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Background: Human transmissible spongiform encephalopathies (TSEs) are a group
of fatal neurodegenerative disorders of short duration. There are few studies on TSE
survival. This study sought to analyze the survival and related factors of a TSE patient
cohort, based on a nationwide surveillance system in Spain.

Methods: Survival analyses were performed on 1,530 cases diagnosed across the
period 1998–2018 in Spain. We calculated median survival times and plotted survival
curves using the Kaplan–Meier method for all cases and for sporadic TSE (sTSE) and
genetic TSE (gTSE). Crude and adjusted Cox proportional hazard models were used to
identify variables associated with shorter survival.

Findings: Median age at onset decreased from the sporadic forms to gTSE and, lastly,
to acquired TSE. Overall median and interquartile range (IQR) survival time was 5.2 (IQR,
3.0–11.7) months and 4.9 (IQR, 2.8–10.8) months in sporadic cases and 9 (IQR, 4.9 to
over 12) months in genetic cases, p < 0.001. Male sex, older age at onset, presence
of 14-3-3 protein, typical MRI, and MM and VV polymorphisms at codon 129 were
associated with shorter survival. gTSE showed higher survival in crude comparisons but
not after adjustment.

Interpretation: TSE survival in Spain replicates both the magnitude of that shown and
the TSE entity-specific population patterns observed in Western countries but differs
from features described in Asian populations, such as the Japanese. The reduction
in differences in survival between gTSE and sTSE on adjusting for covariates and
international patterns might support the view that gTSE and sTSE share causal and
pathophysiological features.

Keywords: survival, human spongiform encephalopathies, prognostic factors, clinical phenotypes, sporadic
Creutzfeld-Jakob disease
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INTRODUCTION

Human transmissible spongiform encephalopathies (TSEs) are
a group of fatal neurodegenerative disorders caused by the
abnormal disease-causing isoform (PrPSc) of a normal cellular
protein, i.e., the cellular prion protein (PrPC) (Prusiner, 1998).
Annual incidence worldwide is estimated at 1–1.5 cases per
million (Tee et al., 2018).

Among human prion diseases, 85–90% are sporadic
Creutzfeldt–Jakob disease (sCJD) cases, 10–15% are inherited
or genetic TSE [gTSE, including genetic Creutzfeldt–Jakob
disease (gCJD), Gerstmann–Sträussler–Scheinker syndrome
(GSS), or Fatal Familial Insomnia (FFI)], and less than 1% are
acquired forms, either variant Creutzfeldt–Jakob disease (vCJD)
or accidentally transmitted Creutzfeldt–Jakob disease (atCJD).
vCJD is the only known zoonotic form of human prion disease
and occurs through consumption of bovine tissues affected
by bovine spongiform encephalopathy (BSE) and BSE-tainted
blood transfusions (Geschwind, 2015). atCJD may appear as a
consequence of treatment with human-derived growth hormone
or gonadotropins and several homografts (Brown et al., 1992).

Prion diseases are characterized by a long incubation period,
typically affect the central nervous system, and have a progressive
and lethal course (Manzano et al., 2018). While clinical
manifestations may vary in different forms of the disease,
the most common manifestations include rapidly progressive
cognitive impairment and dementia, behavioral symptoms,
impairment in higher cortical functions, myoclonus in more
than 90% of patients throughout the disease course, and akinetic
mutism during the final stages (Brown Henry and Lee John,
2021). There can be significant variation in age at onset
(Ironside et al., 2017).

Polymorphism in the prion gene, PRNP, at codon 129 is
associated with survival, which is longer in heterozygous (MV)
cases (Pocchiari et al., 2004). Plasma and cerebrospinal fluid
(CSF) tau levels may be linked to survival (Staffaroni et al., 2019).

Knowledge of factors relating to survival might prove
helpful in predicting the course of the disease, guiding
clinical management and decision-making, and assessing the
effectiveness of possible future treatments. To our knowledge,
there are few studies on TSE survival (Puopolo et al., 2003;
Pocchiari et al., 2004; Sanchez-Valle et al., 2004; Heinemann et al.,
2007; Nagoshi et al., 2011; Iwasaki et al., 2015; Sun et al., 2020;
Yang et al., 2020).

Accordingly, this study set out to analyze the survival
and related factors of a TSE patient cohort, based on
a nationwide surveillance system in Spain for 1993–2018
(De Pedro-Cuesta et al., 2021).

MATERIALS AND METHODS

Data-Sources
This study consisted of a retrospective examination of records
at the Spanish National Register of Human Transmissible
Spongiform Encephalopathies. TSE surveillance in Spain began
prospectively in 1995 when the National Register was created

(Spain’s Ministry of Health and Consumption, 2020; Official State
Gazette, 2021) and has also been conducted retrospectively until
1993. The register is kept by the National Centre of Epidemiology
at the Carlos III Institute of Health, with surveillance units across
all regions of Spain notifying suspected TSE cases to the Centre.

Among all cases notified to the register with diagnoses
established during the period 1998–2018, we selected all those
fulfilling criteria for probable and definite TSE, as laid down by
the European Creutzfeldt–Jakob Disease Surveillance Network
(EuroCJD). These criteria changed in 1998 when the use of
the 14-3-3-protein test in CSF was introduced, in 2003 when
epidemiological criteria (risk exposures) were included, and again
in 2010 when magnetic resonance imaging (MRI) criteria were
incorporated (Zerr et al., 2009). The most recent criteria update
by the European Centre for Disease Prevention and Control was
issued on January 1, 2017. The study accrual was 1,530 (see the
flowchart in Figure 1 which describes the selection procedure).

Variables
For analysis purposes, we used the following variables: sex;
age in years at clinical onset (0–49, 50–59, 60–69, 70–79,
and ≥ 80); presence of 14-3-3-protein in the CSF; polymorphism
at codon 129 of the PRNP gene [methionine/methionine (MM),
methionine/valine (MV), or valine/valine (VV)]; presence of
periodic sharp wave complexes in electroencephalogram (EEG),
high MRI signal in the caudate and putamen; form of clinical
onset (rapidly progressive dementia or other); and type of TSE,
i.e., sporadic or genetic (including gCJD, GSS, and FFI).

Statistical Analysis
A descriptive analysis was performed for each form of TSE and
all the variables of interest. Qualitative variables were expressed
as absolute values and percentages, and continuous variables as
median and interquartile range (IQR).

Survival analysis was performed by taking the reported date
of clinical onset as the starting point. “Event” was defined as
death during the first year; otherwise, the case was censored. We
estimated median survival times and displayed survival curves
using the Kaplan–Meier method for all cases, and for sTSE and
gTSE. Curves were compared using the log-rank test.

Crude and adjusted Cox proportional hazard models
were used to identify the variables associated with survival.
Results were expressed as hazard ratios (HRs) with their
corresponding 95% confidence intervals (95% CI). To evaluate
the proportional hazards assumptions, the Schoenfeld residual
test was performed. All analyses were performed using the
STATA/SE 15 computer software package (StataCorp LLC,
College Station, TX, United States).

Ethics Approval
This is an observational study conducted in public health context
that does not meet any of the criteria required for revision by a
research ethics committee, as stated in the Biomedical Research
Act (Ley 14/2007 de Investigación Biomédica). Data are obtained
from an epidemiological surveillance registry where no informed
consent is required for registration and notification is mandatory
by law since 2001.
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FIGURE 1 | Flow chart showing case-selection for study purposes. NRTSE, National Register of Human Transmissible Spongiform Encephalopathies; TSE,
Transmissible Spongiform Encephalopathy.

RESULTS

The characteristics of 1,530 cases diagnosed between 1998 and
2018 are shown in Table 1: 46% were male, and median age
at onset was 68 (IQR, 60–74) years. Acquired cases had the
youngest age at disease onset, with a median of 47 (IQR, 40–
64) years, followed by genetic cases with 53 (IQR, 46–62) years,
whereas sporadic cases had a median age of 69 (IQR, 62–75)
years at clinical onset. All vCJD and atCJD cases with available
information were MM at codon 129. Overall median survival
time was 5.2 (IQR, 3.0–11.7) months, with the breakdown
showing 4.9 (IQR, 2.8–10.8) months for sporadic cases and
9 (IQR, 4.9 to over 12) months for genetic cases (Figure 2),
p < 0.001.

In more than 90% of cases, valuable data for study purposes
were available for type of TSE, sex, EEG, and year of diagnosis.
Polymorphism at codon 129 was the least complete variable
(60%). A total of 89% of cases were sporadic, and more
than 50% of all cases had rapidly progressive dementia as
clinical presentation.

The univariate and multivariate analyses of all cases showed
that male sex, older age at onset, presence of 14-3-3 protein,
typical MRI, and MM or VV in codon 129 polymorphism were
associated with a shorter survival time. Sporadic CJD, typical
EEG, and clinical presentation as rapidly progressive dementia
displayed shorter survival times only in unadjusted comparisons
but not after adjustment for sex, age at onset, codon 129

polymorphism, 14-3-3 protein, and typical MRI (Table 2). The
mutations most frequently present in genetic cases from Table 2
were D178N, n = 73 (48.3% of total number of genetic cases
with genetic analysis) and E200K, n = 68 (45%). Similar findings
were obtained when only sporadic cases were analyzed (Table 3).
However, typical MRI was not associated with survival in the
unadjusted analysis.

The proportional hazards assumption was assessed in the
final model. Type of TSE and polymorphism in the PRNP at
codon 129 (overall and in sCJD) did not fulfill the proportional
hazards assumption because the HRs of these variables changed
over time. As the time of follow-up doubled, risk of death in
genetic cases decreased by almost twofold. For total cases, a
similar risk reduction was seen in MV and VV polymorphisms
when compared to MM. For sCJD, risk of death decreased by
almost twofold in MV cases and by almost fourfold in the
VV polymorphism.

DISCUSSION

For TSEs as a whole, female sex, earlier onset, MV and VV
polymorphisms at codon 129, and absence of 14-3-3 protein were
observed to be associated with longer survival. Median age at
onset decreased from the sporadic forms to gTSE and, lastly, to
atTSE. Survival rose from sTSE to gTSE, in which it doubled
before adjustment. Median survival at 12 months for sCJD, gCJD,
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TABLE 1 | Characteristics of total definite and probable transmissible spongiform encephalopathy cases in Spain from 1998 to 2018 included in this study.

Sporadic Genetic Acquired Total

TSEa sCJDh

n (%*)
gCJDi

n (%*)
FFIj

n (%*)
GSSk

n (%*)
atCJDl

n (%*)
vCJDm

n (%*)
Total
cases

Cases 1,362 (89.0) 83 (5.4) 69 (4.5) 5 (0.3) 6 (0.4) 5 (0.3) 1,530

Median survival (months) 4.8 5.45 10.97 – – – 5.05

Age at onset, median (IQRb): 69 (62–75) 58 (51–64) 49 (45–57) 54 (38–Z–62) 48 (43–67) 47 (40–48) 68 (60–74)

Sex

Male 619 (45.5) 39 (47) 38 (55.1) 1 (20.0) 3 (50.0) 1 (20.0) 701 (45.8)

Female 743 (54.6) 44 (53.0) 31 (44.9) 4 (80.0) 3 (50.0) 4 (80.0) 829 (54.2)

14-3-3 protein

Positive 979 (71.9) 43 (73.5) 8 (11.6) 1 (20.0) 5 (83.3) 1 (20.0) 1,037 (67.8)

Negative 192 (14.1) 18 (21.7) 29 (42.0) 2 (40.0) – 4 (80.0) 245 (16.0)

Polymorphism at codon 129

MMc 469 (34.4) 43 (51.8) 47 (68.1) – 5 (83.3) 5 (100) 569 (37.2)

MVd 149 (10.9) 30 (36.1) 16 (23.2) – – – 195 (12.8)

VVe 153 (11.2) 3 (3.6) – 3 (60.0) – – 159 (10.4)

EEGf

Positive 754 (55.4) 44 (53.0) 3 (4.4) 1 (20.0) 1 (16.7) 1 (20.0) 804 (52.6)

Negative 546 (40.1) 32 (38.6) 59 (85.5) 2 (40.0) 5 (83.3) 4 (80.0) 648 (42.4)

MRIg

Positive 501 (36.8) 42 (50.6) – – – 1 (20.0) 544 (35.6)

Negative 535 (39.3) 25 (30.1) 43 (62.3) 2 (40.0) 5 (83.3) 2 (40.0) 612 (40.0)

Clinical onset

Rapidly progressive dementia 752 (55.2) 35 (42.2) 17 (24.6) – 2 (33.3) 2 (40.0) 808 (52.8)

Heidenhain 68 (5.0) 4 (4.8) – 1 (20.0) – – 73 (4.8)

Psychiatric 50 (3.7) 7 (8.4) 15 (21.7) – – 2 (40.0) 74 (4.8)

Progressive dementia 98 (7.2) 8 (9.6) 4 (5.8) – 1 (16.7) 1 (20.0) 112 (7.3)

Cerebellar 240 (17.6) 23 (27.7) 16 (23.2) 2 (40.0) 2 (33.3) – 283 (18.5)

Extrapyramidal 44 (3.2) 4 (4.8) 1 (1.5) 1 (20.0) – – 50 (3.3)

Vascular 30 (2.2) 2 (2.4) – – 1 (16.7) – 31 (2.0)

Period (year of diagnosis)

1998–2003 339 (24.9) 19 (22.8) 24 (34.8) 0 3 (50.0) 0 385 (25.2)

2004–2008 340 (25.0) 20 (24.1) 15 (21.7) 1 (20.0) 1 (16.6) 5 (100.0) 382 (25.0)

2009–2013 351 (25.8) 26 (31.3) 18 (26.1) 3 (60.0) 1 (16.7) 0 399 (26.1)

2014–2018 332 (24.4) 18 (21.7) 12 (17.4) 1 (20.0) 1 (16.7) 0 364 (23.8)

aTransmissible spongiform encefalopaties, b interquartile range, cmethionine/methionine, dmethionine/valine, evaline/valine, f electroencephalogram, gmagnetic resonance
imaging, hsporadic Creutzfeldt–Jakob disease, igenetic Creutzfeldt–Jakob disease, jFatal Familial Insomnia, kGerstmann–Sträussler–Scheinker disease, laccidentally
transmitted Creutzfeldt–Jakob disease, mvariant Creutzfeldt–Jakob disease. *For the sake of simplicity, all percentages have been calculated vs. the value of total TSE
cases (1,530), rather than vs. the total cases of each file at far right column.

and FFI was similar to that observed by Pocchiari et al. (2004) for
the same categories at 12 months.

Survival decreased with advancing age at clinical onset, as
noted in some reports (Puopolo et al., 2003; Pocchiari et al.,
2004). It has been suggested that this type of decrease may be
determined by age-related comorbidities or response to infection
or CJD vascular-related pathogenesis, particularly in CJD forms
of vascular onset (Pocchiari et al., 2004). Lower CJD case
identification among the elderly with short survival due to lack
of access to neurological diagnosis would bias our results toward
higher survival. In our study, and in line with other authors,
males registered shorter survival times than did females, although
the reason for this remains unknown (Pocchiari et al., 2004;
Iwasaki et al., 2015).

Codon 129 polymorphism constitutes a mortality risk factor
(Kobayashi et al., 2015) that would act during the latency
period (Uttley et al., 2020). The shorter survival in MM vs. MV
polymorphism groups has been previously reported (Pocchiari
et al., 2004). Although clinical presentation as dementia has
been previously described as a mortality risk factor (Chen and
Dong, 2016), this could not be confirmed after adjusting for
confounding factors.

As 14-3-3 protein in CSF is considered to be a marker of
rapid neuronal destruction, with levels changing with disease
progression, our finding of shorter survival in cases positive to 14-
3-3 protein may have been determined by their higher sensitivity
when tested during late clinical course (Pocchiari et al., 2004;
Torres et al., 2012). Disease duration was shorter when patients
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FIGURE 2 | TSE Survival curve, overall (A) and by type (B), using the Kaplan-Meier method.

were positive to MRI, as mentioned above (Meissner et al.,
2004). In contrast, patients with triphasic periodic complexes
on the EEG, a finding most frequent in mid-to-late disease
course (Franko et al., 2016), did not show shorter survival. This
could be due to the low EEG voltage during late disease course
(Collins et al., 2006).

Differences in survival between TSE entities appeared to
diminish following adjustment for all study variables, which
may indicate that many of these variables determine disease
course. Similar patterns described for TSE in the majority of
European Union member countries might suggest homogeneity
of survival patterns across populations (Puopolo et al., 2003;
Pocchiari et al., 2004). An element potentially responsible for
a variation in our overall findings might be the proportion of
sTSE and gTSE entities in our study, namely, 90 and 10%,
respectively, which differed from those seen in Slovakia and

Israel, where genetic forms predominate (de Pedro-Cuesta et al.,
2006) but mimic those of some large populations, such as
the United Kingdom, France, and Japan (Nozaki et al., 2010;
Uttley et al., 2020).

As regards vCJD, Spain ranks third in terms of the number
of cases, five, after the United Kingdom and France (Brandel
and Knight, 2018). Median age at onset was higher than that
described in other EuroCJD national populations (Puopolo et al.,
2003; Pocchiari et al., 2004; Ladogana et al., 2005; Llorens et al.,
2020; Uttley et al., 2020). The older age at onset of vCJD
when compared to the United Kingdom and France (Brandel
and Knight, 2018) might reflect a variation in the underlying
etiological process. It would appear that both in Spain and
in the large EuroCJD dataset, vCJD had the longest survival,
whereas sCJD survival was the shortest, with gTSE occupying an
intermediate position (Pocchiari et al., 2004).

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 773727

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-773727 January 18, 2022 Time: 11:35 # 6

Tejedor-Romero et al. Human TSEs Survival in Spain

TABLE 2 | Univariate and multivariate Cox regression analysis for total cases
(n = 1,530).

Unadjusted HRf

(95% CIg)
Adjusted HRf

(95% CIg)

Male sex 1.26 (1.12–1.42) 1.24 (1.03–1.51)

Age at onset (years)

0–49 Refh Refh

50–59 1.77 (1.34–2.34) 1.53 (1.02–2.31)

60–69 1.83 (1.42–2.36) 1.46 (0.99–2.16)

70–79 2.37 (1.84–3.06) 2.04 (1.38–3.03)

≥80 2.33 (1.72–3.16) 2.46 (1.53–3.94)

Polymorphism at codon 129

MMa Refh Refh

MVb 0.35 (0.28–0.43) 0.33 (0.25–0.44)

VVc 0.87 (0.71–1.05) 0.77 (0.59–1.00)

Positive 14-3-3 protein 2.01 (1.68–2.42) 1.76 (1.36–2.33)

Typical EEGd 1.55 (1.37–1.75) 1.04 (0.83–1.29)

Positive MRIe 1.19 (1.04–1.36) 1.31 (1.08–1.59)

Clinical onset

Other symptoms Refh Refh

Rapidly progressive dementia 1.28 (1.14–1.45) 1.02 (0.85–1.24)

Established diagnosis

Sporadic Refh Refh

Genetic 0.59 (0.48–0.72) 1.07 (0.76–1.50)

Multivariate model includes all variables. aMethionine/methionine,
bmethionine/valine, cvaline/valine, delectroencephalogram, emagnetic resonance
imaging, f hazard ratio, gconfidence interval, hreference.

TABLE 3 | Univariate and multivariate Cox regression analysis for sporadic cases
(n = 1,362).

Unadjusted HRf

(95% CIg)
Adjusted HRf

(95% CIg)

Male sex 1.30 (1.15–1.48) 1.39 (1.16–1.66)

Age at onset (years)

0–49 Refh Refh

50–59 1.67 (1.16–2.41) 1.91 (1.19–3.06)

60–69 1.66 (1.18–2.33) 1.74 (1.12–2.71)

70–79 2.08 (1.49–2.92) 2.24 (1.44–3.59)

≥ 80 2.04 (1.40–2.97) 2.59 (1.57–4.27)

Polymorphism at codon 129

MMa Refh Refh

MVb 0.34 (0.27–0.44) 0.35 (0.26–0.47)

VVc 0.81 (0.66–0.99) 0.79 (0.62–0.99)

Positive 14-3-3 protein 1.97 (1.60–2.41) 1.86 (1.41–2.47)

Typical EEGd 1.39 (1.22–1.58) 0.99 (0.81–1.22)

Positive MRIe 1.12 (0.98–1.29) NA

Clinical onset

Other symptoms Refh Refh

Rapidly progressive dementia 1.18 (1.04–1.35) 1.08 (0.90–1.29)

Multivariate model includes all variables. aMethionine/methionine,
bmethionine/valine, cvaline/valine, delectroencephalogram, emagnetic resonance
imaging, f hazard ratio, gconfidence interval, hreference.

Survival heterogeneity in sCJD and gTSE warrants particular
attention. Our median figures of 5.2 months overall and
4.9 months for sCJD are similar to those described in Europe
(Pocchiari et al., 2004) and China (Yang et al., 2020), and

lower than those described in Taiwan, 13.5 months (Sun et al.,
2020), and in greater detail in Japan, where the mean reached
17.4 months for all TSEs and 15.7 months for sCJD (Nagoshi
et al., 2011; Iwasaki et al., 2015). Factors underlying the long
survival of Japanese CJD patients are not well known, although
some aspects of clinical management of akinetic mutism, such
as tube feeding, have been suggested (Iwasaki et al., 2015).
The high prevalence of the V180I mutation in Japan, 41%, in
practice absent, 1%, in Western populations (Nozaki et al., 2010),
exhibits a similarly higher survival (Hayashi et al., 2020) and
constitutes one of the very few gTSE forms associated with
slow progression. This feature is consistent with findings in
Western studies for two reasons: firstly, our results show that
differences in survival between sCJD and gTSE disappear after
adjustment for age, among other variables; and secondly, the
long survival in sCJD in populations with slowly progressing
gTSE might be a natural history trait rather than the result of
potentially different healthcare interventions. This feature fits
recent proposals for conformational neurodegenerative disorders
(NDDs), which suggest a causal link between genetic and
sporadic forms (de Pedro-Cuesta et al., 2016b) and shared
molecular mechanisms. In the case of TSEs, such a trait would
imply that gTSE PrP might act as a transmission agent, a
phenomenon suggested by the spatial clustering of high regional
sTSE and gTSE incidences close to the Basque Country in Spain
(De Pedro-Cuesta et al., 2021). The higher sCJD survival in
Taiwan, where only eight genetic cases have been described
(Sun et al., 2020) and particular genetic traits have been seen
(Wang et al., 2007), merits further study. The fact that survival
of gTSE in Spain is equal to that of sCJD, when age at onset,
129 codon polymorphism, and other variables are introduced
into models (Brown and Mastrianni, 2010), would support
similar survival in sTSE and gTSE forms. In sum, the two-
facetted pattern of survival in sCJD, i.e., that in Japan and
that shown by our and others’ results, would support the
notion that gTSE and sTSE might share biological features
resulting from similar PrPSc deposits, which, in the case of
gTSE, determine an earlier onset by a disease-triggering mutation
(de Pedro-Cuesta et al., 2016b).

The relationship between age at clinical onset and survival
observed in the Spanish TSE cohort for sCJD and the difference
observed between gTSE and sCJD raise the question of the
presence of similar patterns for other NDDs classified by
histochemical categories. While a full examination of the issue
exceeds the scope of this paper, the view emerging from sCJD
with lower survival and later onset appears to be the opposite to
those seen for amyotrophic lateral sclerosis compared to fronto-
temporal dementia reported by Steenland et al. (2010), and for
α-synucleinopathies with rapid course and earlier onset, e.g., for
multiple system atrophy compared to Parkinson’s disease (de
Pedro-Cuesta et al., 2016b). Finally, the lower age at onset and
higher survival of gTSE vs. sCJD forms seem to be a frequent
feature seen in NDDs where family forms have been frequently
denoted in keeping with the nature of their early-onset, e.g.,
early-onset parkinsonism in PD (Khodadadian et al., 2018).

Because TSEs constitute conformational NDDs, an
interpretation of findings for sCJD and gTSE in our study and,
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in a broad perspective, from the so-called driver-model
perspective, could be attempted. Drivers constitute groups of
epidemiological features shared by protein disorders (de Pedro-
Cuesta et al., 2016a), which provide an etiological framework
for inference (de Pedro-Cuesta et al., 2016b). The simultaneous
role as both a marker of disease course and a risk factor for
NDDs, i.e., the APOe4 polymorphism for Alzheimer’s disease,
proposed on the basis of well-known associations with genetic
and vascular disorders, constitutes a fundamental feature of the
driver model (de Pedro-Cuesta et al., 2016a). Consequently,
certain variables associated with survival, such as those reflecting
deposition secondary to geographically different PRNP gene
mutations, might constitute risk factors for different forms of
sporadic CJD in Western and Asian/Japanese populations.

This study may present limitations due to delays in
notification or access to specific variables, such as glycotypes
or the large accrual variation among different TSE groups. The
failure to fulfill the proportional HRs assumption might be
attributed to the very rapid disease course, with the majority of
patients dying early after clinical onset. Such poorly explored
phenomena would be present in most studies. Moreover, it
cannot be ruled out that poor access to support measures for
individual patients, documented in previous studies (Pocchiari
et al., 2004; Staffaroni et al., 2019), may have affected their
survival. This study’s strengths lie in its large population coverage,
systematic data-collection, and compulsory reporting.

CONCLUSION

In conclusion, TSE survival in Spain replicates the magnitude
of that shown in Western countries, displays TSE entity-
specific population patterns, and suggests the possible existence
of underlying etiological mechanisms shared with other
conformational NDDs. The fact that the same genetic or vascular
factors might constitute risk factors for specific NDDs and
predictors of clinical disease progression (de Pedro-Cuesta
et al., 2016a,b) opens research avenues for inference between
general and clinical epidemiology of NDDs, such as those
suggested here for TSEs.
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