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With recent advances in the field of artificial intelligence (AI) such as binarized

neural networks (BNNs), a wide variety of vision applications with energy-optimized

implementations have become possible at the edge. Such networks have the first

layer implemented with high precision, which poses a challenge in deploying a uniform

hardware mapping for the network implementation. Stochastic computing can allow

conversion of such high-precision computations to a sequence of binarized operations

while maintaining equivalent accuracy. In this work, we propose a fully binarized

hardware-friendly computation engine based on stochastic computing as a proof of

concept for vision applications involving multi-channel inputs. Stochastic sampling is

performed by sampling from a non-uniform (normal) distribution based on analog

hardware sources. We first validate the benefits of the proposed pipeline on the CIFAR-10

dataset. To further demonstrate its application for real-world scenarios, we present a

case-study of microscopy image diagnostics for pathogen detection. We then evaluate

benefits of implementing such a pipeline using OxRAM-based circuits for stochastic

sampling as well as in-memory computing-based binarized multiplication. The proposed

implementation is about 1,000 times more energy efficient compared to conventional

floating-precision-based digital implementations, with memory savings of a factor of 45.

Keywords: stochastic computing (SC), binarized neural network (BNN), RRAM (resistive RAM), in-memory

computing (IMC), near-sensor computing

1. INTRODUCTION

Artificial intelligence (AI) and deep learning research have enabled innovative solutions for a wide
variety of vision applications at the edge. As a result, there has been increasing focus on developing
low-precision AI solutions while maintaining accuracy equivalent with floating-point precision
(Moons et al., 2017). With the emergence of binarized neural networks (BNNs), it has become
possible to map complex multiply-and-accumulate (MAC) operations to simple logic gates such as
exclusive-NOR (XNOR) and population count (popcount) operations. This simplification leads to
savings in energy, area and latency at the cost of a moderate loss in accuracy (Courbariaux et al.,
2016).

For most hardware BNNs demonstrated in literature, the input layer is typically implemented
either in floating-point or 8-bit integer (int8) precision, whereas the subsequent layers use binarized
neurons. In order to map all operations to a truly binarized pipeline, the computation of input
layer using stochastic sampling has been proposed (Lee et al., 2017). A fully binarized pipeline
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can allow executing computation at the edge, without relying
on network communication with high-performance compute
servers in order to perform floating-point computations (Zhou
et al., 2019). To further improve energy efficiency of such
technologies, near-sensor computing has been investigated
(Conti et al., 2018; Plastiras et al., 2018). Recently, stochastic
binary neural networks have been proposed for mono-channel
convolutional neural networks (CNNs) (Lee et al., 2017; Hirtzlin
et al., 2019) to enable near-sensor computing. Such networks can
be used for performing first-level computations for applications
such as remote sensing, material analysis, medical image analysis,
and so on (Hsu et al., 2019; Zhou and Chai, 2020).

A significant challenge of stochastic computing approaches,
however, is the generation of high-quality random numbers
with a low energy budget. Stochastic sampling for implementing
TRNG (True Random Number Generators) using analog
properties of circuits and devices has been studied in literature
in order to develop more secure as well as area-efficient
circuits (Jiang et al., 2017; Sahay et al., 2017; Jerry et al.,
2018; Qu et al., 2018; Guo et al., 2019; Park et al., 2019;
Huang et al., 2020; Simion, 2020). However, in most cases a
non-uniform distribution, i.e., normal or log-normal, has been
observed. Such distributions are attractive for applications such
as Bayesian learning (Lin et al., 2019; Malhotra et al., 2020),
Monte Carlo sampling (Dalgaty et al., 2021), or deep Boltzmann
machines (Parmar and Suri, 2020). Unfortunately, uniform
distribution, which is typically used for stochastic computing, is
normally obtained only by additional circuit overheads leading
to increased costs in terms of area and energy (Gong et al.,
2019).

In this paper, we propose a novel method for realizing
stochastic binary neural networks for performing classification
on RGB images. We first use the CIFAR-10 dataset for validation.
Then, to demonstrate a real-world application, we use the
proposed network for microscopy image analysis. Benefits of
implementing the proposed network based on emerging OxRAM
technology for both stochastic sampling as well as XNOR
computation are also analyzed in detail.

Key contributions of this work are as follows:

• Stochastic sampling at input layer based on normal
distribution is demonstrated for realizing stochastic binarized
convolutional neural network (SBCNN) with validation over
the CIFAR-10 dataset.

• The first demonstration of stochastic BNNs for microscopy
application, matching reported accuracy from literature with
large memory savings (≈45×) and energy savings (≈1000×)
compared to floating-point implementations.

The paper is organized as follows: Section 2.1 provides details on
the dataset. Section 2.2 describes the architecture of the proposed
SBCNN. Section 2.3 describes the architecture of a 2T-2R
OxRAM-based in-memory computing array. Section3.1 provides
analysis of performance of proposed SBCNN on the CIFAR-
10 and microscopy datasets, and also describes algorithm used
for implementing SBCNN-based pathogen detector. Section 3.2
compares performance of implemented network across multiple
computing platforms and also across memory technologies used

for implementing in-memory computing. Finally, in Section 4,
we summarize the conclusions of the study.

2. MATERIALS AND METHODS

2.1. Dataset Description
2.1.1. Automated Laboratory Diagnostics Dataset
The automated laboratory diagnostics dataset released by the
Artificial Intelligence Research Group, Makerere University,
Uganda (Quinn et al., 2016) has been used for this study. The
dataset incorporates images acquired using a mobile camera with
a microscope for the following diseases: malaria, tuberculosis,
and intestinal parasites. The malaria dataset contains images
taken from thick blood smears at 1,000× magnification,
with annotated plasmodium (7,245 objects in 1,182 images).
The tuberculosis dataset contains images taken from fresh
sputum and stained using ZN (Ziehl Neelsen) stain, at 1,000×
magnification, with annotated tuberculosis bacilli (3,734 objects
in 928 images). The intestinal parasites dataset contains images
taken from slides of a portion of stool sample examined under
400x magnification annotated with eggs of hookworm, Taenia
and Hymenolepsis nana (162 objects in 1,217 images) (Quinn
et al., 2016). Detailed description on number of training and test
samples, slice dimensions are provided in Table 1. Using these
images, we produced positive and negative sample images for
training a binary classification model that can detect the presence
of pathogen. Positive samples (i.e., those containing plasmodium,
bacilli, or parasite eggs, respectively) were produced by taking
the centered bounding boxes in the annotation of the dataset.
Negative samples in each image (i.e., in the absence of any of these
pathogens) were taken from random locations not intersecting
with any annotated bounding boxes. As dominant image areas
did not contain pathogen objects, the ratio of positive to negative
samples was highly skewed. Thus, some negative samples were
randomly discarded and new positive samples were created by
applying different transformations: rotation and flipping (Quinn
et al., 2016). Example training images used as input for training
the binary classifiers for each dataset are shown in Figure 1. The
produced sample images were then down-sized to 20 × 20 (for
malaria and tuberculosis) and 30× 30 (for intestinal parasites).

2.2. Proposed SBCNN Methodology
Stochastic BNN studies have been primarily limited to
single channels, usually on the MNIST dataset and uniform
distribution-based sampling (Lee et al., 2017; Hirtzlin et al.,
2019). Adapting stochastic BNN computation for multi-channel
RGB data for object detection requires optimizing the channel-
specific scaling (Krizhevsky et al., 2014). We propose a novel
multi-channel SBCNN architecture where a stochastic binary
convolutional layer is used as input layer to the BNN. To achieve
an efficient implementation, pre-processing of the RGB data is
first performed using mean-sigma normalization (Krizhevsky
et al., 2012):

Xr,i =
Xd,i − µi

σi
∈ (0, 1, 2). (1)
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FIGURE 1 | Microscopy image samples from dataset (Quinn et al., 2016) for diseases. (A) Malaria, (C) tuberculosis, and (E) intestinal parasite. Sample slices used for

training for classification network to detect pathogen: (B) Malaria, (D) tuberculosis, and (F) intestinal parasite.

TABLE 1 | Dataset samples used for experiments.

Dataset Train samples Test samples Slice dimensions Downsample ratio

Malaria 289,458 290,401 40×40 2

Tuberculosis 78,285 80,863 20×20 5

Intestinal parasite 1,508 1,439 60×60 10

FIGURE 2 | (A) Stochastic sampling for multi-channel input images based on normal distribution. (B) Modified AlexNet architecture used for CIFAR-10-based case

study. (C) CIFAR-10 dataset samples for each class.

Here, Xr,i denotes the normalized response, Xd,i denotes the
actual input, and i denotes the color channel. The dataflow is
shown in Figure 2. This type of rescaling is often used to enhance
the accuracy of deep neural networks.

Uniform distribution is generally accepted as the gold
standard for implementation of stochastic computing

(Alaghi and Hayes, 2013). However, capturing the response
of the rescaled RGB image based on sampling using a uniform
distribution may not always be efficient, as the rescaled pixels
may not have an absolute minimum and maximum value. Also,
as mentioned in Section 1, uniform distributions often require
additional post-processing circuitry in order to be generated
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FIGURE 3 | Variation in stochastic input representations based on Npre and for CIFAR-10 image sample by stochastic sampling using distributions: (A) Uniform and

(B) normal. Variation in stochastic input representations based on Npre and for ALD-AIR image sample by stochastic sampling using distributions: (C) Uniform and (D)

normal.

directly in hardware. Hence, we investigate stochastic sampling
from a normal distribution based on mean-sigma normalization
parameters. A single binary sample can be obtained as shown in
Equation (2).

Xb,i = Xr,i > randn(µi, σi) ∈ (0, 1, 2). (2)

Here, Xb,i, µi, σi denote binary sample value, mean, and standard
deviation for a pixel in channel i, respectively, while randn is
a random number obtained using a normal distribution. For a
single pixel, samples are collected as a stream of binary values
by repeated sampling for Npre presentations to better capture the
complete input range (shown in Figure 3):

Xm,i =

∑Npre

j=1 xb,i

Npre
. (3)

Here, Xm,i denotes summation of the stochastic samples stream.
The network architecture used throughout our study is

based on the AlexNet architecture (Krizhevsky et al., 2012)
with the output layer restricted to 10 neurons (multi-class
classification) for CIFAR-10 (Figure 2) and two neurons (binary
classification) for ALD-AIR dataset. The neural networks used
in the study were trained as per the method proposed by
et al. (Courbariaux et al., 2016). Both quantized and binarized

networks were explored to estimate the impact of precision. The
Adam optimizer (Kingma and Ba, 2014) was used for optimizing
the loss during training. To introduce stochastic computing in
the network, we build upon the method proposed by (Hirtzlin
et al., 2019). Representations of sample input images based on
stochastic presentations using uniform and normal distribution-
based sampling are shown in Figure 3 for both CIFAR-10 and
ALD-AIR datasets. Histograms of pixel-wise intensity across all
3 channels for sample images from each dataset are shown in
Figure 4.

Algorithm 1 | SBCNN inference algorithm.

Require: Input vector X, Weight matricesWn,
Bias vectors bn, #Layers L #Presentations N.

Ensure: Predicted output
Stochastic Layer

an = sign(popcount(XNOR(W0,X > rand)) - b0)

A0 = sign(
N∑

n=0
an)

Regular Layer

for i = 1; i < L; i = i++ do

Ai = sign(popcount(XNOR(Wi,Ai−1)) - bi)
end for
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FIGURE 4 | Histograms of pixel-value distribution over image samples from the datasets used in the study: (A–D) original image, (E–H) uniform distribution based

stochastic sampling, and (I–L) normal distribution-based stochastic sampling.

2.3. Hardware Implementation Based on
Emerging Memory Devices
The major hardware realizations for implementing proposed
SBCNN include stochastic sampling at input layer and
computation of BNN. In BNNs, weight values are one-bit
(weight can only take values −1 and +1), and neuron
activation is implemented by the sign function. Neuron output
is computed by

y = sign(popcount(XNOR(wj, xj))− b). (4)

Here, popcount is a function counting the number of ones,
and b is a learned neuron’s threshold. Besides reducing memory
requirements due to reduced precision, BNNs enable reduction
of computation logic circuit area, as digital multipliers can be
replaced by simple XNOR logic gates.

For realizing such computation in using emerging memory
devices in hardware, we introduced in previous studies (Bocquet
et al., 2018; Hirtzlin et al., 2020) a hybrid CMOS/OxRAM test

chip, where synaptic weights are stored in OxRAM (shown in
Figure 5D), and which utilizes the 2T-2R architecture (shown in
Figures 5A,C) to store synaptic weights in a differential fashion:
a device pair programmed in low resistance state (LRS)/high
resistance state (HRS) represents +1, and, conversely, HRS/LRS
represents −1. Pre-charge sense amplifiers (PCSAs) compare
the resistance states of the two paired devices, thus reading
the synaptic weight. An advantage of this approach is the
possibility of incorporating the XNOR operation utilized in
BNN computation directly within PCSA by the addition of
four transistors (shown in Figure 5H). Figures 5E,F presents
the methodology for implementing fully connected layers, by
minimizing data movement (Hirtzlin et al., 2019). Training
is performed off-chip, followed by weight programming and
inference operations. We use this implementation of BNN as a
reference in this work.

Emerging memory devices such as OxRAM devices have been
shown to demonstrate normal C2C ROFF distribution, which has
been exploited for stochastic sampling applications (Suri et al.,
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FIGURE 5 | (A) Stochastic neuron circuit based on OxRAM device used for input sampling. 2T-2R in-memory XNOR circuit for BNN computation. (B) C2C variability

observed in low resistance state (LRS) for the fabricated OxRAM device of (Dalgaty et al., 2021). (C) Memory array chip photograph. (D) OxRAM cell. (E) Binarized

neural network implementation highlighting connections to one specific neuron. (F) Implementation of binarized neural network in the “parallel to sequential”

configuration. (G) 2T-2R bitcell array. (H) Schematic of 2T-2R bit-cell for XNOR operation computation based on pre-charge sense amplifiers (PCSAs) (Hirtzlin et al.,

2019).

2015; Dalgaty et al., 2021). A circuit implementation for the
same is shown in Figure 5A. Each stochastic neuron accepts an
image pixel in form of voltage encoding that is compared with
the voltage drop across the OxRAM device, which is repeatedly
cycled from LRS to HRS. The intrinsic C2C RON variability
of the OxRAM device leads to a variable reference voltage
for the comparator. LRS variability of a fabricated OxRAM
device (Dalgaty et al., 2021) is shown in Figure 5B. This enables
translation of deterministic input voltage to a stochastic binary
neuron output.

3. RESULTS AND DISCUSSIONS

3.1. Simulation Results and Discussion
3.1.1. Case study A: CIFAR-10
To evaluate the proposed SBCNN for generic image classification
applications, we performed analysis using the CIFAR-10 dataset
(Krizhevsky et al., 2014). The Npre parameter used for training
was 32. A benchmarking of the proposed SBCNN is shown in
Table 2. For all stochastic computations, average results obtained
over five trials are listed.

The performance of our proposed method based on sampling
from normal distribution matches AlexNet closely (≈3%) even
using 32-bit floating point precision (FP32). In contrast, the
network based on sampling from uniform distribution results in
a higher accuracy drop (≈6%).

Npre is an important parameter to realize equivalent
accuracy with a reduced number of operations. To
understand the impact of this parameter, we also analyzed
two strategies:

• Max presentations: We train the network with a maximum
number of presentations (256) and infer with Npre

presentations.
• Matched presentations: Training and inference are performed

using the same Npre number of presentations.

Results of the analysis comparing these two strategies are
shown in Figures 6A–C. We analyzed the overall impact on
inference in terms of three parameters: (i) accuracy (%), (ii) mAP
(mean average precision), (iii) ROC AUC (receiver operating
characteristics area under curve). For all three parameters, the
performance of the matched presentations method is observed
to be consistently better than the max. presentations method.
The matched presentation method leads to accuracy values
that are close to Npre = 256 for all values of Npre. We also
observed that using matched presentation method with Npre =

8 showed equivalent accuracy as the max. presentations case
for Npre = 256. The matched presentation method, therefore,
appears vastly superior.

3.1.2. Case Study B: Microscopy
Point-of-Care (PoC) microscopy diagnostic support systems
for different diseases (e.g., malaria, tuberculosis, and intestinal
parasite infection) have been studied in detail with regard
to application of deep learning. However, most of the
implementations in the literature are based on conventional
CPUs (Yang et al., 2020), high-end GPUs (Quinn et al., 2016),
or FPGAs (Yokota et al., 2002; Grull et al., 2011). Recent
work has also explored possibility of realizing such PoC
systems using specialized ASIC accelerators with reduced
energy consumption (Sethi et al., 2018). Here, we present
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a case-study for the application of the proposed SBCNN
for microscopy image analysis for potential application
specific optimization with the goal of low-power/low-resource
edge realizations.

The AlexNet architecture was again used as reference
model for the study (Krizhevsky et al., 2012). We performed
analysis for FP-32, int8, as well as binary precisions and
plotted the results of both training as well as inference

TABLE 2 | Test accuracy benchmarking of different precision networks, simulated

in this study, for CIFAR-10 dataset.

Network description Input layer Test

precision accuracy (%) (Top-1)

AlexNet (FP-32 precision) FP-32 88.64

AlexNet (INT8 precision) INT8 87.57

AlexNet (BNN) INT8 86.92

SBCNN (uniform) (Npre = 32) Binary 82.89

*SBCNN (normal) (Npre = 32) Binary 85.61

accuracy in Figure 7. We observe the highest accuracy for
FP-32 and a consistent accuracy reduction when moving to
lower precision.

Further, we estimated performance for SBCNN with both
uniform and normal distribution-based sampling (Npre =

32). The results are also reported in Figure 7. We observe
increased or equivalent accuracy when transitioning from
uniform to normal distribution-based sampling. To further
optimize the network architecture given the lower complexity
of the task (i.e., binary classification), we reduced the network
depth by removing an intermediate linear layer leading to
increased memory savings. This modified network architecture
is referred to as reduced SBCNN. As observed in Figure 7,
the total accuracy drop between best-case FP32 and the
optimized reduced SBCNN is approximately 5%. Furthermore,
we can also observe that the impact of bit-precision trade-
off with accuracy is more pronounced for datasets with
less training data (malaria vs. tuberculosis). In case of
intestinal parasites dataset, this trend is reversed due to the
small size of the dataset resulting in overfitting, even with
reduced precision.

FIGURE 6 | Variation of network performance metrics with Npre for inference using stochastic binarized neural network (BNN) (AlexNet model) for CIFAR-10 dataset:

(A) Accuracy, (B) mean average precision, and (C) receiver operating characteristics area under curve. The results have been averaged over 5 iterations.

FIGURE 7 | Network precision and architecture analysis for microscopy diagnosis task. For all stochastic networks, training and inference is performed with Npre = 32.
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FIGURE 8 | Heatmaps generated based on sliding window-based detections using reduced stochastic binarized neural network (BNN) classifiers: (A) Malaria, (B)

tuberculosis, and (C) intestinal parasite. Detections on microscopy sample images: (D) Malaria, (E) tuberculosis, and (F) intestinal parasite. Red box indicates

network-based detection, and white box indicates ground truth. The Npre used for training and inference are 32.

FIGURE 9 | Receiver operating characteristics (ROC) curves for proposed stochastic binarized convolutional neural network (SBCNN):(normal distribution and

reduced layers): (A) Malaria, (B) tuberculosis, and (C) intestinal parasite. Precision recall curves for proposed SBCNN (normal distribution and reduced layers): (D)

Malaria, (E) tuberculosis, and (F) intestinal parasite.

After the training step described in Section 2.2, the classifiers
can be used for performing detection of pathogens using the
sliding window approach on microscopy images. As part of the

sliding window approach, the classifier output is summed over
the pixels of the window in order to generate a heat map. The
sliding windows have 50% overlap in both horizontal and vertical

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 781786

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parmar et al. Hardware-Efficient SBCNN for Near-Sensor Computing

FIGURE 10 | Variation of network performance metrics with Npre for stochastic binarized convolutional neural network (SBCNN) (reduced model) on microscopy

diagnosis task: (A) Accuracy, (B) mean average precision (mAP), and (C) ROC_AUC. Results have been averaged over 5 iterations.

TABLE 3 | Performance estimates of inference with multiple architectures for microscopy image analysis.

Network type Platform Weight memory (MB)
MAC ops (Mops)

Energy (µJ)
per inference

AlexNet (Float) GPU (RTX 2080) 217.42 1.47e5

AlexNet (int8)
ASIC (Eyeriss v2)

54.37 5.72e3
(Chen et al., 2019)

BNN

2T-2R IMC

7.53 15.24 7.98

Stochastic BNN 7.53 12.91 6.84

Reduced model 4.79 10.74 5.66

directions. Heat map outputs generated based on the sliding
windows are then normalized, followed by a threshold operation
in order to generate candidate regions in form of binary maps.
Bounding boxes are generated based on contour detection
performed over these binary maps. To improve detection quality,
non-maximal suppression was applied. Results for the detection
for each type of pathogen with corresponding heatmaps are
shown in Figure 8.

3.1.3. Learning Performance
We characterized the accuracy of all network architectures using
two metrics: ROC curve and precision-recall (PR) curve. ROC
curves are used to visualize the precision capacity of the network
by plotting TPR (true positive rate) and FPR (false positive rate)
as functions of threshold. A steep slope and concentration near
one demonstrate very high precision and, in turn, less chances
of false positives. For ROC curves, the AUC is measured as a
performance parameter. AUC equal to one is typically observed
for an ideal classifier, whereas AUC equal to 0.5 is observed for
classifiers with the worst performance (Hajian-Tilaki, 2013).

While such estimates for identifying positives are important,
it is also necessary to understand impact of false negatives.
Hence, PR curves are used. PR curves show the trade-off
between precision (1-FDR, where FDR means False Discovery
Rate) and recall (TPR). In case of an ideal curve, the precision
remains unchanged and at maximum until recall reaches one.
This curve also forms the basis for estimating mean average
precision (mAP).

ROC and PR curves for the experiments were calculated
by averaging performance parameters over five iterations for
stochastic networks. As shown in Figure 9, the smallest network
architecture is able to match the learning performance of FP-32
AlexNet.

3.1.4. Impact of Stochastic Presentations
In Figure 10, we analyze the impact of the Npre parameter used
during inference on the overall learning performance in terms
of (a) accuracy, (b) mAP, and (c) ROC AUC. When using
the presentations strategy, there is a minor trade-off in overall
learning performance (≈2%). The impact is more severe in case
of the smallest dataset (intestinal parasites), which would result
in over-fitting. When using the max. presentations strategy, we
observe an increasing trend in learning performance as the Npre

approach the value used for training.
From the analysis, we conclude that, for a practical

implementation,Npre = 8 would be sufficient. As can be observed
from Figure 7, training accuracy for all datasets is relatively
constant (≤4% difference) for all architectures. However, there
is a major trade-off in computation complexity and memory
requirement as shown in Table 3.

3.2. Performance Analysis: Memory,
Energy, and Delay
To compare the different architectures proposed in the study, we
estimated the number of operations and energy corresponding
to each network architecture for mapping them on the 2T-2R
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TABLE 4 | Benchmarking performance with respect to other literature studies for

implementation of binarized AlexNet.

Technology Energy/frame

(µJ)

References

DRAM

72,833.21 Li et al., 2017

3,427.83 Sudarshan et al., 2019

660.00 Jiang et al., 2017

SRAM 23.30 Yin et al., 2020

SOT-MRAM
561.30 Angizi et al., 2019

310.00 Fan and Angizi, 2017

OxRAM
2275.34 Tang et al., 2017

5.66 *This work

The value in bold refers to estimated value from the current work.

OxRAM XNOR bitcell array. As shown in Figure 5E, multiple
kilobit arrays of 2T-2R cells can be arranged in a matrix
structure in order to allow parallel computation. We assume
a 32×32 matrix of tiles of 32×32 2T-2R bitcell arrays (shown
in Figure 5G). Weight mapping is performed with respect to
the block matrix multiplication with the division of weights
having a block size of 32. For computation within each block,
it is assumed that only a single row can be computed in each
cycle, thus requiring 32 cycles for completing computation across
the complete block. Therefore, only a single five-bit look-up
table would be required for each block, leading to lower area
utilization. For performing energy estimations for float and int8
precisions, an Nvidia Turing GPU-enabled server and the Eyeriss
v2 chip (Chen et al., 2019) are used as reference platforms.
These two platforms store synaptic weights in off-chip dynamic
RAM. Furthermore, for stochastic computing implementation,
we assume that each input is sampled simultaneously from
the stochastic circuit shown in Figure 5A. Results comparing
implementations of networks with varying bit precisions are
described in Table 3. As shown in Table 3, converting a
conventional accelerator-based 8-bit computation to stochastic
binarized in-memory computation with Npre = 32 results in
savings of ≈1,000× in energy and ≈11× in memory. Reduced
version of the SBCNN offers savings of 36% in memory and
17% in energy, while still maintaining comparable accuracy.
A comparison of the proposed hardware with regard to other
techniques of the literature for implementing BNN hardware is
shown in Table 4.

4. CONCLUSION

In this study, we proposed a hardware-friendly stochastic
binarized convolutional neural network architecture for
performing energy-efficient near-sensor computing, using
stochastic sampling from non-uniform distributions. We first
validated the proposed implementation using the CIFAR-
10 dataset for generic classification applications. Next, we
investigated a case study for microscopy-based pathogen
detection. Accuracy of the optimized network proposed in
the study is similar to previous works with floating-point
precision but exhibits memory savings in the order of ≈45×.
We further analyzed the benefits of realizing such networks
using in-memory computing based on emerging non-volatile
memory devices. We studied in detail the impact on network
performance in terms of accuracy, energy due to levels of
quantization and network architecture changes. The proposed
architecture shows up to ≈1,000 × reduction in energy
and weight memory savings of ≈ 11× compared to the
standard architectures. An end-to-end methodology from
training algorithm to dedicated hardware implementation is
also discussed.
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