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Cerebral microbleeds (CMB) are increasingly present with aging and can reveal vascular
pathologies associated with neurodegeneration. Deep learning-based classifiers can
detect and quantify CMB from MRI, such as susceptibility imaging, but are challenging
to train because of the limited availability of ground truth and many confounding imaging
features, such as vessels or infarcts. In this study, we present a novel generative
adversarial network (GAN) that has been trained to generate three-dimensional lesions,
conditioned by volume and location. This allows one to investigate CMB characteristics
and create large training datasets for deep learning-based detectors. We demonstrate
the benefit of this approach by achieving state-of-the-art CMB detection of real CMB
using a convolutional neural network classifier trained on synthetic CMB. Moreover, we
showed that our proposed 3D lesion GAN model can be applied on unseen dataset, with
different MRI parameters and diseases, to generate synthetic lesions with high diversity
and without needing laboriously marked ground truth.

Keywords: generative adversarial network, cerebral microbleed, data augmentation, deep learning, SWI images,
synthetic data

INTRODUCTION

Cerebral microbleeds (CMB) are small hypointense spots on brain MRI susceptibility-weighted
imaging (SWI), known as chronic blood products in normal (or near-normal) brain tissues
(Greenberg et al., 2009). Since CMB are valuable biomarkers to explain cognitive impairment
and diagnose vascular diseases, automated CMB detection methods have seen a recent increase
in interest. Most automated CMB detections use machine learning (Barnes et al., 2011; Bian et al.,
2013; Fazlollahi et al., 2015; Roy et al., 2015), including deep learning methods, achieving superior
performance by increasing the sensitivity to 95.8 and reducing the number of false positives to
1.6 (Dou et al., 2016; Zhang et al., 2017; Liu et al., 2019; Faryna et al., 2021). However, they are
seldom used for clinical application because of the high number of false positives and the limited
evidence that they generalize to different acquisition protocols (e.g., different SWI parameters,
scanners, or cohorts).
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Common challenges for detecting CMB with machine
learning include the limited availability of ground truth, their
relatively low prevalence, small size, variations in shape, intensity,
and size, and the high number of mimics, such as vessel cross-
sections that result in many false positive (FP) detections. To
compensate for the limited ground truth, data augmentation
methods almost always include flipping, rotation, and sometimes
noise addition or gamma correction (Dou et al., 2016; Liu et al.,
2019). Random majority sample (negative class) reduction and
cost-sensitive learning are two other methods used to address
the issue of imbalanced data when typically only a few CMB are
present in a MRI scan and only a fraction of subjects have CMB
(Wang et al., 2017; Zhang et al., 2017).

Generating synthetic data as a data augmentation strategy has
several advantages. The size of the training data can be made as
large as desired, as long as negative cases exist where synthetic
positives could be added. The variety of the synthetic data could
be arbitrarily increased to cover a larger training space than that
of real cases. Finally, synthetic data generation requires neither
domain expertise nor enrolling actual subjects, saving cost, and
avoiding any ethical issues.

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) is a technique for generating fake data with a distribution
similar to that of real data. GAN comprises two neural networks
competing against each other: a discriminator and a generator.
The generator creates fake data and maximizes the confusion of
the discriminator to distinguish real from fake data, which the
discriminator tries to identify (Kazeminia et al., 2020).

Several GAN models have been applied to medical
applications (Frid-Adar et al., 2018; Iqbal and Ali, 2018;
Zhao et al., 2018; Wu et al., 2020). Frid-Adar et al. (2018)
proposed three deep convolutional GANs to generate three
classes of liver lesions (cysts, metastases, and hemangiomas).
The generated samples were found to be beneficial for classifying
lesions on computed tomography (CT). Zhao et al. (2018)
proposed a forward and backward GAN (F&BGAN) to improve
lung nodule classification, with the aim of enhancing the
synthetic data quality. Wu et al. (2020) proposed a U-Net-based
generator architecture to generate or remove lesions on high-
resolution mammography images, which could leverage the
background information. They showed that, for malignancy
classification, by adding the synthetics to the real data, the
area under the receiver operating characteristic (ROC) curve
increased from 0.829 to 0.846.

Cross-modality synthesis methods have been proposed in
several works (Bi et al., 2017; Wolterink et al., 2017; Hiasa
et al., 2018). Most have deployed deep learning-based methods to
learn end-to-end non-linear mapping from magnetic resonance
images to CT images or positron emission tomography images.
CycleGAN has shown capability to synthesize unpaired dataset
between different modalities (Zhu et al., 2020).

Conditional GAN (CGAN) was proposed by Mirza and
Osindero (2014) and Jin et al. (2018), adding a condition as an
input to both the generator and the discriminator. Close to our
work, Jin et al. (2018) applied a three-dimensional (3D) CGAN
to generate synthetic nodules on CT images that improved the
performance of a deep learning model for pathological lung

segmentation. They employed volume as a condition but added
fake lesions only to locations which had real lesions removed,
with a heuristic technique to blend the new fake lesions to the
modified scans. Removing a lesion could create artifacts and
preclude generating data in healthy areas, two limitations that we
address with our simpler method, where a lesion mask that can
be multiplied at any location to add fake lesions is generated.

In Momeni et al. (2018, 2021), we proposed an analytical
model to create synthetic microbleeds for SWI MRI images. They
hypothesized that CMB are Gaussian-liked structures spread
all over the brain. 3D Gaussian lesions were created, in high
resolution, with randomized shapes to simulate variation in
shape and volume. The partial volume effect was simulated
by down-sampling the patch that was multiplied at random
locations where there was no actual lesion. Their synthetic dataset
was compared to traditional data augmentation and synthetic
minority oversampling technique (SMOTE) (Chawla et al., 2002).
The results showed that synthetic CMB (sCMB) improved CMB
classification with less than nine FP per scan using a random
forest classifier. We are now improving on that work by learning
the lesion shape and appearance, which can be adapted to the
background using GAN.

A preliminary work using CycleGAN data augmentation
model to generate CMB was recently reported by Faryna et al.
(2021). The authors used a series of complex healthy pathological
transformations conditioned by a mask where fake lesions should
be created. One drawback of that approach is the need to
delineate lesions (our method requires only point locations), and
the processing of the whole dataset might also affect otherwise
healthy locations. CycleGAN (Zhu et al., 2020) was also applied
to detect CMB associated with traumatic brain injury. During
the training, besides adversarial and CycleGAN loss, the authors
considered an abnormality mask loss to preserve brain structure
outside of pathological regions. Adding synthetic data improved
the performance, but an abnormality mask was required.

In this paper, we propose a novel 3D LesionGAN method
that uses the background and lesion volume as conditions to
generate synthetic CMB using GAN. A mask is generated, which
can be multiplied at any location within the brain on any unseen
MRI dataset. We trained a convolutional neural networks (CNN)
classifier for CMB classification from whole SWI images. We used
sCMB during training and real lesions for testing, including a
different dataset. The main contribution of this paper is twofold:
(1) we investigated whether a new GAN model could create
synthetic CMB on SWI conditioned on location and volume
and (2) we investigated whether synthetic lesions generalize to a
new unseen dataset with a different population, MRI parameters,
and pathologies.

MATERIALS AND METHODS

Generative Adversarial Network
GAN have been introduced as a novel way to generate synthetic
data by Goodfellow et al. (2014). They consist of two competing
parts, a generator is trained to fool a discriminator by generating
fake images, while the discriminator is trained to distinguish
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between real and fake images. More formally, the generator
learns to transform a prior noise distribution pz(z) to the data
distribution pg(x). The discriminator classifies whether a data
sample has been generated from the generator (pg(x)) or from
the real dataset p(x). The generator parameters are optimized to
minimize log(1− D (G (z))), whereas those of the discriminator
are to maximize D(x) and 1− D(G (z)), following the two-player
min–max game with value function V (G, D):

min
G

max
D

V (G, D) = min
G

max
D

Ex∼pdata

[[
log(D(x)

]]
+Ez∼pz

[[
log(1− D(G (z))

]]
(1)

where D(x) represents the probability from the discriminator that
x belongs to the real data and D(G (z)) is the probability that the
discriminator classifies the generated synthetic data G (z) as real.
G and z refer to the generator and input noise, respectively.

Synthetic Microbleed Generation Using
LesionGAN
We hypothesized that the shape and the appearance of a CMB
depend on the surrounding tissues. We thus add as an input to
the generator a negative patch (a patch with no CMB randomly
sampled from the MRI datasets), where the synthetic CMB will
be added. We also include as an input to the generator the desired
CMB volume. The output of the generator is partial volume mask
G (z) of size 11 × 11 × 11, where the lesion is centered with
intensity between 0 and 1, whereas the background around the
lesion is equal to 1. The CMB mask G (z) can then multiply
the negative patch (provided to the generator as an input),
thereby creating a patch with a synthetic CMB (sCMB). The
discriminator is trained to classify whether its input is coming
from the generator (sCMB) or from a CMB patch of the same size
containing a real CMB (rCMB). Figure 1 describes this pipeline.

FIGURE 1 | Proposed conditional LesionGAN pipeline to generate sCMB. Z,
noise; C, condition; G(z), cerebral microbleed partial volume mask; Neg,
negative patch; G, generator; D, discriminator.

The generator is trained to generate a lesion whose volume
matches the input volume by adding a new loss:

Lossvolume =
1
N

N∑
i = 1

∣∣∣∣∣V
i
fake − V i

in

V i
in

∣∣∣∣∣ (2)

where V i
fake and V i

in are the ith fake and ith input volume,
respectively. V i

fake is computed by summing up 1-G(z) for each
generated synthetic CMB mask.

To enforce the sCMB mask to blend with the background
when multiplying by G(z), we force all the edge voxels of the mask
G(z) to be equal to 1 by adding a border loss:

Lossborder =
1
K

∑
(i,j,k)∈B

∣∣1− G(z)ijk
∣∣ (3)

where B is a set of the voxels on the border of G(z), and K is
the number of samples in B. Eventually, the total losses for the
generator and discriminator are:

LossG = min
G

(Ez∼pz(z)
[[

log(1− D (G (z, c)))
]]

)

+ Lossborder + Lossvolume (4)

LossD = maxD (Ex∼pdata(x)

[[
log(D(x))

]]
+ Ez∼pz(z)

[[
log(1− D(G(z, c)))

]]
) (5)

The final generator and discriminator networks are shown in
Figures 2A,B.

Cerebral Microbleeds Classifier
We trained a classifier to detect CMB from SWI images
(Figure 2C). It comprises three CNN layers (kernel size of
3) with 16, 32, and 64 feature maps, respectively, and three
fully connected layers with 10, 70, and 30 neurons (empirically
chosen after testing many combinations during validation on
a separate set of synthetic data). We used max pooling with
size 2, batch normalization, and 50% dropout. Data term
was binary cross-entropy optimized with Adam (Kingma and
Ba, 2017). Activation functions included rectified linear unit
(ReLU) and sigmoid (Ramachandran et al., 2017) as shown in
Figure 2C. The CMB classification performance is reported using
10-fold cross-validations (on the subjects) with an ensemble
average of 10 networks.

Dataset
Two datasets were used. The first one (DS1) is from the
Australian Imaging Biomarkers and Lifestyle (AIBL) dataset as
described in Momeni et al. (2021), and the second one (DS2) is
from the MICCAI Valdo challenge in 2021. The data comprising
DS1 are freely available online at https://doi.org/10.25919/aegy-
ny12.

Australian Imaging Biomarkers and Lifestyle Dataset
(DS1)
Approval for the study was obtained from the Austin Health
Human Research Ethics Committee and St. Vincent’s Health
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FIGURE 2 | The proposed LesionGAN generator, discriminator, and cerebral microbleed (CMB) classifier are shown. (A) Generator: G(z), generated CMB mask;
Neg, negative patch; CT3d (k,s,p), transposed convolution with kernel size, stride, and padding of k, s, p; C3d (k,s,p), convolutional layer with kernel size, stride, and
padding of k, s, p. Ch1, Ch2, and Ch3 are channel numbers set to {6,1,8}. ReLU is defined as an activation function for all layers. (B) The discriminator with
LeakyReLU and sigmoid as activation functions for hidden and last layers. The input patches for discriminator are augmented rCMB. (C) The CMB classifier with
ReLU and sigmoid function as applied activation functions for the hidden and last layers, respectively. FCL, fully connected layer; MP (k,s), max pooling with kernel
size and stride of k and s, respectively.

Research Ethics Committee, and written informed consent was
obtained. All subjects underwent an anatomical T1-weighted
(T1w) and a SWI acquisition on a 3-T Siemens TRIO scanner,
where SWI was reconstructed online using the scanner system
(software VB17). More details about the dataset can be found
in previous publications (Momeni et al., 2021). We considered
definite CMB for the true positive class. Table 1 shows a summary
of the data used.

MICCAI Valdo Challenge Dataset (DS2)
We used the MICCAI Valdo Challenge in 20211 to investigate
whether the synthetic lesion learnt from DS1 could generalize
to another dataset with different MRI parameters, subject
population, and pathologies. DS2 includes 72 scans with a
different resolution than that of DS1: 0.44 × 0.44 × 4 mm3.
Out of 72 scans, 50 have 235 marked CMB, while the remaining
22 have no CMB. We excluded one scan which had an unusual
number of lesions (72) compared to the rest of the patients (the
second and the third highest number of lesions were 26 and 20;
most have a few).

Distribution of Lesion Volume
To compute the volume of real lesions from DS1 and DS2,
for each rCMB patch (7 × 7 × 7), a mixture of distributions
comprising a Gaussian to model brain tissues and a uniform
distribution for modeling the outliers (blood vessels and CMB)
were fitted to the intensity histogram: we defined the intensity of

1https://valdo.grand-challenge.org/

the patch as G(, σ) + U(0, 255), with G and U being the normal
and uniform distribution, respectively, and optimized using the
expectation maximization method for µ and σ. A maximum
posterior classification created a mask of the lesion from which
the fraction of the CMB could be computed by using a standard
partial volume model and summation over all the pixel to obtain
the volume for the patch.

The real CMB volume distributions were similar in both
datasets. However, DS2 included lesions with larger volumes than
those in DS1, with a larger principal mode (1 mm3 for DS1 vs.
7 mm3 for DS2). When generating sCMB to train the classifier,
the distribution of volume was smoothed and limited to 80 mm3

for consistency between the two datasets. For DS2, a minimum
volume probability of 0.5% was used to guarantee that training
samples included all possible volumes between 0 and 80 mm3.
Figure 3 shows the real and smoothed volume distribution for
both DS1 and DS2.

Preprocessing
For DS1 and DS2, standard bias field correction and histogram
matching were applied (Momeni et al., 2021). Histogram
matching and resampling were done by using MRtrix
(mrhistmatch 3.0) and Mirror package2 with the same reference
image used for DS1 histogram matching. For DS2, the resolution
was interpolated to match DS1: 0.93 mm× 0.93 mm× 1.75 mm,
resulting in a final volume of 176× 256× 80 voxels.

2http://aehrc.github.io/Mirorr/
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TABLE 1 | Gathered information from DS1.

Data type Scan number AD/MCI/HC/unknown
CMB number AD/MCI/HC/unknown

Subject number/scan
number/CMB number

Age average (F/M) ± standard deviation

Whole dataset 44/38/151/4
46/43/144/2

141/263/235 74 ± 7/74 ± 4

At least one definite CMB 13/17/43/2
33/35/105/2

41/75/175 77 ± 8/76 ± 6

No CMB 22/15/81/2 70/146/0 73 ± 6/74 ± 8

Just possible CMB 9/6/27/0
13/8/39/0

30/42/60 74 ± 5/73 ± 3

F, female; M, male; AD, Alzheimer’s disease clinical diagnosis; MCI, mild cognitive impairment; HC, healthy control.

FIGURE 3 | The real and smoothed volume distribution from both DS1 (A) and DS2 (B) with green and red color, respectively. The black dash line shows the
distribution ultimately used to generate the sCMB from DS2.

RESULTS AND EXPERIMENTS

We investigated whether using the proposed sCMB for training
could improve the performance of the classifier for detecting
real lesions compared to other recent data augmentation
approaches. We then investigated whether the generator
trained with real lesions from DS1 could be used to train a
classifier to detect lesions from DS2 without the need for any
ground truth from DS2.

Training LesionGAN
In this experiment, 50% of subjects with possible CMB and
30% of subjects with no rCMB were used to train LesionGAN.
Real patches were augmented using rotation (90, 180, and
270◦) and flipping around the x, y, and z axes, resulting in
approximately 5,000 patches. Negative patches (Figure 1) were
selected randomly in locations with no real CMB present,
respecting the same distribution within and distance from brain
tissues as observed with real lesions (Momeni et al., 2021).
All inputs (negative patches and volume) were normalized
between 0 and 1. For the generator, latent variables were
randomly generated from a normal-centered distribution with
unit variance. The Adam optimizer (Kingma and Ba, 2017) was
used with parameters β1 = 0.5 and β2 = 0.999. A learning rate
of 0.0002 with 2,500 epochs and a batch size of 64 was used
for both generator and discriminator training. Figure 4 shows

examples of the generated sCMB for four different volumes and
10 different random noise.

To validate the volume condition, we generated 1,000 fake
CMB mask (G(z)) from the smoothed volume distribution shown
in Figure 3 and regressed the resulting G(z) volume with the
target volume provided as input to the generator. The result is
shown in Figure 5A with R-square of 97.99%.

Because we could generate as many lesions as desired,
we investigated the number of samples required to saturate
the performance of the classifier. Figure 5B shows that the
performance of the classifier did not improve beyond 20,000
samples (10,000 positives and 10,000 negatives) with an area
under the curve (AUC) of 0.9983. All experiments used 10-fold
cross-validation and an ensemble of 10 classifier networks.

Comparison of Data Augmentation
Models for Patch Classification
We classified patches with no CMB (Neg) and real CMB using
various data augmentation methods. In this part, all experiments
were done by using DS1 comprising 50% of the subjects with
possible CMB, 70% of the subjects with no lesion, and all the
subjects with definite rCMB.

We compared five data augmentation models: model 1: the
synthetic analytical model described by Momeni et al. (2021)
(M1-DS1-Analytical), model 2: GAN without any condition
(M2-DS1-GAN), model 3: GAN with the lesion volume as a
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FIGURE 4 | Samples of generated sCMB from our proposed LesionGAN model for different volumes. Each row shows different sCMB with 10 different noises for a
specific volume such as 5, 15, 20, and 30 mm3, respectively.

FIGURE 5 | (A) Linear regression model for the LesionGAN by deploying volume value as a condition. The black line is identity line; the blue line is the fitted linear
model (y = 1.07x - 1.28) between real and generated volumes. The green scatter points show the generated synthetic volume for each input volume. (B) Area under
the receiver operating characteristic curve from saturating the classifier by applying 60,000 samples in 30 steps, each step adding 2,000 samples.

condition (M3-DS1-CGAN), model 4: LesionGAN that includes
the background and volume as inputs to the generator (M4-
DS1-LesionGAN), and model 5: synthetic minority oversampling
technique (M5-DS1-SMOTE). For all models, data augmentation
resulted in 10,000 positive and 10,000 negative patches. The
results are from 10-fold cross-validations (on the subjects)
repeated five times with different data order and an ensemble of
10 networks. Training was done for 200 epochs with a learning
rate of 10−5 and a batch size of 128. The optimizer was Adam
with the same parameters as mentioned above. Figure 6 shows
the ROC and free-response receiver operating characteristic
(FROC) curves. Table 2 shows the specificity and number of FP
for 95% sensitivity.

In Table 2, the highest AUC was found for M4-DS1-
LesionGAN (AUC = 0.9996), followed by M3-DS1-CGAN
(AUC = 0.9995), M1-DS1-Analytical (AUC = 0.9992),
and M2-DS1-GAN (AUC = 0.9989), while the M5-DS1-
SMOTE (AUC = 0.9946) obtained the lowest AUC, whose
specificity dropped quickly above 98% sensitivity. Comparing
the specificity and number of FP for 95% sensitivity, the
order of the performance was as follows: M5-DS1-SMOTE,
M4-DS1-LesionGAN, M1-DS1-Analytical, M3-DS1-CGAN, and
M2-DS1-GAN. The two best models with similar results were

M5-DS1-SMOTE and M4-DS1-LesionGAN, and the latter had
the highest specificity score of ∼0.9990 and the lowest number
of FP∼0.051.

Whole Susceptibility-Weighted Imaging
Cerebral Microbleeds Classification
To evaluate the clinical application of lesion detection, CMB
detection was performed on whole MRI. Radial symmetry
transform (RST) (Loy and Zelinsky, 2003) was applied as a first
screening step to reduce the number of lesion candidates, using
a radius range of 1–4 and a radial strictness pixel of 2. The RST
filtering used a Gaussian kernel with standard deviation of 0.8
pixel. RST only missed one lesion overall (sensitivity of 99.43%)
and identified approximately 7,000 candidate locations for each
scan, down from about 750,000 possible locations per scan. The
results after applying a classifier trained using the different data
augmentation models are shown in Figure 7 with ROC and
FROC curves. Quantitative performances are summarized in
Table 3 for 95% sensitivity.

In Table 3, the highest AUC was obtained for both M3-
DS1-CGAN and M4-DS1-LesionGAN (AUC = 0.9996) followed
by M1-DS1-Analytical (AUC = 0.9990) and M2-DS1-GAN
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FIGURE 6 | Comparing receiver operating characteristic (ROC) (A) and free-response ROC (B) curves of five different training models for cerebral microbleed
classification on the patch after training on 20,000 samples. The bottom panel shows the zoomed version.

(AUC = 0.9987), while M5-DS1-SMOTE had the lowest
performance (AUC = 0.9918).

With respect to specificity and number of FP for 95%
sensitivity, the ranking of the models based on the performance
was as follows: M5-DS1-SMOTE, M4-DS1-LesionGAN, M3-
DS1-CGAN, M1-DS1-Analytical, and M2-DS1-GAN. All models
had a specificity above 0.99. M5-DS1-SMOTE obtained the
highest specificity score of ∼0.9989 and the lowest FP number
of 11. M4-DS1-LesionGAN and M3-DS1-CGAN reported similar

TABLE 2 | Results of cerebral microbleed patch classification.

Training model AUC Sensitivity (95%)

Spe Number of FP

M1-DS1-Analytical 0.9992 ± 7e− 4 0.9977 ± 1e− 3 0.091 ± 5e− 2

M2-DS1-GAN 0.9989 ± 4e− 4 0.9933 ± 3e− 3 0.283 ± 8e− 2

M3-DS1-CGAN 0.9995 ± 2e− 4 0.9965 ± 4e− 3 0.109 ± 8e− 2

M4-DS1-LesionGAN 0.9996 ± 2e-4 0.9989 ± 8e− 4 0.069 ± 4e− 2

M5-DS1-SMOTE 0.9946 ± 2e− 3 0.9990 ± 1e-10 0.051 ± 2e-12

Shown are the average ± standard deviation of five draws using DS1. AUC, area
under the receiver operating characteristic curve; Spe, specificity; FP, average
number of false positives per scan. Bold represents the best score for each criteria.

results with a specificity of 0.9980 and 0.9983 and FP of 22 and
20, respectively.

We computed the number of possible CMB that were detected
by each method for 95% sensitivity. The best method was M4-
DS1-LesionGAN with 118, followed by M3-DS1-CGAN (111),
M1-DS1-Analytical (110), and M2-DS1-GAN (108), while M5-
DS1-SMOTE detected the fewest (77).

Comparison With Other Works
In Table 4, we compare the performance of our classifier with
four other recent approaches using deep learning network (DLN).
Dou et al. (2016) used 3D convolutional neural network after
applying rotation, flipping, and translation to augment the
training data. Liu et al. (2019) applied 3D RST as a screening
method and used a convolutional neural network to detect CMB.
SWI and QSM, including the phase, were used. They reported
95.8% sensitivity, 1.6 FP, and 70.9% precision. Zhang et al. (2017)
used a sliding neighborhood and random undersampling with a
seven-layer DLN (including four sparse autoencoder layers) and
reported 95.3% sensitivity with 93.3% specificity. We estimated
492 FP from other results. For a fair comparison, we estimated
the results for the number of FP, specificity, and precision using
the same sensitivity reported by each of the corresponding
papers (Table 4).
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FIGURE 7 | Comparing receiver operating characteristic (ROC) (A) and free-response ROC (B) curves for cerebral microbleed classification on the whole SWI by
20,000 training samples. The bottom panel shows the zoomed version.

Our proposed LesionGAN method had more FP than the
original published works (Dou et al., 2016; Liu et al., 2019): 25.87
and 13.37 compared to 1.6 and 2.7, respectively, but based only on
SWI magnitude compared to multi-channel processing used by
the two references. Faryna et al. (2021) applied CMB classification
on two different training datasets. The first dataset included reals,
augmented reals, and synthetics, and the second was without
augmented reals. For the sensitivity of 90%, they reported 27.4
and 31.4 FP for the training dataset with and without augmented
reals, respectively. For the same sensitivity (90%), our model

TABLE 3 | Results of cerebral microbleed (CMB) classification on the whole SWI
training on 20,000 samples and test on the DS1.

Training model AUC Sensitivity (95%)

Spe Number of false
positive/scan

Number of
DPCMB

M1-DS1-Analytical 0.9990 0.9973 30 110

M2-DS1-GAN 0.9987 0.9964 40 108

M3-DS1-CGAN 0.9996 0.9982 20 111

M4-DS1-LesionGAN 0.9996 0.9980 22 118

M5-DS1-SMOTE 0.9918 0.9989 11 77

AUC, area under the receiver operating characteristic curve; Spe, specificity;
DPCMB, detected possible CMB. Bold represents the best score for each criteria.

resulted in a much higher specificity of 99.90% and fewer FP: 9.82.
Compared to that of Zhang et al. (2017), our model had fewer
FP and higher specificity with 23.24 and 99.78% compared to
the 492 and 93.3%, respectively. Our reported precision numbers
are in the low range of values, which means that the number
of FP from our method is high for each tested scan. By using
more complex classifier and multi-channel dataset as applied in
Liu et al. (2019), it should be possible to reduce the FP and
increase the precision.

Applying LesionGAN on Unseen MRI
Dataset
We tested our classifier to detect CMB on a new unseen dataset
(DS2). This is the most challenging case: detecting lesions using
a model trained from a completely different dataset than the one
used for training, in terms of scanner, MRI sequence, pathologies,
image resolution, and patient population. A total of 20,000
samples were used for training in a balanced scheme, with the
same classifier as described in section “CMB Classifier.”

First, we trained the classifier using DS1 and tested it
on DS2. Model 6 corresponds to CGAN (conditioned on
volume only: M6-DS1-CGAN), whereas model 7 corresponds to
LesionGAN (volume and background as conditions: M7-DS1-
LesionGAN). The classification results on the patch are shown
in Table 5 (left panel).
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TABLE 4 | State-of-the-art performance for cerebral microbleed (CMB) classification.

Reported results Our results using
(M4-DS1-LesionGAN) for the

same Sen as published

Method MRI Number of subjects/
number of CMB

Sen % Spe % Pre % Number of FP
per scan

Spe % Pre % Number of FPper scan

Liu et al. (2019) Complex
SWI, QSM

220/1641 95.8 N/A 70.9 1.6 99.79 0.798 25.87

Dou et al. (2016) SWI/3T 20/NA 93.1 N/A 44.1 2.7 99.88 14.02 13.37

Zhang et al. (2017) SWI/3T 10/NA 95.3 93.3 N/A 492a 99.78 0.867 23.24

Faryna et al. (2021) SWI 60/NA 90 N/A N/A 31.4, 27.4 99.90 16.47 9.82

Sen, sensitivity; Spe, specificity; Pre, precision; FP, false positive per scan.
a Inferred from other reported results. Bold represents the best score for each criteria.

TABLE 5 | Results of cerebral microbleed (CMB) patch classification.

Training on the sCMB from DS1, test on the DS2 Training on the sCMB from DS2, test on the DS2

Training model AUC Sensitivity (95%) Training model AUC Sensitivity (95%)

Spe Number of FP Spe Number of FP

M6-DS1-CGAN 0.9162 0.5574 10.68 M8-DS2-CGAN 0.9345 0.5034 11.98

M7-DS1-LesionGAN 0.9094 0.5298 11.37 M9-DS2-LesionGAN 0.9416 0.6625 8.13

M10-DS1-SMOTE 0.7881 0.2010 19.26

AUC, area under the receiver operating characteristic curve; Spe, specificity. Bold represents the best score for each criteria.

We then used the GAN trained on DS1 and made the synthetic
data (sCMB) using negative patches from DS2. Indeed, the
classifier was thus trained using patches from DS2, but with
synthetic lesions learnt from DS1. In other words, no ground
truth from DS2 was used for training the classifier to detect
lesions on DS2. The corresponding models are M8-DS2-CGAN
and M9-DS2-LesionGAN. The performances are reported in
Table 5 (right panel). Figure 8 shows the ROC and FROC curves
for all the configurations.

In Table 5, the highest AUC was obtained with M9-DS2-
LesionGAN (0.9416) and M8-DS2-CGAN (0.9345), followed
by M7-DS1-CGAN (0.9162) and M6-DS1-LesionGAN (0.9094),
revealing the effect of the different background and MRI
appearance on the classifier performance. The lowest AUC was
achieved by M10-DS1-SMOTE (0.7881), which performed poorly
on the new dataset DS2.

Comparing the specificity and number of FP for 95%
sensitivity, M9-DS2-LesionGAN had the best performance with
0.6625 specificity and 8.13 FP, followed by M6-DS1-CGAN
(0.5574 specificity and 10.68 FP) and M7-DS1-LesionGAN
(0.5298 specificity and 11.37 FP). Similarly, M10-DS1-
SMOTE had the worst performance, by far, with 0.2010
specificity and 19.26 FP.

To further compare performances, we applied the same
trained models on the whole MRI image from DS2. Figure 9
shows the ROC and FROC curves, and Table 6 presents the
result of CMB classification on the whole MRI image for DS2.
CMB screening was done on DS2 using RST with a radius range
and strictness degree adapted to take into account the different
resolution. The standard deviation threshold of RST was also

adapted to produce the same number of candidates as in DS1
(∼7,000 per scan).

Regarding Table 6 (left and right panels), the best
performance in terms of AUC was again achieved by M9-
DS2-LesionGAN (0.9980) and M8-DS1-CGAN (0.9975),
followed by M6-DS1-CGAN and M7-DS1-LesionGAN with
0.9971 and 0.9958, whereas the lowest AUC was achieved by
M10-DS1-SMOTE (0.9560).

In terms of specificity and number of FP for 95% sensitivity,
M6-DS1-CGAN was the best model, except when retraining
the classifier using DS2, for which M9-DS2-LesionGAN
was superior. M10-DS1-SMOTE obtained again the worst
performance with 0.6170 specificity and 480 FP.

In summary, to achieve less than 10 false positive detections
per scan, LesionGAN (M9-DS2-LesionGAN) had the best
sensitivity (84%), while standard augmentation techniques
(M10-DS1-SMOTE) could achieve no more than 60% (from
Figure 9B bottom panel).

DISCUSSION

We proposed a novel 3D conditional GAN model to create
synthetic microbleeds and to train a classifier (CNN) that
achieved high performance on both patch classification and
lesion detection from the whole SWI where it achieved less
than 10 false positive detections per scan with a sensitivity of
90% (FROC curve in Figure 7B). We applied our trained GAN
model on unseen MRI images and showed that it can generate
high-quality fake lesions without using any ground truth (real
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FIGURE 8 | Receiver operating characteristic (ROC) (A) and free-response ROC (B) curves for cerebral microbleed classification on the patch for unseen MRI
dataset (DS2).

FIGURE 9 | Receiver operating characteristic (ROC) (A) and free-response ROC (B) curves for cerebral microbleed classification on the whole unseen MRI image
(DS2). The bottom panel shows the zoomed version.

lesion) for training. The proposed synthetic data generation
model compared favorably to other data augmentation methods.

Some important features of our model are the use of GAN
conditions. We included the volume as a condition to force
the synthetic lesions to be created with a desired volume

distribution. This is important when the training data comprises
real lesions with a disease- or population-specific distribution
of volume—for example, in DS2, the lesions were bigger than
in DS1, and by sampling from the real DS2 distribution, we
could train a classifier specifically for DS2. A larger dataset

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 778767

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-778767 December 14, 2021 Time: 12:30 # 11

Momeni et al. 3D Lesion GAN Model

TABLE 6 | Results of cerebral microbleed (CMB) classification on the whole MRI image.

Training on the sCMB from DS1, test on the DS2 Training on the sCMB from DS2, test on the DS2

Training model AUC Sensitivity (95%) Training model AUC Sensitivity (95%)

Spe Number of FP/scan Spe Number of FP/scan

M6-DS1-CGAN 0.9971 0.9970 39 M8-DS2-CGAN 0.9975 0.9941 72

M7-DS1-LesionGAN 0.9958 0.9950 61 M9-DS2-LesionGAN 0.9980 0.9950 62

M10-DS1-SMOTE 0.9560 0.6170 480

AUC, area under receiver operating characteristic curve; Spe, specificity. Bold represents the best score for each criteria.

encompassing a broader range of demographics and diseases
would allow one to determine a distribution of lesion volumes,
presumably generalizing the performance of a lesion detector for
a broader clinical use. The second condition that improved the
performance in our experiments was to provide the background,
where the lesions will be added, to the generator so that lesions
could be adapted to the surrounding tissue. We hypothesized
that lesions close to a vessel, for example, might have a slightly
different shape or appearance compared to lesions close to sulci.
It was challenging to study whether this was true, but our results
(comparing the reported results in Tables 2, 3) show that the
extra information provided by the background improved the
classifier performance.

It is challenging to blend synthetic lesions to a healthy
background without creating artifacts that would be easily learnt
by a classifier. The early version created visible dark or bright
patch artifacts when the synthetic lesion mask G(z) multiplied
a brain location: the GAN would not converge to creating G(z)
with unity on the outer edge, thereby creating a visible step in
intensity. Adding a border loss solved this problem and, when
multiplying by G(z), the synthetic lesions blended completely
within the background.

Our proposed LesionGAN has advantages over similar
synthetic lesion methods. By using a multiplicative lesion mask
G(z), synthetic lesions could be added on any location of a healthy
scan with different shape and volume without requiring a binary
mask as proposed by others (Jin et al., 2018; Faryna et al., 2021).
As a result, the synthetic lesions generated are independent of
the accuracy of the real lesion segmentation used to produce the
binary masks. Compared to Faryna et al. (2021), by creating a 3D
lesion mask from sampling the latent space, there is no need for
translating patches, thus saving processing time. Our method is
also able to create multiple synthetic lesions for a given location.

In a previous work, we proposed to create synthetic lesion
using an analytical model. A Gaussian blob was randomized
to create a variety of shape and appearance (Momeni et al.,
2021). The advantage of the analytical model is the non-
reliance on ground truth segmentation, although in practice
the hyperparameters of the methods (e.g., Gaussian shape
parameters) were set up using observed real lesions. In contrast,
our proposed LesionGAN is parameter-free and learns the shape
and appearance of real lesion through the competition with
the discriminator.

False positive might reveal missed lesions by an expert.
Out of the 203 possible CMB from 75 scans marked by

experts in DS1, the highest number was detected from M4-
DS1-LesionGAN with 118 possible CMB, followed by M3-DS1-
CGAN, M1-DS1-Analytical, and M2-DS1-GAN with 111, 110,
and 108, respectively. In comparison, M5-DS1-SMOTE detected
only 77 lesions marked as possible. This suggests that our
proposed approach was able to generalize better than what linear
combination of real lesion (SMOTE) could do. It also suggests
that performance evaluation using cross-validation (train/test
split) overestimates the performance of methods relying only
on real lesions for training. Our experiments also demonstrate
that reporting performance on patches does not translate to the
performance needed to assess clinical use case. A detection on
whole scan, reporting FP per scan, with a cross-validation across
subjects should be preferred.

Our classifier performance compared favorably with published
studies. Two existing methods had better results (Dou et al.,
2016; Liu et al., 2019) but cannot be compared fairly. Dou
et al. (2016) adopted a complex classifier prone to overfitting,
especially when working with a small dataset (20 subjects). We
could not find any report of performance evaluation when a
method was trained and tested on a different cohort, like we
have described in this manuscript. Liu et al. (2019) reported
a very low number of FP (∼2), which is likely due to using
multiple MRI sequences (QSM and SWI), including the phase
information (four input channels). The extension of our method
to multiple MRI sequences would likely yield better performance
and will be part of future work. Moreover, it is difficult to compare
performance between methods because of the different diseases
considered: dementia, in our case, vs. stroke (Liu et al., 2019),
hemodialysis, and traumatic brain injury (Dou et al., 2016).
Ideally, each method should be tested on various diseases and
MRI acquisitions. However, compared to a recent CycleGAN
approach (Faryna et al., 2021), our synthetic data approach had
better performance: 9.28 FP per patient compared to 27.4 and a
higher specificity for the same sensitivity.

CONCLUSION

An adversarial generative model of microbleed can create
large training datasets with synthetic lesions and improve the
performance and generalization of lesion detection using deep
learning. We have proposed an approach that allows the creation
of a training dataset for a new unseen cohort with no need
for ground truth. We proposed a conditional GAN model to
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generate CMB masks. As inputs, to the generator, we included
background information and target volume so that the synthetic
lesions generated could be customized to location and volume.
The mask of the synthetic CMB blends within the background
at any new location allows one to create large datasets for
the training classifier. Those synthetic lesions can then be
added to any datasets without requiring any ground truth. By
including more information to the generator, we hypothesize
that synthetic lesions could be controlled for demographics, MRI
sequences, and pathologies, allowing even greater generalization
than what we studied in this manuscript, and is the focus of
our future work.
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