, 264–274.

doi: 10.1016/j.eng.2020.01.007

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159.

Gokmen, T., and Haensch, W. (2020). Algorithm for training neural networks on

resistive device arrays. Front. Neurosci. 14:103. doi: 10.3389/fnins.2020.00103

Gokmen, T., Onen, M., and Haensch, W. (2017). Training deep convolutional

neural networks with resistive cross-point devices. Front. Neurosci. 11:538.

doi: 10.3389/fnins.2017.00538

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural

network training with resistive cross-point devices: design

considerations. Front. Neurosci. 10:333. doi: 10.3389/fnins.2016.

00333

Guo, Y. (2018). A survey on methods and theories of quantized neural networks.

arXiv preprint arXiv:1808.04752.

Haensch, W., Gokmen, T., and Puri, R. (2018). The next generation of

deep learning hardware: analog computing. Proc. IEEE 107, 108–122.

doi: 10.1109/JPROC.2018.2871057

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

Huang, S., Sun, X., Peng, X., Jiang, H., and Yu, S. (2020). “Overcoming challenges

for achieving high in-situ training accuracy with emerging memories,” in 2020

Design, Automation Test in Europe Conference Exhibition (DATE) (Grenoble:

IEEE), 1025–1030.

Islam, R., Li, H., Chen, P.-Y., Wan, W., Chen, H.-Y., Gao, B., et al. (2019). Device

andmaterials requirements for neuromorphic computing. J. Phys. D Appl. Phys.

52, 113001. doi: 10.1088/1361-6463/aaf784

Kandel, I., Castelli, M., and Popovič, A. (2020). Comparative study of first order

optimizers for image classification using convolutional neural networks on

histopathology images. J. Imaging 6, 92. doi: 10.3390/jimaging6090092

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J.-J., et al. (2019a).

Zero-shifting technique for deep neural network training on resistive cross-

point arrays. arXiv preprint arXiv:1907.10228.

Kim, S., Todorov, T., Onen,M., Gokmen, T., Bishop, D., Solomon, P., et al. (2019b).

“Metal-oxide based, cmos-compatible ecram for deep learning accelerator,” in

2019 IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA:

IEEE), 35–7.

Kim, T., Hu, S., Kim, J., Kwak, J. Y., Park, J., Lee, S., et al. (2021). Spiking neural

network (snn) with memristor synapses having non-linear weight update.

Front. Comput. Neurosci. 15:22. doi: 10.3389/fncom.2021.646125

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kwon, D., Lim, S., Bae, J.-H., Lee, S.-T., Kim, H., Seo, Y.-T., et al. (2020). On-chip

training spiking neural networks using approximated backpropagation with

analog synaptic devices. Front. Neurosci. 14:423. doi: 10.3389/fnins.2020.00423

Lee, C., Rajput, K. G., Choi, W., Kwak, M., Nikam, R. D., Kim, S., et al. (2020). Pr

0.7 ca 0.3 mno 3-based three-terminal synapse for neuromorphic computing.

IEEE Electr. Device Lett. 41, 1500–1503. doi: 10.1109/LED.2020.3019938

Rasch, M. J., Moreda, D., Gokmen, T., Gallo, M. L., Carta, F., Goldberg, C.,

et al. (2021). A flexible and fast pytorch toolkit for simulating training

and inference on analog crossbar arrays. arXiv preprint arXiv:2104.02184.

doi: 10.1109/AICAS51828.2021.9458494

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11:24. doi: 10.3389/fncom.2017.00024

Sun, Z., and Huang, R. (2021). Time complexity of in memory matrix vector

multiplication. IEEE Trans. Circ. Syst. II Express Briefs 68, 2785–2789.

doi: 10.1109/TCSII.2021.3068764

Sun, Z., Pedretti, G., Ambrosi, E., Bricalli, A., Wang, W., and Ielmini, D. (2019).

Solving matrix equations in one step with cross-point resistive arrays. Proc.

Natl. Acad. Sci. U.S.A. 116, 4123–4128. doi: 10.1073/pnas.1815682116

Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R.M., and Burr, G.W. (2018). Recent

progress in analog memory-based accelerators for deep learning. J. Phys. D

Appl. Phys. 51, 283001. doi: 10.1088/1361-6463/aac8a5

van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G., and Salleo, A. (2018).

Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397.

doi: 10.1038/s41928-018-0103-3

Verhelst, M., and Moons, B. (2017). Embedded deep neural network processing:

algorithmic and processor techniques bring deep learning to iot and edge

devices. IEEE Solid State Circ. Mag. 9, 55–65. doi: 10.1109/MSSC.2017.2745818

Wang, Z., Wu, H., Burr, G. W., Hwang, C. S., Wang, K. L., Xia, Q., et al. (2020).

Resistive switching materials for information processing. Nat. Rev. Mater. 5,

173–195. doi: 10.1038/s41578-019-0159-3

Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S., and Marinella, M. J. (2020).

Analog architectures for neural network acceleration based on non-volatile

memory. Appl. Phys. Rev. 7, 031301. doi: 10.1063/1.5143815

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 767953

https://www.frontiersin.org/articles/10.3389/fnins.2021.767953/full#supplementary-material
https://doi.org/10.3389/fnins.2015.00484
https://doi.org/10.1088/1361-6528/aae81c
https://doi.org/10.3389/fnins.2021.580909
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2017.00538
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1088/1361-6463/aaf784
https://doi.org/10.3390/jimaging6090092
https://doi.org/10.3389/fncom.2021.646125
https://doi.org/10.3389/fnins.2020.00423
https://doi.org/10.1109/LED.2020.3019938
https://doi.org/10.1109/AICAS51828.2021.9458494
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1109/TCSII.2021.3068764
https://doi.org/10.1073/pnas.1815682116
https://doi.org/10.1088/1361-6463/aac8a5
https://doi.org/10.1038/s41928-018-0103-3
https://doi.org/10.1109/MSSC.2017.2745818
https://doi.org/10.1038/s41578-019-0159-3
https://doi.org/10.1063/1.5143815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Impact of Asymmetric Weight Update

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J. (2019). Edge intelligence:

Paving the last mile of artificial intelligence with edge computing. Proc. IEEE

107, 1738–1762. doi: 10.1109/JPROC.2019.2918951

Conflict of Interest: CL is employed by NAVER Clova, South Korea. TG is

employed by IBM Research, USA.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Lee, Noh, Ji, Gokmen and Kim. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2022 | Volume 15 | Article 767953

https://doi.org/10.1109/JPROC.2019.2918951
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm
	1. Introduction
	2. Preliminaries
	2.1. Stochastic Gradient Descent With Resistive Crosspoint Array
	2.2. Asymmetric Conductance Update in Resistive Memory Devices
	2.3. Tiki-Taka Algorithm

	3. Tiki-Taka Algorithm and Update Asymmetry
	3.1. Mismatch Factor and Weight Update Formulation
	3.2. Impact of Asymmetry: Case Studies

	4. Optimization based on History of Gradients
	4.1. General Formulation for Gradient History-Based SGD Variants
	4.2. Gradient Scheduler in Tiki-Taka Algorithm

	5. Linear Regression Analysis
	6. Impact of Update Asymmetries on Neural Network Performance
	6.1. Experimental Results
	6.2. Impact of Learning Rates and Robustness Score
	6.3. Inspection on Optimal Range of Slope for Different Thresholds
	6.4. Application to SNN

	7. Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

