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This work proposes an end-to-end cross-domain feature similarity guided deep

neural network for perceptual quality assessment. Our proposed blind image quality

assessment approach is based on the observation that features similarity across different

domains (e.g., Semantic Recognition and Quality Prediction) is well correlated with the

subjective quality annotations. Such phenomenon is validated by thoroughly analyze

the intrinsic interaction between an object recognition task and a quality prediction

task in terms of characteristics of the human visual system. Based on the observation,

we designed an explicable and self-contained cross-domain feature similarity guided

BIQA framework. Experimental results on both authentical and synthetic image quality

databases demonstrate the superiority of our approach, as compared to the state-of-

the-art models.

Keywords: cross-domain feature similarity, image quality assessment, deep learning, transfer learning, human

visual system

1. INTRODUCTION

Objective image quality assessment (IQA) aims to enable computer programs to predict the
perceptual quality of images in a manner that is consistent with human observers, which has
become a fundamental aspect of modern multimedia systems (Zhai and Min, 2020). Based on
how much information the computer program could access from the pristine (or reference) image,
objective IQA could be categorized into full-reference IQA (FR-IQA) (Wang et al., 2003, 2004;
Sheikh and Bovik, 2006; Larson and Chandler, 2010a; Li et al., 2011; Zhang et al., 2011, 2014; Liu
et al., 2012; Chang et al., 2013; Xue et al., 2013), reduced-reference IQA (RR-IQA) (Wang and
Simoncelli, 2005; Wang and Bovik, 2011; Rehman and Wang, 2012), and no-reference (or blind)
IQA (NR-IQA/BIQA) (Kim and Lee, 2016; Liu et al., 2017; Ma et al., 2017a; Lin and Wang, 2018;
Pan et al., 2018; Talebi and Milanfar, 2018; Sun et al., 2021). The absence of reference information
in most real-world multimedia systems calls for BIQAmethods, which are more applicable but also
more difficult.

Deep neural network (DNN) has significantly facilitated various image processing tasks (Fang
et al., 2017; Park et al., 2018; Casser et al., 2019; Ghosal et al., 2019) in recent years due to
its powerful capacity in feature abstraction and representation. It is also worth noting that the
success of deep-learning techniques is derived from large amounts of training data, which is
often leveraged to adjust the parameters in the DNN architecture to guarantee that both the
accuracy and generalization ability are satisfying. Unfortunately, image quality assessment is
typically a small-sample problem since the annotation of the ground-truth quality labels calls for
time-consuming subjective image quality experiments (Zhang et al., 2018a). Inadequate quality
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annotations severely restrict the performance of DNN-
based BIQA models in terms of both accuracy and
generalization ability.

In order to address the problem caused by limited subjective
labels, data augmentation is firstly employed to increase the
training labels (e.g., Kang et al. (2014)) proposed to split the
image with quality labels into multiple patches. and each of
the patches is assigned with a quality score which is the same
with the whole image. However, some distortion types are
inhomogeneous, i.e., the perceptual quality of local patches might
differ from the overall quality of the whole image. Therefore,
transfer learning has gained more attention to relieve the
small-sample problem (Li et al., 2016). Specifically, the BIQA
framework is comprised of two stages: which are pre-training
and fine-tuning. In the pre-training stage, the parameters in the
DNN architecture are trained by other image processing tasks
such as object recognition, whilst in the fine-tuning stage, images
with subjective labels are employed as training samples. Such a
transfer-learning scheme is feasible since the low-level feature
extraction procedure across different image processing tasks are
shared (Tan et al., 2018).

More recently, various sources of external knowledge are
incorporated to learn a better feature representation for the BIQA
issue. For example, hallucinated reference (Lin and Wang, 2018)
is generated via a generative network and employed to guide
the quality-aware feature extraction. The distortion identification
is incorporated as the auxiliary sub-task in MEON model (Ma
et al., 2017b), by which the distortion type information is
transparent to the primary quality prediction task for better
quality prediction. Visual saliency is employed in Yang et al.
(2019) to weight the quality-aware features more reasonably.
Semantic information is also employed for better understanding
of the intrinsic mechanism of quality prediction, e.g., multi-layer
semantic features are extracted and aggregated through several
statistical structures in Casser et al. (2019). An effective hyper
network is employed in Su et al. (2020) to generate customized
weights from the semantic feature for quality prediction, i.e., the
quality perception rule differs as the image content changes.

Unlike other studies, this paper employs the cross-domain
feature similarity as an extra restraint for better quality-aware
feature representation. Specifically, the transfer-learning based
BIQA approach is pre-trained in one domain (say, object
recognition in the semantic domain) and is fine-tuned in the
perceptual quality domain with similar DNN architectures, we
have observed that the cross-domain (Semantic vs. Quality)
feature similarity would, in turn, contribute to the quality
prediction task (as shown in Figure 1).

By thoroughly analyzing the intrinsic interaction between
object recognition task and quality prediction task, we think the
phenomenon represented in Figure 1 is sensible. As shown in
Figure 2, previous works (Larson and Chandler, 2010b) have
revealed that human observers would take different strategies to
assess the perceptual quality when viewing images with different
amounts of degradation: when judging the quality of a distorted
image containing near-threshold distortions, one tends to rely
primarily on visual detection of any visible local differences, in
such a scenario, semantic information is instructive for quality

perception since distortion in the semantic-sensitive area would
contribute more in the quality decision and vice versa. On the
other hand, when judging the quality of a distorted image with
clearly visible distortions, one would rely much less on visual
detection and much more on the overall image appearance, in
such a scenario, the quality decision procedure is much more
independent with semantic information.

Considering the effectiveness of cross-domain feature
similarity (CDFS), this work leverages CDFS as an extra restraint
to improve the prediction accuracy of BIQAmodels. As shown in
Figure 3, the parameters in our CDFSNet are updated according
to both the basic loss and the extra loss, which would restrain the
network yielding quality predictions as similar as the ground-
truth label whilst maintaining that the CDFS also correlates well
with the perceptual quality, in such a manner that, the accuracy
of the DNN architecture would get improved according to the
experimental results presented in section 3.

Compared to the aforementioned works, the superiority of
the cross-domain feature similarity guided BIQA framework is
embodied in the following aspects:

(1) The proposed cross-domain feature similarity is self-
contained for transfer-learning based BIQAmodels since the
transfer-learning procedure itself is comprised of the training
in two different domains (i.e., object recognition and quality
prediction). Therefore, no extra annotation procedure (such
as distortion identification in Ma et al., 2017b and visual
saliency in Yang et al., 2019) is needed.

(2) The proposed cross-domain feature similarity is more
explicable since it is derived from the intrinsic characteristic
of interactions between semantic recognition and quality
perception.

(3) In addition to general-purpose IQA, the performance of our
proposed CDFS guided BIQA framework is also evaluated
on other specific scenarios such as screen content (Xiongkuo
et al., 2021) and dehazing oriented (Min et al., 2018b, 2019)
IQA. The experimental results indicate that CDFS guided
BIQA has significant potential toward diverse types of BIQA
tasks (Min et al., 2020a,b).

The rest part of the paper is organized as follows: Section 2
illustrates the details of our CDFS-based BIQA framework
and section 3 shows the experimental results; Section 4 is
the conclusion.

2. MATERIALS AND METHODS

2.1. Problem Formulation
Let x denote the input image, conventional DNN based BIQA
works usually leverage an pre-trained DNN architecture f (·; θ)
(with learnable parameters θ) to predict the perceptual quality of
x via q̂ = f (x; θ), where q̂ denotes the prediction of perceptual
quality q.

Our work advocates employing the cross-domain feature
similarity to supervise the update of parameters in a quality
prediction network. Specifically, let f (·; θSmtc) denotes the DNN
with fixed and pre-trained parameters oriented toward semantic
recognition, and f (·; θQlty) denotes the DNN with learnable
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FIGURE 1 | The overall framework of our proposed CDFS guided BIQA approach. As shown in the lower part, the cross-domain feature similarity is highly correlated

with the perceptual quality. The ‘cross-domain similarity calculation’ is obtained by: (1) Extractinged the features from the last convolutional layer of pre-trained ResNet

(denoted as Rs) and fine-tuned ResNet (denoted as Rq); (2) Calculatinge the similarity matrix W according to Equation 1; (3) Obtaining the eigen values of W by

Ev = eig(W); (4) The similarity Sim is calculated by Sim = 1
std(v) , in which std(·) denotes the standard deviation operator.

FIGURE 2 | Illustration of different strategies that the human visual system would take to assess the perceptual quality when viewing images with different amounts of

degradation. Specifically, when judging the quality of a distorted image containing near-threshold distortions (Left), one tends to rely primarily on visual detection of any

visible local differences, e.g., the distortions in red boxed are slighter than that in the green box even though the noise intensity is the same. On the other hand, when

judging the quality of a distorted image with clearly visible distortions (Right), one would rely much less on visual detection and much more on overall image

appearance e.g., the distortions in each image area are roughly the same.

parameters oriented toward quality prediction. It should be
noticed that f (·; θSmtc) and f (·; θQlty) share the same architectures
whilst having own different parameters. This work attempts to
further improve the quality prediction accuracy by analyzing the
similarity between the features extracted for different tasks, i.e.,

features extracted for semantic recognition fts = f (x; θSmtc), and
features extracted for quality regression ftq = f (x; θQlty).

Given three-dimensional features fts and ftq with size
[C,H,W], where C, H, W denotes the channel size, height, and
width of the features, respectively, fts and ftq are firstly reshaped
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FIGURE 3 | The overall pipeline of our proposed CDFS-based IQA approach.

into Rq and Rs with size [C,H ×W]. The similarity Sim between
Rq and Rs is obtained via the following steps.

Step 1, employ linear regression to express Rq via Rs, i.e.,
Rq = W × Rs + e, where W denotes the weighting matrix and
e denotes the prediction error of linear regression. Therefore, W
could be obtained by

W = (RTs × Rs)
−1 × RTs × Rq (1)

Step 2, a learnable DNN architecture g(·; γ ) is employed to yield
the similarity between fts and ftq givenW, i.e., Sim = g(W; γ )

2.2. Network Design
The architecture of our proposed network is shown in
Figure 4, which mainly consists of a semantically oriented
feature extractor, perceptual-quality oriented feature extractor,
and cross-domain feature similarity predictor. More details are
described as follows.

2.2.1. Semantic Oriented Feature Extractor
The DNN pre-trained in large-scale object recognition datasets
(e.g., ImageNet Deng et al., 2009) are leveraged as the semantic
oriented feature extractor.

Specifically, this work employs the activations of the last
convolutional layers in ResNet50 to represent the semantic-aware
features fts of an specific image, i.e., fts = f (x; θSmtc).

It is worth noting that θSmtc is fixed during the training stage
since the proposed DNN framework will be fine-tuned in IQA
datasets in which the semantic label is unavailable.

2.2.2. Perceptual-Quality Oriented Feature Extractor
The architecture of perceptual-quality oriented feature extractor
f (·; θQlty) is quite similar with semantic oriented feature
extractor. However, the parameters θQlty in f (·; θQlty) are
learnable and independent with θSmtc.

The quality-aware features ftq = f (x; θQlty) are further
leveraged to aggregate the prediction of subjective quality score,
i.e., q̂ = h(ftq; δ), in which q denotes the subjective quality score
(MOS), q̂ is the prediction of q, and h(·; δ) stands for the MOS
prediction network given quality-aware features with learnable
parameters δ.

2.2.3. Cross-Domain Feature Similarity Predictor
As illustrated in section 1, the cross-domain feature similarity
would contribute to the prediction of perceptual quality.
However, directly evaluating the similarity between fts and ftq via
Minkowski-Distance or Wang-Bovik metric (Wang et al., 2004)
is not as efficient, as shown in Figure 6. We think the invalidation
of the Wang-Bovik metric is mainly attributed to its pixel-wise
sensitivity, i.e., any turbulence during the parameter initializing
and updating of the DNN framework would result in a significant
difference between fts and ftq.

To this end, this work proposes to depict the cross-domain
feature similarity through a global perspective. Specifically, the
similarity is derived from the weighting matrix W which is
employed to reconstruct ftq given fts via linear regression. Since
the W is derived from the features amongst all channels, it
is less likely to suffer from the instability of the DNN during
initializing and updating. The experiments reported in section
3.3 also demonstrate the superiority of our proposed similarity
measurement for cross-domain features. In our CDFS-guided
BIQA framework, the CDFS is incorporated as follows:

Linear regression is employed for the reconstruction and the
weighting matrix W could be obtained according to equation 1
and Step 1 in section 2.1

A stack of convolutional layers (denoted as g(·;γ )) is followed
to learn the cross-domain feature similarity givenW.

During the training stage, the cross-domain similarity is
employed as a regularization item to supervise the quality
prediction network.

2.2.4. Loss Function
The loss function L of our proposed network is designed as

L1 = argmin[

θQlty ,δ
]

∥

∥q− h(f (x; θQlty); δ)
∥

∥ (2)

L2 = argmin[

θQlty ,γ
]

∥

∥q− g(W; γ )
∥

∥ (3)

and

L = L1 + λL2 (4)
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FIGURE 4 | The detailed architecture of our proposed Cross-Domain Feature Similarity Guided Network. The “CONV” denotes convolutional layers followed by batch

normalization and ReLU layer, the “FC” denotes the fully-connected layer, and the ‘GAP’ denotes the global average pooling layer.

where ‖·‖ denotes the L1 norm operator, W is calculated
according to equation 1, and λ is a hyper parameter controlling
the weights of L1 and L2.

2.3. Implementation Details
Weuse ResNet50 (He et al., 2016) as the backbonemodel for both
the semantically oriented feature extractor and the perceptual-
quality oriented feature extractor. As aforementioned, the pre-
trained model on ImageNet (Deng et al., 2009) is used for
network initialization. During the training stage, the θSmtc is fixed
whilst θQlty is learnable. In our network, the last two layers of
the origin ResNet50, i.e., an average pooling layer and a fully
connected layer, are removed to output features fts and ftq.

For quality regression, a global average pooling (GAP) layer
is used to pool the features ftq into one-dimensional vectors,
then three fully -connected (FC) layers are followed with size
2048-1024-512-1 and activated by ReLu, except for the last layer
(activated by sigmoid).

The g(·; γ ) in cross-domain feature similarity predictor is
implemented by 3 three stacked convolutional layers, a GAP
layer, and three FC layers. The architectures of convolutional
layers are in(1) − out(32) − k(1) − p(0), in(32) − out(64) −
k(3) − p(1), and in(64) − out(128) − k(3) − p(1), respectively,
where in(α)−out(β)−k(x)−p(y) denotes the input channel size
and output channel size is α and β , the kernel size is x, and the
padding size is y. Each of the convolutional layers is followed by
a batch normalization layer and a ReLu layer. The GAP layer and
the FC layers are the same with quality regression except that the
size of FC layers is 128-512-512-1.

The experiment is conducted on Tesla V100P GPUs, while
the DNN modules are implemented by Pytorch. The size of
minibatch is 24. Adam (Kingma and Ba, 2014) is adopted to
optimize the loss function with weight decay 5 × 10−4 and
learning rate 1 × 10−5 for parameters in baseline (ResNet) and
1 × 10−4 for other learnable parameters. As mentioned, the

parameters in semantic oriented feature extractor is are fixed, i.e.,
the learning rate is 0 for θSmtc.

3. EXPERIMENTAL RESULTS

3.1. Datasets and Evaluation Metrics
Three image databases including KonIQ-10k (Hosu et al., 2020),
LIVE Challenges (LIVEC) (Ghadiyaram and Bovik, 2015), and
TID2013 (Ponomarenko et al., 2015) are employed to validate
the performance of our proposed network. The KonIQ-10k and
LIVEC are authentically distorted image databases containing
10,073 and 1,162 distorted images, respectively, and the TID2013
is a synthetic image database containing 3,000 distorted images.

Two commonly used criteria, Spearman’s rank order
correlation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC), are adopted to measure the prediction
monotonicity and the prediction accuracy. For each database,
80% images are used for training, and the others are used
for testing. The synthetic image database is split according
to reference images. All the experiments are under five times
random train-test splitting operation, and the median SRCC and
PLCC values are reported as final statistics.

3.2. Comparison With the State-of-the-Art
Methods
Ten BIQA methods are selected for performance comparison,
including five hand-crafted based (BRISQUE Mittal et al., 2012,
ILNIQE Xu et al., 2016, HOSA Zhang et al., 2015, BPRIMin et al.,
2017a, BMPRIMin et al., 2018a) and five DNN-based approaches
(SFA Li et al., 2018, DBCNN Zhang et al., 2018b, HyperIQA Su
et al., 2020, SDGNet Yang et al., 2019). The experimental results
are shown as in Table 1.

As shown in Table 1, our method outperforms all the
SOTA methods on the two authentic image databases in terms
of SRCC. As for PLCC measurement, our method achieves
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TABLE 1 | Performance comparison in terms of PCLL and SRCC on KonIQ,

LIVEC, and TID2013, respectively.

SRCC KonIQ LIVEC TID2013

BRISQUE 0.665 0.608 0.572

ILNIQE 0.507 0.432 0.521

HOSA 0.671 0.640 0.688

BPRI – – 0.899

BMPRI – – 0.929

SFA 0.856 0.812 –

DBCNN 0.875 0.851 –

HyperIQA 0.906 0.859 –

SGDNet 0.903 0.851 0.843

DeepFL 0.877 0.734 0.858

ours 0.918 0.865 0.899

PLCC KonIQ LIVEC TID2013

BRISQUE 0.681 0.645 0.651

ILNIQE 0.523 0.508 0.648

HOSA 0.694 0.678 0.764

BPRI – – 0.892

BMPRI – – 0.947

SFA 0.872 0.833 –

DBCNN 0.884 0.869 –

HyperIQA 0.917 0.882 –

SGDNet 0.920 0.872 0.861

DeepFL 0.887 0.769 0.876

ours 0.928 0.875 0.880

Values in bold represents the highest value.

FIGURE 5 | The scatter plot of CDFS vs. MOS on KonIQ.

the best performance on KonIQ and competing (the second)
performance on LIVEC. This suggests that calculating cross-
domain feature similarity for quality prediction refinement is
effective. Though we do not especially modify the networks for
synthetic image feature extraction, the proposed network has
achieved competing performance in TID2013. Specifically, the

TABLE 2 | Ablation results in terms of SRCC and PLCC on KonIQ.

Modules BaseLine +SP_wang +SP_W

SRCC 0.842 0.895 0.918

Gain(%) – 6.3 9.0

PLCC 0.849 0.913 0.928

Gain(%) – 7.5 9.3

FIGURE 6 | The scatter plot of Sim1, Sim2, and Sim3 vs. MOS on KonIQ.

proposed approach achieves the second-highest performance in
terms of SRCC and the third-highest performance in terms of
PLCC on TID2013.
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FIGURE 7 | Impact on selections of different λ. The experimental result is conducted on KonIQ, and a total of 20 epochs are involved.

3.3. Cross-Domain Feature Similarity
Visualization
In order to further illustrate the superiority of our proposed
CDFS, we firstly present the scatter plot of CDFS vs. MOS on
KonIQ in Figure 5, indicating the CDFS is well correlated with
perceptual quality.

In addition, we also investigate several non-learnable

approaches for calculating CDFS: (1) Sim1 = mean(
2×fts×ftq+C

ft2s+ft2q+C
),

where C denotes the constant to avoid numerical singularity;

and (2) Sim2 = std(eig(W)); (3) Sim3 = mean( 2×Ev×E1+C
Ev2+E12+C

), and

Ev = eig(W), in which E1 denotes the vectors with the same size as
Ev whilst whose elements are all 1.

Therefore, the calculation of Sim1 is directly comparing the
difference between fts and ftq, and the calculation of Sim2 and
Sim3 is based on the W derived according to equation 1. As
shown in Figure 6, Sim2 and Sim3 is more correlated with the
subjective score, demonstrating that measuring the cross-domain
feature similarity based onW is more effective.

3.4. Ablation Study
Ablation study is conducted on KonIQ-10k to validate the
efficiency of our proposed components, including the ResNet50
backbone (BaseLine), the similarity predictor (SP) obtained
by Wang-Bovik metric (SP_wang, similar as Sim1 in section
3.3), and the similarity predictor derived from the weighting
metric W (SP_W). The results are shown in Table 2, indicating

that incorporating a cross-domain similarity predictor could
significantly improve the accuracy of quality prediction. Our
proposed similarity measurement has achieved a great PLCC
improvement (1.8%) compared to SP_wang and a more
significant SRCC improvement (2.7%).

The impact of λ in equation 4 is also investigated, i.e., we
set λ = [0.2, 0.4, 0.6, 0.8, 1.0], respectively and observe the
corresponding performance as shown in Figure 7. Therefore,
we select λ = 0.4 for performance comparison and the
following experiments.

3.5. Cross-Database Validation
In order to test the generalization ability of our network,
we train the model on the entire KonIQ-10k and test on
the entire LIVEC. The four most competing IQA models in
terms of generalization ability are involved in the comparison,
which are PQR (Zeng et al., 2017), DBCNN, HyperIQA,
and DeepFL. The validation results are shown in Table 3,
indicating the generalization ability of our approach is higher
than existing SOTA methods for assessing authentically
distorted images.

However, if the network is trained on KonIQ-10k and directly
applied for a synthetic image database, its generalization ability
is not satisfactory, and the SRCC on TID2013 is only 0.577.
That is mainly because the distortion mechanisms between
synthetic and authentically distorted image databases are
widely different. Training the network solely on authentically
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TABLE 3 | Cross data base validation (Trained on KonIQ-10k and Tested on

LIVEC).

Modules DeepFL DBCNN HyperIQA PQR Ours

SRCC 0.704 0.755 0.770 0.785 0.817

Gain(%) – 7.2 9.4 11.5 16.1

TABLE 4 | SRCC and PLCC performance on CCT, DHQ, and SHRQ.

SRCC PLCC

CCT
20-%Test 0.9655 0.9672

100-%Test 0.5758 0.6193

DHQ
20-%Test 0.9533 0.9223

100-%Test 0.6819 0.6678

SHRQ
20-%Test 0.8875 0.9082

100-%Test 0.4233 0.4761

-distorted image databases could not learn the specific
synthetic distortion patterns such as JPEG compression,
transmission errors, or degradation caused by denoising,
etc.

3.6. Further Validation on Other Specific
IQA Tasks
In order to further validate the robustness of our BIQA
framework toward other specific IQA tasks, the performance
of CDFS guided BIQA network is evaluated on CCT (Min
et al., 2017b), DHQ (Min et al., 2018b), and SHRQ (Min
et al., 2019). The CCT contains 1,320 distorted images with
various types of images including natural scene images (NSI),
computer graphic images (CGI), and screen content images
(SCI); The DHQ contains 1,750 dehazed images generated
from 250 real hazy images.; The SHRQ database consists
of two subsets, namely: regular and aerial image subsets,
which include 360 and 240 dehazed images created from 45
and 30 synthetic hazy images using 8 eight image dehazing
algorithms, respectively.

The training pipeline is similar with section 3.1, i.e., 80% of
the CCT, DHQ, or SHRQ are involved as the training set and
the other 20% is the testing set. Considering that the scale of the
subset is not adequate for the training of DNN, we merge the
subsets in each datasets. For example, the NSI, CGI, and SCI are
merged as the training set of CCT.

As shown in Table 4, the predictions of our CDFS guided
BIQA framework shows significant consistency with subjective

scores, indicating that our proposed BIQA approach is feasible to
be generalized into other types of IQA tasks.

Furthermore, if the network is trained on KonIQ-10k and
directly applied on CCT, DHQ, and SHRQ, the accuracy is not
satisfactory, as shown in Table 4. Such phenomenon is similar
to the cross-database validation results discussed in section 3.5,
indicating that training the network solely on authentically-
distorted natural image databases could not sufficiently learn the
quality-aware features for CGI, SCI, etc.

4. CONCLUSION

This work aims to evaluate the perceptual quality based on
cross-domain feature similarity. The experimental results on
KonIQ, LIVEC, and TID2013 demonstrate the superiority of our
proposed methods.

We would further investigate such CDFS-incorporated BIQA
framework in the following aspects: (1) investigating more
efficient approaches of CDFS measurement; (2) investigating
more types of DNN baselines in addition to ResNet.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CF established the BIQA framework and adjusted the
architecture for better performance. LY and CF conducted
the experiments and wrote the manuscripts. QZ designed the
original method, and provided resource support (e.g., GPUs)
for this manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work is supported by the National Key R&D Program of
China under Grant No. 2021YFF0900503, the National Natural
Science Foundation of China under Grant Nos. 61971383 and
61631016, and the Fundamental Research Funds for the Central
Universities.

ACKNOWLEDGMENTS

Wewould like to thank Li Fang,Wei Zhong, and Fei Hu for some
swell ideas.

REFERENCES

Casser, V., Pirk, S., Mahjourian, R., and Angelova, A. (2019). Depth

prediction without the sensors: leveraging structure for unsupervised learning

from monocular videos. Proc. AAAI Conf. Artif. Intell. 33, 8001–8008.

doi: 10.1609/aaai.v33i01.33018001

Chang, H.-W., Yang, H., Gan, Y., and Wang, M.-H. (2013). Sparse feature

fidelity for perceptual image quality assessment. IEEE Trans. Image Proc. 22,

4007–4018. doi: 10.1109/TIP.2013.2266579

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 767977

https://doi.org/10.1609/aaai.v33i01.33018001
https://doi.org/10.1109/TIP.2013.2266579
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Feng et al. CDFSNet for BIQA

Fang, H.-S., Xie, S., Tai, Y.-W., and Lu, C. (2017). “RMPE: regional multi-person

pose estimation,” IN Proceedings of the IEEE International Conference on

Computer Vision (Venice: IEEE), 2334–2343.

Ghadiyaram, D., and Bovik, A. C. (2015). Massive online crowdsourced study of

subjective and objective picture quality. IEEE Trans. Image Proc. 25, 372–387.

doi: 10.1109/TIP.2015.2500021

Ghosal, D., Majumder, N., Poria, S., Chhaya, N., and Gelbukh, A. (2019).

Dialoguegcn: a graph convolutional neural network for emotion recognition

in conversation. arXiv preprint arXiv:1908.11540. doi: 10.18653/v1/

D19-1015

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV: IEEE), 770–778.

Hosu, V., Lin, H., Sziranyi, T., and Saupe, D. (2020). Koniq-10k: an ecologically

valid database for deep learning of blind image quality assessment. IEEE Trans.

Image Proc. 29, 4041–4056. doi: 10.1109/TIP.2020.2967829

Kang, L., Ye, P., Li, Y., and Doermann, D. (2014). “Convolutional neural

networks for no-reference image quality assessment,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Columbus, OH:

IEEE), 1733–1740.

Kim, J., and Lee, S. (2016). Fully deep blind image quality predictor. IEEE J. Sel.

Top. Signal Process. 11, 206–220. doi: 10.1109/JSTSP.2016.2639328

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Larson, E. C., and Chandler, D. M. (2010a). Most apparent distortion: full-

reference image quality assessment and the role of strategy. J. Electron. Imaging

19, 011006.

Larson, E. C., and Chandler, D. M. (2010b). Most apparent distortion: full-

reference image quality assessment and the role of strategy. J. Electron. Imaging

19, 011006. doi: 10.1117/1.3267105

Li, D., Jiang, T., Lin, W., and Jiang, M. (2018). Which has better visual quality:

The clear blue sky or a blurry animal? IEEE Trans. Multimedia 21, 1221–1234.

doi: 10.1109/TMM.2018.2875354

Li, S., Zhang, F., Ma, L., and Ngan, K. N. (2011). Image quality assessment

by separately evaluating detail losses and additive impairments. IEEE Trans.

Multimedia 13, 935–949. doi: 10.1109/TMM.2011.2152382

Li, Y., Po, L.-M., Feng, L., and Yuan, F. (2016). “No-reference image

quality assessment with deep convolutional neural networks,” in 2016 IEEE

International Conference on Digital Signal Processing (DSP) (Beijing: IEEE),

685–689.

Lin, K.-Y., and Wang, G. (2018). “Hallucinated-iqa: No-reference image quality

assessment via adversarial learning,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Salt Lake City: IEEE), 732–741.

Liu, T.-J., Lin, W., and Kuo, C.-C. J. (2012). Image quality assessment

using multi-method fusion. IEEE Trans. Image Proc. 22, 1793–1807.

doi: 10.1109/TIP.2012.2236343

Liu, X., Van De Weijer, J., and Bagdanov, A. D. (2017). “Rankiqa: Learning from

rankings for no-reference image quality assessment,” in Proceedings of the IEEE

International Conference on Computer Vision, 1040–1049.

Ma, K., Liu, W., Liu, T., Wang, Z., and Tao, D. (2017a). dipiq: Blind image quality

assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image

Proc. 26, 3951–3964. doi: 10.1109/TIP.2017.2708503

Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., and Zuo, W. (2017b). End-to-

end blind image quality assessment using deep neural networks. IEEE Trans.

Image Proc. 27, 1202–1213. doi: 10.1109/TIP.2017.2774045

Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., and Chen, C. W. (2017a). Blind

quality assessment based on pseudo-reference image. IEEE Trans. Multimedia

20, 2049–2062. doi: 10.1109/TMM.2017.2788206

Min, X., Ma, K., Gu, K., Zhai, G., Wang, Z., and Lin, W. (2017b). Unified blind

quality assessment of compressed natural, graphic, and screen content images.

IEEE Trans. Image Proc. 26, 5462–5474. doi: 10.1109/TIP.2017.2735192

Min, X., Zhai, G., Gu, K., Liu, Y., and Yang, X. (2018a). Blind image quality

estimation via distortion aggravation. IEEE Trans. Broadcast. 64, 508–517.

doi: 10.1109/TBC.2018.2816783

Min, X., Zhai, G., Gu, K., Yang, X., and Guan, X. (2018b). Objective quality

evaluation of dehazed images. IEEE Trans. Intell. Transport. Syst. 20,

2879–2892. doi: 10.1109/TITS.2018.2868771

Min, X., Zhai, G., Gu, K., Zhu, Y., Zhou, J., Guo, G., et al. (2019). Quality

evaluation of image dehazingmethods using synthetic hazy images. IEEE Trans.

Multimedia 21, 2319–2333. doi: 10.1109/TMM.2019.2902097

Min, X., Zhai, G., Zhou, J., Farias, M. C., and Bovik, A. C. (2020a). Study of

subjective and objective quality assessment of audio-visual signals. IEEE Trans.

Image Proc. 29, 6054–6068. doi: 10.1109/TIP.2020.2988148

Min, X., Zhou, J., Zhai, G., Le Callet, P., Yang, X., and Guan, X. (2020b). A metric

for light field reconstruction, compression, and display quality evaluation. IEEE

Trans. Image Proc. 29:3790–3804. doi: 10.1109/TIP.2020.2966081

Mittal, A., Moorthy, A. K., and Bovik, A. C. (2012). No-reference image quality

assessment in the spatial domain. IEEE Trans. Image Proc. 21, 4695–4708.

doi: 10.1109/TIP.2012.2214050

Pan, D., Shi, P., Hou, M., Ying, Z., Fu, S., and Zhang, Y. (2018). “Blind predicting

similar quality map for image quality assessment,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),

6373–6382.

Park, S.-J., Son, H., Cho, S., Hong, K.-S., and Lee, S. (2018). “Srfeat: single image

super-resolution with feature discrimination,” in Proceedings of the European

Conference on Computer Vision (ECCV), 439–455.

Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., et al.

(2015). Image database tid2013: Peculiarities, results and perspectives. Signal

Proc. Image Commun. 30, 57–77. doi: 10.1016/j.image.2014.10.009

Rehman, A., and Wang, Z. (2012). Reduced-reference image quality assessment

by structural similarity estimation. IEEE Trans. Image Proc. 21, 3378–3389.

doi: 10.1109/TIP.2012.2197011

Sheikh, H. R., and Bovik, A. C. (2006). Image information and visual quality. IEEE

Trans. Image Proc. 15, 430–444. doi: 10.1109/TIP.2005.859378

Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., et al. (2020). “Blindly assess image

quality in the wild guided by a self-adaptive hyper network,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Seattle,

WA: IEEE), 3667–3676.

Sun, W., Min, X., Zhai, G., and Ma, S. (2021). Blind quality assessment for in-

the-wild images via hierarchical feature fusion and iterative mixed database

training. arXiv preprint arXiv:2105.14550.

Talebi, H., and Milanfar, P. (2018). Nima: Neural image assessment. IEEE Trans.

Image Proc. 27, 3998–4011. doi: 10.1109/TIP.2018.2831899

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). “A survey

on deep transfer learning,” in International Conference on Artificial Neural

Networks (Rhodes: Springer), 270–279.

Wang, Z., and Bovik, A. C. (2011). Reduced-and no-reference image quality

assessment. IEEE Signal Process Mag. 28, 29–40. doi: 10.1109/MSP.2011.942471

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE Trans. Image

Proc. 13, 600–612. doi: 10.1109/TIP.2003.819861

Wang, Z., and Simoncelli, E. P. (2005). Reduced-reference image quality

assessment using a wavelet-domain natural image statistic model. Hum. Vision

Electron. Imaging 5666, 149–159. doi: 10.1117/12.597306

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). “Multiscale structural

similarity for image quality assessment,” in The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers, 2003, Vol. 2 (Pacific Grove, CA:

IEEE), 1398–1402.

Xiongkuo, M., Ke, G., Guangtao, Z., Xiaokang, Y., Wenjun, Z., Callet, P. L., et al.

(2021). Screen Content Quality Assessment: Overview, Benchmark, and Beyond.

ACM Computing Surveys.

Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., and Doermann, D. (2016). Blind image quality

assessment based on high order statistics aggregation. IEEE Trans. Image Proc.

25, 4444–4457. doi: 10.1109/TIP.2016.2585880

Xue, W., Zhang, L., Mou, X., and Bovik, A. C. (2013). Gradient magnitude

similarity deviation: a highly efficient perceptual image quality index. IEEE

Trans. Image Proc. 23, 684–695. doi: 10.1109/TIP.2013.2293423

Yang, S., Jiang, Q., Lin, W., and Wang, Y. (2019). “Sgdnet: an end-to-end saliency-

guided deep neural network for no-reference image quality assessment,” in

Proceedings of the 27th ACM International Conference on Multimedia (Nice),

1383–1391.

Zeng, H., Zhang, L., and Bovik, A. C. (2017). A probabilistic quality

representation approach to deep blind image quality prediction. arXiv preprint

arXiv:1708.08190.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 767977

https://doi.org/10.1109/TIP.2015.2500021
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.1109/TIP.2020.2967829
https://doi.org/10.1109/JSTSP.2016.2639328
https://doi.org/10.1117/1.3267105
https://doi.org/10.1109/TMM.2018.2875354
https://doi.org/10.1109/TMM.2011.2152382
https://doi.org/10.1109/TIP.2012.2236343
https://doi.org/10.1109/TIP.2017.2708503
https://doi.org/10.1109/TIP.2017.2774045
https://doi.org/10.1109/TMM.2017.2788206
https://doi.org/10.1109/TIP.2017.2735192
https://doi.org/10.1109/TBC.2018.2816783
https://doi.org/10.1109/TITS.2018.2868771
https://doi.org/10.1109/TMM.2019.2902097
https://doi.org/10.1109/TIP.2020.2988148
https://doi.org/10.1109/TIP.2020.2966081
https://doi.org/10.1109/TIP.2012.2214050
https://doi.org/10.1016/j.image.2014.10.009
https://doi.org/10.1109/TIP.2012.2197011
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2018.2831899
https://doi.org/10.1109/MSP.2011.942471
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1117/12.597306
https://doi.org/10.1109/TIP.2016.2585880
https://doi.org/10.1109/TIP.2013.2293423
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Feng et al. CDFSNet for BIQA

Zhai, G., and Min, X. (2020). Perceptual image quality assessment: a survey. Sci.

China Inf. Sci. 63, 211301. doi: 10.1007/s11432-019-2757-1

Zhang, L., Shen, Y., and Li, H. (2014). Vsi: a visual saliency-induced index for

perceptual image quality assessment. IEEE Trans. Image Proc. 23, 4270–4281.

doi: 10.1109/TIP.2014.2346028

Zhang, L., Zhang, L., and Bovik, A. C. (2015). A feature-enriched completely

blind image quality evaluator. IEEE Trans. Image Proc. 24, 2579–2591.

doi: 10.1109/TIP.2015.2426416

Zhang, L., Zhang, L., Mou, X., and Zhang, D. (2011). Fsim: a feature similarity

index for image quality assessment. IEEE Trans. Image Proc. 20, 2378–2386.

doi: 10.1109/TIP.2011.2109730

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018a).

“The unreasonable effectiveness of deep features as a perceptual metric,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(Salt Lake City, UT: IEEE), 586–595.

Zhang, W., Ma, K., Yan, J., Deng, D., and Wang, Z. (2018b). Blind image quality

assessment using a deep bilinear convolutional neural network. IEEE Trans.

Circ. Syst. Video Technol. 30, 36–47. doi: 10.1109/TCSVT.2018.2886771

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Feng, Ye and Zhang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 767977

https://doi.org/10.1007/s11432-019-2757-1
https://doi.org/10.1109/TIP.2014.2346028
https://doi.org/10.1109/TIP.2015.2426416
https://doi.org/10.1109/TIP.2011.2109730
https://doi.org/10.1109/TCSVT.2018.2886771
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Cross-Domain Feature Similarity Guided Blind Image Quality Assessment
	1. Introduction
	2. Materials and Methods
	2.1. Problem Formulation
	2.2. Network Design
	2.2.1. Semantic Oriented Feature Extractor
	2.2.2. Perceptual-Quality Oriented Feature Extractor
	2.2.3. Cross-Domain Feature Similarity Predictor
	2.2.4. Loss Function

	2.3. Implementation Details

	3. Experimental Results
	3.1. Datasets and Evaluation Metrics
	3.2. Comparison With the State-of-the-Art Methods
	3.3. Cross-Domain Feature Similarity Visualization
	3.4. Ablation Study
	3.5. Cross-Database Validation
	3.6. Further Validation on Other Specific IQA Tasks

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


