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With the advent of brain imaging techniques and machine learning tools, much effort

has been devoted to building computational models to capture the encoding of visual

information in the human brain. One of the most challenging brain decoding tasks

is the accurate reconstruction of the perceived natural images from brain activities

measured by functional magnetic resonance imaging (fMRI). In this work, we survey

the most recent deep learning methods for natural image reconstruction from fMRI.

We examine these methods in terms of architectural design, benchmark datasets,

and evaluation metrics and present a fair performance evaluation across standardized

evaluation metrics. Finally, we discuss the strengths and limitations of existing studies

and present potential future directions.
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1. INTRODUCTION

1.1. Visual Decoding Using fMRI
Many brain imaging studies focus on decoding how the human brain represents information about
the outer world. Considering that the majority of external sensory information is processed by the
human visual system (Logothetis and Sheinberg, 1996), a need for deeper understanding of visual
information processing in the human brain encourages building complex computational models
that can characterize the content of visual stimuli. This problem is referred to as human visual
decoding of perceived images and has gained increasing attention.

A great advancement in recent neuroscience research has been achieved through functional
magnetic resonance imaging (fMRI) (Poldrack and Farah, 2015; Nestor et al., 2020). The fMRI
technique captures neural activity in the brain by measuring variations in blood oxygen levels
(Ogawa et al., 1990; Bandettini, 2012). Among the various brain imaging techniques, fMRI is non-
invasive and has a high spatial resolution. These characteristics allow fMRI to be used in a wide
range of problems, including neurological disorder diagnosis (Rakhimberdina et al., 2020; Zhang
et al., 2020) and human visual decoding (Haxby et al., 2001; Kamitani and Tong, 2005; Horikawa
and Kamitani, 2017). The recent progress in human visual decoding has shown that beyond merely
encoding the information about visual stimuli (Poldrack and Farah, 2015), brain activity captured
by fMRI can be used to reconstruct visual stimuli information (Kay et al., 2008; Roelfsema et al.,
2018).

Based on the target task, human visual decoding can be categorized into stimuli category
classification, stimuli identification, and reconstruction (Naselaris et al., 2011). In classification,
brain activity is used to predict discrete object categories of the presented stimuli (Haxby
et al., 2001; Horikawa and Kamitani, 2017). The goal of identification is to identify a specific
stimulus corresponding to the given pattern of brain activity from a known set of stimuli images
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(Kay et al., 2008; Naselaris et al., 2011). In both identification
and reconstruction, we aim to recover image-specific details,
such as object position, size, and angle. However, reconstruction
is a more challenging task, in which a replica of the stimulus
image needs to be generated for a given fMRI signal (see
Figure 1). Furthermore, stimulus-related information encoded
in the fMRI activity, which allows high-accuracy identification,
may only partially characterize stimuli images and thus be
insufficient for proper image reconstruction (Kay et al., 2008; St-
Yves and Naselaris, 2018). With the development of sophisticated
image reconstruction methods and the increasing amount of
brain imaging data, more attention has been directed toward
visual stimuli reconstruction from fMRI activity in the visual
cortex (Miyawaki et al., 2008; Naselaris et al., 2009; van Gerven
et al., 2010). fMRI-based visual reconstruction can improve our
understanding of the brain’s visual processing mechanisms, and
researchers can incorporate this knowledge into the development
of brain–computer interfaces.

1.2. Natural Image Reconstruction
The variety of visual stimuli used in visual reconstruction
tasks can range from simple low-level detail images, such as
Gabor wavelets and domino patterns (Thirion et al., 2006),
to more elaborate images depicting alphabetical characters,
digits (van Gerven et al., 2010; Schoenmakers et al., 2013),
natural objects, and scenes (Haxby et al., 2001; Horikawa and
Kamitani, 2017). The image reconstruction task for low-level
detail stimuli does not require expressive models, and linear
mapping is usually sufficient for learning effective reconstruction
(Miyawaki et al., 2008). Among the variety of visual stimuli,
natural images are considered the most challenging, as they
require accurate reconstruction of color, shape, and higher-level
perceptual features.

Similar to Shen et al. (2019b), we refer to the task of
visual stimuli reconstruction from fMRI as natural image
reconstruction, where stimuli are drawn from a database of
natural images. The goal of neural decoding models is to learn
a mapping function f :V → X , where X and V denote two
sets corresponding to stimulus images and fMRI activity patterns
extracted from the visual cortex. A framework diagram for visual
reconstruction is shown in Figure 1.

The main challenges of natural image reconstruction include
the following. First, the reconstruction quality must be good

FIGURE 1 | Framework diagram for natural image reconstruction task. Images

are from ImageNet dataset (Deng et al., 2009).

enough to capture the similarity between reconstructed and
original images on multiple levels. In contrast to low-resolution
image stimuli, such as shape or character patterns, good-quality
reconstruction of natural images requires that both lower-
level details and high-level semantic information be preserved.
Second, brain’s visual representations are invariant to different
objects or image details, which is essential for object recognition,
but imply that brain activation patterns are not necessarily
unique for a given stimulus object (Quiroga et al., 2005; St-
Yves and Naselaris, 2018). Finally, the lack of a standardized
evaluation procedure for assessing the reconstruction quality
makes it difficult to compare the existing methods. In this work,
we will primarily focus on the solution to the third challenge.

1.2.1. Contributions
The topic of natural image reconstruction from fMRI is relatively
new and has attracted much interest over the last few years. The
related surveys on the field of natural encoding and decoding
of visual input give a broad overview of the existing techniques
to extract information from the brain (Roelfsema et al., 2018;
Nestor et al., 2020) and focus on the traditional machine
learning methods (Chen et al., 2014). To our knowledge, there
is no comprehensive survey on the topic of natural image
reconstruction from fMRI using deep learning. Given the lack
of a standardized evaluation process in terms of the benchmark
dataset and standardmetrics, our main contribution is to provide
the research community with a fair performance comparison for
existing methods.

In this survey, we provide an overview of the deep learning-
based natural image reconstruction methods. We discuss the
differences in architecture, learning paradigms, and advantages
of deep learningmodels over traditional methods. In addition, we
review the evaluation metrics and compare models on the same
benchmark: the same metrics and the same dataset parameters.
The proposed standardized evaluation on a common set of
metrics offers an opportunity to fairly evaluate and track new
emerging methods in the field.

The rest of this paper is organized as follows. In sections 2
and 3, we introduce popular publicly available datasets for natural
image reconstruction and review recent state-of-the-art deep
learning models for natural image reconstruction, respectively.
Then, we provide an overview of the evaluationmetrics in section
4, and presents a fair comparative evaluation of the methods in
section 5. Finally, we discuss the main challenges and possible
future directions of this work in section 6. Section 7 concludes
the paper.

2. BENCHMARK DATASETS

This section summarizes the publicly available benchmark
datasets used in deep learning-based natural image
reconstruction from fMRI activity. While there exist a variety
of datasets used for stimuli reconstruction, such as binary
contrast patterns (BCP) (Miyawaki et al., 2008), 69 dataset of
handwritten digits (van Gerven et al., 2010), BRAINS dataset
of handwritten characters (Schoenmakers et al., 2013), we focus
on the datasets with higher level of perceptual complexity of
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TABLE 1 | Characteristics of benchmark datasets.

References Dataset Number of

subjects

Image stimuli

train/test

Repetition time

train/test

ROIs

VanRullen and Reddy (2019) Faces 4 88/20 n/a n/a

Kay et al. (2008) vim-1 2 1,750/120 2/13 V1, V2, V3, V4, LO

Horikawa and Kamitani (2017) Generic object decoding 5 1,200/50 1/35 V1, V2, V3, V4, LOC,

FFA, PPA

Shen et al. (2019b) Deep image reconstruction

Natural images 3 1,200/50 5/24

Artificial shapes 3 0/40 0/20

Alphabetical letters 3 0/10 0/12

presented stimuli: dataset of faces, grayscale natural images, and
natural images from Imagenet. Each sample of these datasets
represents a labeled pair—fMRI recording paired with the
relevant stimuli image. Several distinctive characteristics of each
dataset are presented in Table 1.

Faces. VanRullen and Reddy (2019) used facial stimuli to
reconstruct human faces from fMRI activity using deep neural
networks1. The facial stimuli were drawn randomly from the
CelebA dataset (Liu et al., 2015), and four healthy subjects
participated in the experiment. The samples of stimuli images are
shown in Figure 2A.

vim-1 dataset of grayscale natural images was acquired
to study how natural images are represented by the human
visual system2 (Kay et al., 2008). The stimuli comprise a set of
1870 grayscale 500 × 500 pixels natural images of real-world
objects, animals, and indoor and outdoor scenes (the samples
are shown in Figure 2B). Natural images were obtained from
the Corel Stock Photo Libraries (Corel Corporation, 1994), the
Berkeley database of human segmented natural images3 (Martin
et al., 2001), and an image collection from the authors. Two
healthy subjects with normal or corrected-to-normal vision were
involved in the fMRI data acquisition.

Natural images from imagenet. Two natural image
datasets released by Kamitani Lab are widely used in
image reconstruction. The first dataset, also known as the
Generic Object Decoding4 dataset or GOD for short,
was originally used by Horikawa and Kamitani (2017) for the
image classification task from the fMRI data and was later
adopted for image reconstruction (Beliy et al., 2019; Ren et al.,
2021). The dataset consists of pairs of high-resolution 500 ×

500 pixels stimuli images (see Figure 2C) and the corresponding
fMRI recordings. fMRI scans were obtained from five healthy
subjects; the stimuli images were selected from the ImageNet
dataset (Deng et al., 2009) and span across 200 object categories.

1The fMRI dataset is available at https://openneuro.org/datasets/ds001761.
2The dataset is available at http://crcns.org/data-sets/vc/vim-1.
3https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

segbench/
4The dataset can be acquired from http://brainliner.jp/data/brainliner/Generic_

Object_Decoding.

FIGURE 2 | Samples for natural stimuli: (A) images from Faces dataset

(VanRullen and Reddy, 2019); (B) grayscale natural images from vim-1

dataset (Kay et al., 2008); (C) natural images from GOD (Horikawa and

Kamitani, 2017) and DIR (Shen et al., 2019b) datasets.

The second dataset based on the natural image dataset was
acquired for the image reconstruction task (Shen et al., 2019a,b).
It is publicly available at OpenNeuro5, where it is cited as Deep
Image Reconstruction. We refer to this dataset as Deep
Image Reconstruction or DIR for short. The DIR dataset
contains 1,250 stimuli images that are identical to the ones used
in GOD. Because of different image presentation experiments, in
which training and test image stimuli were repeated 5 and 24
times respectively, the training set of the DIR dataset consists
of a larger number of stimuli-fMRI pairs (5 × 1,200 samples)
compared to the GOD. Three healthy subjects were involved in the
image presentation. An appealing feature of this dataset is that, in
addition to natural images, the dataset contains artificial shapes
and alphabetical letters. The artificial shapes dataset consists of 40
images—a combination of eight colors and five geometric shapes.
The alphabetical letters dataset consists of 10 letters (A, C, E, I, N,
O, R, S, T, U) of consistent brightness and color.

5https://openneuro.org/datasets/ds001506/versions/1.3.1
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3. DEEP LEARNING-BASED APPROACHES
FOR NATURAL IMAGE RECONSTRUCTION

Before deep learning, the traditional methods in natural image
reconstruction estimated a linear mapping from fMRI signals to
hand-crafted image features using linear regression models (Kay
et al., 2008; Naselaris et al., 2009; Fujiwara et al., 2013). These
methods primarily focus on extracting predefined low-level
features from stimulus images, such as local image structures or
features of Gabor filters (Beliy et al., 2019; Fang et al., 2020).

In recent years, deep neural networks (DNNs) have
significantly advanced computer vision research, replacing
models based on hand-crafted features. In particular, DNN
models have achieved better accuracy and improved image
quality in various computer vision tasks, including image
classification (Krizhevsky et al., 2012), image segmentation
(Chen et al., 2015), and image restoration (Zhang et al., 2017).
In visual decoding tasks using brain imaging data, deep learning
approaches have been applied to image classification (Haxby
et al., 2001; Horikawa and Kamitani, 2017), object segmentation
(Kamnitsas et al., 2017), and natural image reconstruction (Shen
et al., 2019a,b). They were shown to be more powerful than
traditional methods (Kriegeskorte, 2015; Zhang et al., 2020)
primarily due to the multilayer architecture allowing to learn
non-linear mappings from brain signals to stimulus images
(Beliy et al., 2019; Shen et al., 2019a).

Motivated by the success of deep learning in image generation,
many recent studies have widely used DNN models in natural
image reconstruction for several reasons. First, the deep learning
framework conforms to some degree to the visual encoding–
decoding process occurring in the hierarchical regions of the
human visual system (Pinto et al., 2009; Krizhevsky et al.,
2012; Schrimpf et al., 2018). Second, the application of deep
generative models allows the synthesis of high-quality natural-
looking images, which is achieved by learning the underlying data
distribution (Goodfellow et al., 2014). Additionally, the training
process can be aided by models pretrained on larger image
datasets (Shen et al., 2019a,b).

In this section, we present the evolution of the state-of-the-art
deep learning-based methods for natural image reconstruction.
We analyze them in terms of DNN architecture, use of
pretraining, and the choice of the dataset. The most popular
deep learning models used in natural image reconstruction
tasks include non-generative methods such as convolutional
neural networks, encoder–decoder-based frameworks (Kingma
and Welling, 2014); and generative methods, such as adversarial
networks (Goodfellow et al., 2014) and variational autoencoders
(Larsen et al., 2016). A comparison of the surveyed methods is
presented in Table 2.

3.1. Non-generative Methods
3.1.1. Convolutional Neural Network (CNN)
Compared to a simpler multilayer feed-forward neural network,
which disregards the structural information of input images,
the CNN has a better feature extraction capability because
of the information filtering performed by convolutional layers
within a neighborhood of pixels (LeCun et al., 1989). Stacking

convolutional layers on top of each other allows learning
hierarchical visual features of input images, known as feature
abstraction. The lower CNN layers learn low-level details,
whereas the higher CNN layers extract global high-level visual
information from images (Mahendran and Vedaldi, 2015).
The use of CNNs is ubiquitous in image processing tasks,
including image reconstruction. Specifically, encoder–decoder
(Beliy et al., 2019; Gaziv et al., 2020), U-Net (Fang et al., 2020),
generative adversarial network (Goodfellow et al., 2014), and
variational autoencoder (Kingma andWelling, 2014) are popular
architectures that adopt stacked convolutional layers to extract
features at multiple levels.

Shen et al. (2019b) utilized a pretrained VGG-19-based
DNN to extract hierarchical features from stimuli images (see
Figure 3A). The DNN consists of sixteen convolutional layers
followed by three fully connected layers. This method was
motivated by the finding that hierarchical image representations
obtained from different layers of deep neural network correlate
with brain activity in the visual cortex (Eickenberg et al., 2017;
Horikawa and Kamitani, 2017). Using this fact, one can establish
a hierarchical mapping from fMRI signals in the low/high-
level areas of visual cortices to the corresponding low/high-level
features from the DNN. For this task, the authors implemented a
feature decoder D that maps fMRI activity patterns to multilayer
DNN features. The decoder D is trained on the train set
before the reconstruction task, using the method from Horikawa
and Kamitani (2017). These decoded fMRI features correspond
to the hierarchical image features obtained from DNN. The
optimization is performed on the feature space byminimizing the
difference between the hierarchical DNN features of the image
and multilayer features decoded from fMRI activity.

3.1.2. Deterministic Encoder–Decoder Models
In deep learning, encoder–decoder models are widely used in
image-to-image translation (Isola et al., 2017) and sequence-to-
sequence models (Cho et al., 2014). They learn the mapping
from an input domain to an output domain via a two-stage
architecture: an encoder E that compresses the input vector x

to the latent representation z = E(x) and a decoder y = D(z)
that produces the output vector y from the latent representation
z (Minaee et al., 2021). The compressed latent representation
vector z serves as a bottleneck, which encodes a low-dimensional
representation of the input. The model is trained to minimize
the reconstruction error, which is the difference between the
reconstructed output and ground-truth input.

Beliy et al. (2019) presented a CNN-based encoder–decoder
model, where the encoder E learns the mapping from stimulus
images to the corresponding fMRI activity, and a decoder D
learns the mapping from fMRI activity to their corresponding
images. The framework of this method, which we refer to
as BeliyEncDec, is presented in Figure 4. By stacking the
encoder and decoder back-to-back, the authors introduced
two combined networks E-D and D-E, whose inputs and
outputs are natural images and fMRI recordings, respectively.
This allowed the training to be self-supervised on a larger
dataset of unlabeled data. Specifically, 50,000 additional images
from the ImageNet validation set and test fMRI recordings
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TABLE 2 | Comparative table of the surveyed works.

Method References Datasets Loss E2E Pre-training Public code

SeeligerDCGAN Seeliger et al., 2018

BRAINS

vim-1

GOD

MAE

MSE
No

Generator pre-trained on ImageNet

(Chrabaszcz et al., 2017), Microsoft COCO

Lin et al., 2014, datasets from Maaten (2009)

and Schomaker et al. (2000). AlexNet-based

Comparator trained on ImageNet.

No

StYvesEBGAN St-Yves and Naselaris, 2018 vim-1
MSE

Adv
No

The denoiser and generator were pretrained

on 32 × 32 color images from the CIFAR-10

dataset (Krizhevsky, 2009)

yes

ShenDNN(+DGN) Shen et al., 2019a

DIR:

Natural images,

Artificial shapes,

Alphabetical letters

MSE No
VGG-19 pre-trained on ImageNet.

Pre-trained DGN (Dosovitskiy and Brox, 2016).
yes

ShenGAN Shen et al., 2019b

DIR:

Natural images,

Artificial shapes,

Alphabetical letters

MSE

Adv
Yes

Caffenet-based Comparator pre-trained

on ImageNet
yes

BeliyEncDec Beliy et al., 2019
GOD

vim-1

MSE

Cos

MAE

No Pretrained AlexNet-based encoder yes

VanRullenVAE-GAN VanRullen and Reddy, 2019 Faces
MSE

Adv
No Pre-trained on CelebA dataset yes

GazivEncDec Gaziv et al., 2020
GOD

vim-1

MSE

Cos

MAE

No Pretrained AlexNet-based encoder No

QiaoGAN-BVRM Qiao et al., 2020 vim-1 MSE No
Generator of BigGAN pre-trained

on ImageNet
partially

FangSSGAN Fang et al., 2020
DIR:

Natural images

MAE

Adv
No - partially

MozafariBigBiGAN Mozafari et al., 2020 GOD Adv No BigBiGAN pre-trained on ImageNet No

RenD-VAE/GAN Ren et al., 2021

BCP

6-9

BRAINS

GOD

KL

Adv
No

Model pre-trained on external

data from ImageNet
No

E2E represents end-to-end training. Loss denotes the loss function (MAE, mean absolute error; MSE, mean squared error; KL, KL divergence; Adv, adversarial loss; Cos, cosine similarity.

The links to the source code are valid as of November, 2021.

without stimulus pairs were used as unlabeled natural images
and unlabeled fMRI samples. The authors demonstrated the
advantage of their method by achieving competitive results on
two natural image reconstruction datasets: Generic Object
Decoding (Horikawa and Kamitani, 2017) and vim-1 (Kay
et al., 2008). The training was conducted in two steps. In the
first step, the encoder E builds a mapping from stimulus images
to fMRI activity. It utilizes the weights of the first convolutional
layer of the pretrained AlexNet (Krizhevsky et al., 2012) and is

trained in a supervised manner to predict fMRI activity for input
images. In the second step, the trained encoder E is fixed, and the
decoderD is jointly trained using labeled and unlabeled data. The
entire loss of the model consists of the fMRI loss of the encoder E
and the Image loss (RGB and features loss) of the decoder D.

In a follow-up study, Gaziv et al. (2020) improved the
reconstruction accuracy of BeliyEncDec by introducing a loss
function based on the perceptual similarity measure (Zhang et al.,
2018). To calculate perceptual similarity loss, the authors first
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FIGURE 3 | Overview of two variations of frameworks proposed by Shen et al.

(2019b): (A) ShenDNN and (B) ShenDNN+DGN. The yellow color denotes the

use of pretrained components.

FIGURE 4 | BeliyEncDec framework proposed by Beliy et al. (2019): (A)

supervised training of the Encoder; (B) supervised and self-supervised training

of the Decoder. The weights of the Encoder are fixed. The blue color denotes

the components of the model trained on external unlabeled data. The image is

adapted from Beliy et al. (2019). Images are from ImageNet dataset (Deng

et al., 2009).

extracted multilayer features from original and reconstructed
images using VGG and then compared the extracted
features layerwise. To distinguish it from BeliyEncDec,
we refer to the framework proposed by Gaziv et al. (2020)
as GazivEncDec.

3.2. Generative Methods
Generative models assume that the data is generated from some
probability distribution p(x) and can be classified as implicit and
explicit. Implicit models do not define the distribution of the
data but instead specify a random sampling process with which
to draw samples from p(x). Explicit models, on the other hand,
explicitly define the probability density function, which is used to
train the model.

3.2.1. Generative Adversarial Network (GAN)
A class of implicitly defined generative models called Generative
adversarial networks (GANs) received much attention due to
their ability to produce realistic images (Goodfellow et al.,
2014). In natural image reconstruction, GANs are widely
used to learn the distribution of stimulus images. A GAN
contains generator and discriminator networks. In the image
generation task, the generator G takes a random noise vector z
(generally sampled from a Gaussian distribution) and generates
a fake sample G(z) with the same statistics as the training
set images. During training, the generator’s ability to generate
realistic images continually improves until the discriminator
is unable to distinguish the difference between a real sample
and a generated fake one. GAN-based frameworks have several
desirable properties compared to other generative methods.
First, GANs do not require strong assumptions regarding the
form of the output probability distribution. Second, adversarial
training, which uses the discriminator, allows unsupervised
training of the GAN (St-Yves andNaselaris, 2018). An illustration
of GAN and details on GAN’s loss function are provided in
Supplementary Material.

To ensure that reconstructions resemble natural images Shen
et al. (2019b) further modified their ShenDNN method by
introducing a deep generator network (DGN) (Dosovitskiy and
Brox, 2016). The framework is shown in Figure 3B. A DGN,
pretrained on natural images using the GAN training process,
is integrated with the DNN to produce realistic images, and
the optimization is performed on the input space of the DGN.
Thus, the reconstructed images are constrained to be in the
subspace of the images generated by the DGN. We refer to these
framework variations without and with DGN as ShenDNN and
ShenDNN+DGN in future references.

Similar to Shen et al. (2019b), Fang et al. (2020) based
their work on the finding that visual features are hierarchically
represented in the visual cortex. In the feature extraction
step, the authors proposed two decoders, which extract shape
and semantic representations from the lower and higher areas
of visual cortex. The shape decoder Dsp is a linear model,
and the semantic decoder Dsm has a DNN-based architecture
(Figure 5A). In the image reconstruction step, the generator
network G was trained with GAN using the extracted shape and
semantic features as conditions for generating the images. We
refer to this model as FangSSGAN, where SSGAN stands for
the shape and semantic GAN. The generator G is a CNN-based
network with an encoder–decoder structure (Ronneberger et al.,
2015). To enhance reconstruction quality, approximately 1,200
additional images, different from those in the training/test set,
were sampled from the ImageNet dataset to generate augmented
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FIGURE 5 | GAN-based frameworks. (A) FangSSGAN framework utilized a semantic decoder Dsm and a shape decoder Dsp. (B) ShenGAN framework introduced a

comparator network C. (C) StYvesEBGAN framework consists of three components trained independently: an encoding model EV , denoising autoencoder and

EC–DC and a conditional GAN. (D) SeeligerDCGAN framework based on deep convolutional GAN. (E) Framework proposed by Mozafari et al. (2020). (F)

QiaoGAN-BVRM framework consists of four parts: a classifier, pretrained conditional generator, encoder, and evaluator network. For (A–F), the pretrained

components of the framework are highlighted in yellow. The blue color of the components indicates that they were trained using additional data. Images are from

ImageNet dataset (Deng et al., 2009).

data. These new images were used to generate shapes and
category-average semantic features that were further passed into
the GAN.

Another GAN-based model was proposed by Shen et al.
(2019a). The end-to-end model directly learns the mapping
from fMRI signals to reconstructed images without intermediate
transformation or feature extraction (see Figure 5B). The
framework, which we refer to as ShenGAN, was trained using
three convolutional neural networks: a generatorG, a comparator

C, and a discriminator D. The generator G maps the fMRI data
vector v to G(v), and a discriminator D distinguishes between
reconstruction G(v) and the original image x. A comparator
network C is pretrained on ImageNet (on image classification
task) and used to compare the reconstruction G(v) with the
original image x by calculating the perceptual loss (similarity
in feature space). The combined loss function is a weighted
sum of three terms: loss in image space, perceptual loss and
adversarial loss.
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The GAN-based methods described so far enhanced the
quality of reconstruction by generating more natural-looking
images. However, although GANs can generate new plausible
samples matching the distribution of samples in the training
dataset, they do not allow to control any characteristics of
the generated data (Langr and Bok, 2019). To solve this
issue, St-Yves and Naselaris (2018) implemented the conditional
generation of images using a variation of GAN called the
energy-based condition GAN or EBGAN (Zhao et al., 2017).
In their framework, which we refer to as StYvesEBGAN,
the authors first implement the encoding model EV to learn
the mapping from stimulus to fMRI, as shown in Figure 5C.
In addition, StYvesEBGAN utilizes a denoising autoencoder
to compress noisy high-dimensional fMRI representations into
lower-dimensional representations. These lower-dimensional
fMRI representations are further used as a condition vector for
the GAN to reconstruct the stimuli. EBGAN is a more stable
framework in terms of training than regular GANs. Instead
of a binary classifier, it uses a deep autoencoder network as
a discriminator. The authors observed that the reconstruction
quality is highly dependent on the voxel denoising autoencoder,
which produces a conditioning vector that results in the best
reconstruction accuracy.

A group of studies by Seeliger et al. (2018), Mozafari et al.
(2020), and Qiao et al. (2020) utilized GAN architecture with
the assumption that there is a linear relationship between
brain activity and the latent features of GAN. Similar to
ShenDNN+DGN, these methods adopted the generator of a
pretrained GAN as a natural image prior, which ensures
that the reconstructed images follow similar distributions as
natural images.

Seeliger et al. (2018) used a deep convolutional GAN
(DCGAN) architecture (Radford et al., 2016), which introduced
improvements by stacking convolutional and deconvolutional
layers. The authors learn the direct linearmapping from the fMRI
space to the latent space of GAN (see Figure 5D). For the natural
stimuli image domain, the generator G was pretrained on down-
sampled 64 × 64 converted-to-grayscale images from ImageNet
(Chrabaszcz et al., 2017) and Microsoft COCO (Lin et al.,
2014) datasets. For the handwritten character stimulus domain,
DCGAN was pretrained on 15,000 handwritten characters from
Maaten (2009) and Schomaker et al. (2000). Also, a pretrained
comparator network C, based on AlexNet, was introduced as a
feature-matching network to compute the feature loss Lfeat across
different layers. Overall, the loss is computed as a weighted sum
of the pixelwise image loss Limg (MAE) and feature loss Lfeat . We
refer to this framework as SeeligerDCGAN.

Mozafari et al. (2020) used a variation of GAN, called
the BigBiGAN model (Donahue and Simonyan, 2019), which
allowed the reconstruction of even more realistic images.
The model generates high-level semantic information due to
the BigBiGAN’s latent space, which extracts high-level image
details from fMRI data. We refer to this framework as
MozafariBigBiGAN. The framework utilizes a pretrained
encoder E that generates a latent space vector E(x) from the input
image x and generator G that generates an image G(z) from the
latent space vector z (see Figure 5E). During training, the authors

computed the linear mappingW from latent vectors E(x) to fMRI
activity using a general linear regression model. During the test
stage, the linearmapping is inverted to compute the latent vectors
z from the test fMRI activity.

The GAN-based Bayesian visual reconstruction model (GAN-
BVRM) proposed by Qiao et al. (2020) aims to improve the
quality of reconstructions from a limited dataset combination
and, as the name suggests, uses the combination of GAN and
Bayesian learning. From Bayesian perspective, a conditional
distribution p(v|x) corresponds to an encoder which predicts
fMRI activity v from the stimuli image x. On the other hand,
an inverse conditional distribution p(x|v) corresponds to a
decoder that reconstructs the stimuli from the fMRI activity.
The goal of image reconstruction is to find the image that
has the highest posterior probability p(x|v), given the fMRI
activity. However, since the posterior distribution is hard to
compute, Bayesian theorem is used to combine encoding model
p(v|x) and image prior p(x) through p(x|v) ∝ p(x)p(v|x).
The prior distribution p(x) reflects the predefined knowledge
about natural images and is independent of the fMRI activity.
The QiaoGAN-BVRM framework is shown in Figure 5F, and it
consists of four parts: a classifier network, pretrained conditional
generator G, encoder E, and evaluator network. First, a classifier
decodes object categories from fMRI data, and then a conditional
generator G of the BigGAN uses the decoded categories to
generate natural images. The advantage of the pretrained
generator is that it has already learned the data distribution
frommore than onemillion ImageNet natural images. Therefore,
instead of searching the images one by one in a fixed image
dataset (Naselaris et al., 2009), the generator can produce
the optimal image reconstructions that best match with the
fMRI activity via backpropagation. The generated images are
passed to the encoder E, which predicts the corresponding
fMRI activity. The proposed visual encoding model and the
pre-trained generator of BigGAN do not interfere with each
other, which helps to improve the fidelity and naturalness
of reconstruction. The reconstruction accuracy is measured
using an evaluator network, which computes the negative
average mean squared error (MSE) between the predicted
and actual fMRI activity. The reconstructions are obtained by
iteratively updating the input noise vector to maximize the
evaluator’s score.

3.2.2. VAE-GAN
The variational autoencoder (VAE) proposed by Kingma and
Welling (2014) is an example of an explicit generative network
and is a popular generative algorithm used in neural decoding.
Similar to autoencoders, the VAE is composed of an encoder and
a decoder. But rather than encoding a latent vector, VAE encodes
a distribution over the latent space, making the generative
process possible. Thus, the goal of VAE is to find a distribution
of the latent variable z, which we can sample from z ∼

qφ(z|x) to generate new image reconstructions x′ ∼ pθ (x|z).
qφ(z|x) represents a probabilistic encoder, parameterized with
φ, which embeds the input x into a latent representation z.
pθ (x|z) represents a probabilistic decoder, parameterized with
θ , which produces a distribution over the corresponding x.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 795488

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rakhimberdina et al. Natural Image Reconstruction From fMRI

The details on VAE and its loss function are provided in
Supplementary Material.

A hybridmodel by Larsen et al. (2016) integrates both the VAE
andGAN in a framework called VAE-GAN. VAE-GAN combines
VAE to produce latent features and GAN discriminator, which
learns to discriminate between fake and real images. In VAE-
GAN, the VAE decoder and GAN generator are combined into
one. The advantages of VAE-GAN are as follows. First, the GAN’s
adversarial loss enables generating visually more realistic images.
Second, VAE-GAN achieves improved stability due to VAE-based
optimization. This helps to avoid mode collapse inherent to
GANs, which refers to a generator producing a limited subset of
different outcomes (Ren et al., 2021; Xu et al., 2021).

A group of studies on reconstructing natural images from
brain activity patterns, including Ren et al. (2021) and VanRullen
and Reddy (2019), incorporated probabilistic inference using
VAE-GAN. In a recent work by Ren et al. (2021), the
authors presented a combined network called Dual-Variational
Autoencoder/ Generative Adversarial Network (D-VAE/GAN).
The framework, which we named RenD-VAE/GAN, consists
of a dual VAE-based encoder and an adversarial decoder, as
illustrated in Figure 6. Dual-VAE consists of two probabilistic
encoders: visual Evis and cognitive Ecog , which encode stimuli
images x and brain activity patterns v to corresponding latent
representations zx and zv. The framework is trained in three
sequential stages. In the first stage, visual stimuli images are used
to train the visual encoder Evis, generator G, and discriminator
D. Evis learns the direct mapping from visual images into latent
representations. Then, using output of Evis, the generator G is
trained to predict the images and D is trained to discriminate the
predicted images from real images. In the second stage, Ecog is
trained to map high-dimensional fMRI signals to cognitive latent
features. The generatorG is fixed andD is trained to discriminate
between the stimuli images produced in the first stage and the

cognitively-driven reconstructions from cognitive latent features.
This way, Ecog is forced to generate visual and cognitive latent
representations similar to each other. In the last training stage,
Ecog is fixed, whereas G and D are fine-tuned on fMRI signals
to improve the accuracy of the generated images via cognitive
latent representations. In this stage, D is trained to discriminate
between real stimuli images and reconstructed images. During
testing, only a trained cognitive encoder and generator were
used for the inference. Since Evis takes visual stimuli as input, its
learned latent representations zx can guide Ecog to learn the latent
representations zv. Thus, in the second training stage, the authors
implement the concept of knowledge distillation by transferring
knowledge from Evis to Ecog , which together represent the teacher
and student networks (Hinton et al., 2015). The learned latent
representation vectors significantly improve the reconstruction
quality by capturing visual information, such as color, texture,
object position, and attributes.

VanRullen and Reddy (2019) utilized VAE network pretrained
on CelebA dataset using GAN procedure to learn variational
latent space. Similar to MozafariBigBiGAN framework, the
authors learned a linear mapping between latent feature space
and fMRI patterns, rather than using probabilistic inference
(Güçlütürk et al., 2017). In the training stage, the pretrained
encoder fromVAE-GAN is fixed and the linear mapping between
latent feature space and fMRI patterns is learned. For the test
stage, fMRI patterns are first translated into VAE latent codes via
inverse mapping, and then these codes are used to reconstruct the
faces. The latent space of a VAE is a variational layer that provides
a meaningful description of each image and can represent faces
and facial features as linear combinations of each other. Owing to
the training objective of the VAE, the points which appear close in
this space are mapped onto similar face images, which are always
visually plausible. Therefore, the VAE’s latent space ensures that
the brain decoding becomes more robust mapping errors. As a

FIGURE 6 | RenD-VAE/GAN framework consists of three main components: dual VAE-based encoder, adversarial decoder, and discriminator. The visual encoder

Evis, cognitive encoder Ecog, generator, and discriminator were used during the training. During testing, only a trained cognitive encoder and generator were used for

the inference. The red arrow denotes the transfer of knowledge from the teacher network Evis to the student network Ecog. The components in blue denote training on

external unlabeled natural images (without fMRI activity) from ImageNet, which do not overlap with images in the train/test set. Images are from ImageNet dataset

(Deng et al., 2009).
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result, the produced reconstructions from VAE-GAN appear to
be more realistic and closer to the original stimuli images. This
method not only allows the reconstruction of naturally looking
faces but also decodes face gender. In terms of architecture, the
framework, which we refer to asVanRullenVAE-GAN, consists
of three networks, as shown in Figure 7.

4. RECONSTRUCTION EVALUATION

The evaluation of reconstruction methods is based on human-
based and image metrics, which we schematically present in
Figure 8. We first present human-based and image metrics and
then describe the differences in image comparison settings.

4.1. Human-Based Evaluation
The intuitive method of measuring the quality of reconstruction
in natural image reconstruction task is by employing human
evaluators. Human-based evaluation can be conducted
quantitatively and qualitatively through visual inspection.

For quantitative human-based assessment, a behavioral study
involving human subjects is conducted. In this study the
reconstructed image is compared to the original or several
candidate images, containing the original image. From the given

FIGURE 7 | VanRullenVAE-GAN framework proposed by VanRullen and

Reddy (2019). The encoder E maps a stimulus image onto the latent

representation z. The generator G uses z to reconstruct the stimuli image. The

pretrained components are shown in yellow. Images are from CelebA dataset

(Liu et al., 2015).

candidate images, subjects are instructed to choose the one
that appears to have a higher resemblance to the original.
Such behavioral studies can be conducted by employing human
evaluators or using Amazon Mechanical Turk6 (Seeliger et al.,
2018; Gaziv et al., 2020).

Owing to the additional time and human input required
for human-based evaluation, several recent studies omit
quantitative human evaluation in favor of qualitative visual
inspections. For visual comparison, the set of original images
and their reconstructions from different reconstruction methods
are juxtaposed for ease of comparison (see Figures 9A,B).
Reconstructions are usually compared in terms of image
sharpness/blurriness, matching shapes, colors, and low/high-
level details. Many recent works focus on emphasizing
the “naturalness” of their reconstructions, despite the
reconstructions deviating significantly from the actual images in
terms of the object category (see reconstructions in column 4 in
Figure 9B for example).

Although human-based evaluation is a more reliable
measurement of the quality of the reconstructed image, it suffers
from the following limitations. First, human-based evaluation is
time consuming and expensive because the process requires a
well-designed evaluation study and the recruitment of human
subjects. Second, the results can be heavily affected by subjects’
physical and emotional conditions or external conditions,
such as lighting or image display (Wang et al., 2004; Rolls,
2012). Table 3 shows that only several studies conducted the
quantitative human-based evaluation.

4.2. Image-Metric-Based Evaluation
As an alternative to human-based evaluation, image-metric-
based evaluation is used to accurately and automatically
assess image reconstruction quality. The use of image metrics
for evaluation is more practical, and unlike human-based
assessment, is unbiased toward external factors. However,
the image-metric-based evaluation can provide only an
approximation of the visual comparison mechanism inherent
to a human subject, and thus are far from being perfect (Wang
et al., 2004).

Nowadays, there exist various image metrics that can
compare images at different levels of perceptual representation.

6www.mturk.com

FIGURE 8 | Image-metric-based and human-based evaluation.
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FIGURE 9 | (A) Visual comparison of methods on Deep Image Reconstruction dataset for subject 1. The reconstructions for all methods except for Fang et al.

(2020) are obtained by reproducing the experiments. For (A,B), the stimulus images are shown in the first column. The corresponding reconstructed images from

each method are shown in the subsequent columns. (B) Visual comparison of the methods on the GOD dataset. Due to the unavailability of complete reconstruction

data for GOD, visual reconstructions correspond to the same image stimuli but different subjects. For BeliyEncDec and GazivEncDec, we present the

reconstruction for subject 3. The reconstructions for all methods are provided by the authors or reported in the original papers. SeeligerDCGAN uses the average of

the stimuli representations for the three subjects. Images are from ImageNet dataset (Deng et al., 2009).

Image metrics used in the visual decoding literature can
be categorized into traditional metrics that capture low-level
perceptual similarities and more recent ones that capture high-
level perceptual similarity. The conventional metrics, which
include the mean squared error (MSE), pixelwise Pearson
correlation coefficient (PCC), structural similarity index (SSIM),
and their variants, are computed in pixel space and capture low-
level perceptual similarity. The metric that captures high-level
perceptual similarity relies on multilevel feature extraction from
DNN and can compare images at a higher level of perceptual
representation. The high-level metric we considered here is called
Perceptual Similarity Metric (PSM).

4.2.1. MSE
MSE is the simplest traditional metric for assessing image
reconstruction quality. Given xi and yi, which are the
flattened one-dimensional representations of the original and
the reconstructed images, the MSE estimated over N samples is
computed as

MSE =
1

N

N
∑

i=1

(xi − yi)
2. (1)

Several characteristics of MSE, including simplicity of
implementation and fast computation, make it a widely
used performance metric in signal processing. However, MSE
shows poor correspondence to human visual perception, due to
some of the underlying assumptions: MSE is independent of the
spatial relationship between image pixels and considers each of
them to be equally important (Wang et al., 2004).

4.2.2. PCC
PCC is widely used in statistical analysis to measure the linear
relationship between two variables. The following equation is
used to compute the pixelwise Pearson correlation between the
flattened 1-D representations of the original image x and the
reconstructed image y:

PCC(x, y) =

∑

(x− µx)(y− µy)
√

∑

(x− µx)2
∑

(y− µy)2
, (2)

where µx and µy are the mean intensities of the flattened one-
dimensional vectors x and y, respectively. PCC is the most
common metric used across the surveyed works (see Table 3),
with slight variations in naming and implementation: Pairwise
PCC (Shen et al., 2019a,b), pixel correlation (Ren et al., 2021),
Pix-Comp (Mozafari et al., 2020), and n-way PCC (Beliy et al.,
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TABLE 3 | Comparison of methods in terms of the used evaluation metrics.

Human-based metrics Image metrics

References
Quantitative

survey

Visual

inspection
Traditional PSM

Seeliger et al.

(2018)

✓ ✓ ✗ ✗

Shen et al. (2019b) ✓ ✓ Pairwise PCC ✗

Shen et al. (2019a) ✓ ✓
Pairwise PCC

Pairwise SSIM
✗

Beliy et al. (2019) ✗ ✓ 2,5,10-way PCC ✗

Gaziv et al. (2020) ✓ ✓ ✗ 2,5,10-way

PSM

Qiao et al. (2020) ✗ ✓
PCC

SSIM
AlexNet

Fang et al. (2020) ✗ ✓ Pairwise PCC ✗

Mozafari et al.

(2020)

✗ ✓

Pairwise PCC

Pix-Comp

(2-way PCC)

Inception-V3

Ren et al. (2021) ✓ ✓

Linear correlation

SSIM

2,5,10-way PCC

✗

PCC stands for the Pearson correlation coefficient.

2019). The limitation of PCC is its sensitivity to changes in the
edge intensity or edge misalignment. Thus, the metric tends
to assign higher scores to blurry images than to images with
distinguishable but misaligned shapes (Beliy et al., 2019).

4.2.3. SSIM
SSIM is widely used image similarity metric that captures
structural information from images. Wang et al. proposed SSIM
as a quality assessment metric that resembles the characteristics
of the human visual perception (Wang et al., 2004). Unlike
PCC, which treats each pixel of the image independently, SSIM
measures the similarity of spatially close pixels between the
reconstructed and original images. Given two images, SSIM
is computed as a weighted combination of three comparative
measures: luminance, contrast, and structure. Assuming an equal
contribution of each measure, the SSIM is first computed locally
between the corresponding windows p and q of images x and y:

SSIM(p, q) =
(2µpµq + C1)(2σpq + C2)

(µ2
p + µ2

q + C1)(σ
2
p + σ 2

q + C2)
, (3)

where µp and µq are the mean intensity values of p and q,
respectively; σ 2

p and σ 2
q are the variances of p and q, respectively;

σpq is the covariance of p and q, and C1 and C2 are constants that
ensure stability when the denominator is close to zero. The global

SSIM score is computed as the average of allM local SSIM scores:

SSIM(x, y) =

M
∑

i=1

SSIM(pi, qi). (4)

4.2.4. PSM
Despite the wide adoption of SSIM as a perceptual metric, it
compares poorly with many characteristics of human perception
(Zhang et al., 2018). Several studies, including Güçlütürk et al.
(2017), Qiao et al. (2018), Mozafari et al. (2020), and Gaziv
et al. (2020), emphasize the importance of higher-level perceptual
similarity over lower-level metrics in evaluation because of the
better correspondence of higher-level perceptual similarity to
human perceptual judgments (Zhang et al., 2018).

As the general principle, a CNN is used for extracting
hierarchical multilayer features of input images, which are
further compared across layers using a distance metric of choice.
However, the definition and implementation of the perceptual
similarity metric in terms of the distance metric or feature
extraction network vary across studies. For example, Qiao
et al. (2020) utilized five convolutional layers of the AlexNet
(Krizhevsky et al., 2012) to extract hierarchical features. The
other study by Mozafari et al. (2020), proposed a high-level
similarity measure, which measures perceptual similarity based
on the output of only the last layer of Inception-V3 (Szegedy
et al., 2016). Finally, Gaziv et al. (2020) used the PSM definition
proposed in (Zhang et al., 2018) with the pretrained AlexNet with
linear calibration. Following Gaziv et al. (2020), we provide a
PSM definition by Zhang et al. (2018) in the following equation:

d
(

x, y
)

=
∑

l

1

HlWl

∑

h,w

∥

∥

∥
wl ⊙

(

f lx − f ly

)∥

∥

∥

2

2
, (5)

where d
(

x, y
)

is the distance between the original image x and

the reconstructed image y. f lx, f
l
y represent layerwise activations

normalized across channels for layer l. The activations are
scaled channelwise by vector wl ∈ R

Cl , spatially averaged, and
summed layerwise.

Note that the underlying CNN model used for computing
the PSM should be selected cautiously. Because many studies
use pretrained CNN models, it is important to avoid using the
same model for both training and evaluation, which may lead
to a potential bias in evaluation. For example, several methods,
including Shen et al. (2019b) and Beliy et al. (2019), used VGG-19
(Simonyan and Zisserman, 2015) for pretraining. Therefore, the
VGG-19model should not be used for evaluation, as the objective
of evaluation and optimization functions would be the same,
and the evaluation would produce a higher similarity between
original and reconstructed images.

4.3. Image Comparison Setting
We describe three image comparison settings existing in
literature: (1) one-to-one comparison, (2) pairwise comparison,
and (3) n-way comparison. Each of these comparison settings can
work with any image or human-based metric of choice.

One-to-one is the simplest comparison setting which
computes the similarity score of a reconstruction against ground
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truth using the givenmetric, for example, MSE or PCC. However,
the absolute values of qualitative metrics computed only on a
single pair of original and reconstructed images are challenging
to interpret (Beliy et al., 2019). Therefore, pairwise similarity and
n-way identification are often used to measure the reconstruction
quality across the dataset.

Pairwise comparison analysis is performed by comparing a
reconstructed image with two candidate images: the ground-
truth image and the image selected from the remaining set,
resulting in a total of N(N − 1) comparisons:

score =
1

N(N − 1)

N
∑

i=1

N
∑

j=1
j 6=i

σ
(

m
(

yi, xi
)

,m
(

yi, xj
))

, (6)

wherem is the metric of interest and

σ (a, b) =

{

1 a > b
0 otherwise

(7)

The trial is considered correct if the metric score of the
reconstructed image with the corresponding stimulus image is
higher than that with the non-relevant stimulus image. For
metrics that imply that the lower, the better (such as MSE), the
expression in the equation 7 is modified to find the smallest value.
Finally, the percentage of total correct trials is computed as the
ratio of correct trials among all trials (Beliy et al., 2019; Shen et al.,
2019a,b). The chance-level accuracy is 50%.

In n-way identification each reconstructed image is
compared to n randomly selected candidate images, including
the ground truth. Several studies, including Beliy et al. (2019) and
Ren et al. (2021), used n = 2, 5, 10 for the n-way identification
accuracy computed using PCC. In a more recent work, Gaziv
et al. (2020) report n = 2, 5, 10, 50-way identification accuracy
based on PSM. An addition source of confusion is the absence of
naming conventions: Ren et al. (2021) and Mozafari et al. (2020)
referred to n-way identification accuracy computed with PCC as
Pixel Correlation and pix-Comp, respectively.

5. FAIR COMPARISON ACROSS THE
METHODS

For fair comparison of the existing methods, we chose those that
satisfied one of the following criteria: (1) the availability of the
complete code for reproducing the results and (2) the availability
of reconstructed images for running the evaluation. This allowed
us to compare five state-of-the-art methods on the DIR dataset,
both visually (section 5.3) and quantitatively (section 5.4). For
the GOD, because of the lack of a complete set of reconstructions
for the chosen methods, we only present a visual comparison in
section 5.3. Visual comparison for vim-1 datasets is provided in
Supplementary Material.

Our analysis of recent works on natural image reconstruction
reveals that only a few comply with good machine learning
practices regarding the fairness of evaluation. Unfair evaluation
can be reflected in the comparison across different datasets,
selecting specific subjects in reporting the results, and

discrepancies in using the evaluation metrics. This motivated
us to perform a rigorous empirical evaluation of the methods,
i.e., cross-subject evaluation across common metrics using a
common dataset.

5.1. Evaluation on a Common Dataset
To standardize the objective evaluation process, we perform the
quantitative assessment on the DIR dataset for methods that we
found to be reproducible, that is, ShenDNN, ShenDNN+DGN,
ShenGAN, and BeliyEncDec. For FangSSGAN, we ran an
evaluation based on the reconstructions provided by the authors.

It is important to distinguish the five-subject GOD dataset
(Horikawa and Kamitani, 2017) from the three-subject DIR
dataset (Shen et al., 2019b), which uses the same stimuli
images but is quite different in terms of the image presentation
experiment and characteristics of fMRI activity data. Our choice
of the DIR as a common natural image dataset is due to the
following reasons. First, unlike the similar GOD dataset, DIR
was acquired specifically for the natural image reconstruction
task and contains a larger number of training samples
due to increased number of repeats in image presentation
experiment. In addition, this dataset might be of interest for
studying the generalizability of natural image reconstruction
methods to artificial shapes, which we describe in detail in
Supplementary Material.

When training ShenDNN, ShenDNN+DGN, and
BeliyEncDec on the DIR, we used the original training
settings. For ShenGAN, we used the pretrained model provided
by the authors. To maximize the amount of training data,
each presented stimulus sample was treated as an individual
sample (Shen et al., 2019a). For reconstruction, we averaged the
test fMRI activations across trials corresponding to the same
stimulus to increase the signal-to-noise ratio. This resulted
in 6,000 training and 50 test fMRI-image samples. Note that
BeliyEncDec was initially implemented for GOD dataset.
For BeliyEncDec, averaging both training and test fMRI
samples across the repeats resulted in the best performance.
This confirms with the authors’ observation that an increased
number of fMRI repeats results in improved reconstruction
(Beliy et al., 2019). Additionally, we normalized training fMRI
vectors to have a zero mean and unit standard deviation. The
mean and standard deviation of the training fMRI data were
used to normalize the test fMRI data.

5.2. Evaluation Across Common Metrics
We perform the evaluation on natural images from the DIR
based onMSE, PCC, SSIM, and PSMmetrics described in section
4. We notice that there is no consensus among recent works
on a standard set of evaluation metrics (see Table 3). Moreover,
several studies introduce new evaluationmetrics or use variations
of existing metrics, potentially more favorable for their results. In
contrast, we present an evaluation of the methods across all the
image metrics used in the related methods.

It is also important to note that different methods
generate output images of various sizes due to memory
restrictions and variations in the pretrained model (we refer
to Supplementary Material for details on output image
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FIGURE 10 | Reconstructions for two images across three subjects from DIR dataset. Images are from ImageNet dataset (Deng et al., 2009).

resolutions). The evaluation metrics can be sensitive to the size of
the image and the choice of upscaling or downscaling algorithms.
For fairness, we rescaled the reconstructions for the DIR to the
common size and use a bicubic algorithm for image resizing.
We evaluated the reconstructed images using a resolution of 256
× 256 pixels, which is the highest among the chosen methods.
For methods with a lower reconstruction image size, we applied
image upscaling.

5.3. Visual Comparison Results
Figure 9A shows the reconstructions of sample stimuli
images from the test set, corresponding to subject 1 from
DIR dataset. The reconstructions from all methods show
a close resemblance to the original images in terms of
the object shape and position. GAN-based methods, i.e.,
ShenDNN+DGN and ShenGAN, produce sharper and smoother-
looking images but in some cases render semantic details absent
in the original stimuli (which is confirmed by lower pixelwise
MSE and PCC scores). Reconstructions by FangSSGAN are also
natural looking and close to real images in terms of shape and
color. This is attributed to using a generator network conditioned
on both shape and semantic information, which preserves low-
level features, such as texture or shape. Reconstruction by

non-GAN7 BeliyEncDec are blurry but accurately capture
the shape of the stimuli objects.

In addition, we present the reconstructions for GOD dataset
in Figure 9B. Similar to DIR dataset, the GAN-based methods
MozafariBigBiGAN and RenD-VAE/GAN produce the
most natural-looking images. Visually, MozafariBigBiGAN
outperforms other methods in terms of naturalness. However,
this comes at the cost of rendering object categories and details
different from those presented in the original stimuli. We
identified GazivEncDec and RenD-VAE/GAN as performing
relatively better on the reconstruction of shape and color.
GazivEncDec is superior in reconstructing high-level details
of the image, including shape and background. RenD-VAE/GAN
visually outperforms other methods for the reconstruction of
color, background, and lower-level details. For GazivEncDec,
a significant improvement in the reconstruction accuracy was
achieved owing to the introduced perceptual similarity loss.
According to Ren et al. (2021), the key factors boosting the
reconstruction quality of the RenD-VAE/GAN include the VAE-
GAN architecture instead of the standard conditional GAN and

7By “non-GAN” methods, we mean the models that do not take advantage of the

GAN training procedure.
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visual-feature guidance implemented via GAN-based knowledge
distillation. In SeeligerDCGAN and BeliyEncDec, the
reconstructions are blurry, which could be due to the use of
pixelwise MSE loss (Seeliger et al., 2018).

Since the DIR dataset comprises three-subject data, we
additionally show the reconstructions across the methods
corresponding to three different subjects in Figure 10.
The reconstructions are shown for the two natural image
stimuli. Depending on the subject, the reconstructions by
different methods show varying degrees of resemblance to
the original stimuli. For example, the reconstructions from
ShenDNN+DGN, ShenGAN, and BeliyEncDec are visually
better for subject 1, whereas, in reconstructions by other
methods, neither color nor shape was preserved. This shows
that the selection of a subject in reporting results can lead to a
biased evaluation.

5.4. Quantitative Comparison Results on
Natural Images From DIR
To eliminate the bias of selecting a specific subject for evaluation,
we present both subject-specific and cross-subject average results
across multiple metrics on natural images from DIR. For
comprehensive evaluation, we use three comparison settings
described in section 4: (1) one-to-one comparison; (2) pairwise
comparison; and (3) n-way comparison. The pairwise evaluation
results for natural images across the metrics are shown in
Table 4. The n-way scores for natural images are presented in
Figure 11. We find that one-to-one results are not well-suited
for cross-method comparison. We therefore present a one-to-
one comparison in Supplementary Material. The quantitative
evaluation of methods is presented based on low-level MSE,
PCC, and SSIM metrics first, followed by a comparison using a
high-level PSM metric.

5.4.1. Performance Using Low-Level Metrics
Based on the average results across the subjects shown in
Table 4 and Figures 11A–C, two non-GAN methods lead
on low-level metrics, namely ShenDNN and BeliyEncDec.
Together, they outperform other baselines across three low-
level pairwise metrics (i.e., pairwise MSE, pairwise PCC, and
pairwise SSIM) as well as across n-way MSE and PPC metrics.
The high performance of BeliyEncDec on low-level metrics
can be attributed to efficient low-level feature extraction via
encoder–decoder architecture and to the self-supervised training
procedure with the extended set of unlabeled images and fMRI
data. The high performance of ShenDNN on low-level metrics
is potentially due to iterative pixel-level optimization of the
reconstructed image.

5.4.2. Performance Using the High-Level PSM Metric
Additionally, we compare the selected methods on the PSM
implemented using AlexNet. From Table 4 and Figure 11D,
we can see that ShenGAN performs the best on the high-
level PSM metric, computed in a pairwise, and n-way
manner across the subjects and on averages. Overall, GAN-
based methods, including ShenGAN, ShenDNN+DGN, and
FangSSGAN, which were reported to produce more natural-
looking images, achieved the top three average results in most

TABLE 4 | Pairwise evaluation across the methods on natural images from the

DIR dataset.

Subject Method MSE ↑ PCC↑ SSIM ↑ PSM ↑

S1

ShenDNN 75.80 80.69 75.59 77.67

ShenDNN+DGN 74.53 78.98 61.27 86.61

ShenGAN 71.67 79.06 62.08 92.33

BeliyEncDec 76.94 86.08 59.67 73.14

FangSSGAN 67.71 67.18 60.37 76.12

S2

ShenDNN 74.98 77.27 70.82 77.14

ShenDNN+DGN 70.78 75.43 59.55 86.41

ShenGAN 68.65 74.20 59.51 90.41

BeliyEncDec 71.18 76.20 58.94 75.22

FangSSGAN 64.00 66.24 58.69 73.71

S3

ShenDNN 79.71 81.47 75.06 76.20

ShenDNN+DGN 73.59 75.02 60.24 86.20

ShenGAN 74.12 78.98 62.08 91.88

BeliyEncDec 78.61 81.47 60.53 76.20

FangSSGAN 67.88 66.45 59.96 79.02

Average

result

ShenDNN 76.83±2.53 79.81±2.24 73.82±2.62 77.01±0.74

ShenDNN+DGN 72.97±1.95 76.48±2.18 60.35±0.86 86.41±0.20

ShenGAN 71.48±2.74 77.41±2.78 61.22±1.48 91.54±1.00

BeliyEncDec 75.58±3.90 81.25±4.94 59.71±0.80 74.86±1.56

FangSSGAN 66.53±2.19 66.63±0.49 59.67±0.87 76.29±2.66

The best results are presented in bold.

↑indicates the higher the better.

cases. This supports the motivation to utilize PSM for measuring
high-level visual similarity in images, especially for GAN-
based methods whose strength lies in reconstructing high-level
visual features and more natural-looking images. We attribute
the improved performance of the three methods to using a
pretrained generator network and the superior performance of
ShenGAN and ShenDNN+DGN to the use of multilayer DNN
features for computing the multi-level feature loss. Notably, the
performance of all metrics reduces as the n-way comparison
becomes increasingly harder with an increasing number of
samples being used in the comparison.

6. DISCUSSION

Even with a relatively small number of the available open-
source reconstruction frameworks, the visual and quantitative
results presented in this work can give a general idea of
which architectural solution, benchmark dataset, or evaluation
framework can be chosen for experimental purposes.

Depending on the target of the reconstruction task, it is
vital to consider the trade-off between the “naturalness” and
the fidelity of the reconstruction. Generative methods rely
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FIGURE 11 | Average n-way accuracy results computed across subjects using (A) MSE, (B) PCC, (C) SSIM, and (D) PSM metrics on natural images from the DIR.

The horizontal dashed lines indicate the chance level for each metric. The full-way comparison corresponds to using all the images in the test set, that is, 50 natural

images.

on GAN or VAE-GAN-based architectures to produce the
most natural-looking images and correspondingly higher PSM
scores. However, they often require either external data for
training or the use of pretrained network components. The
availability of external image datasets for training becomes a
significant factor for generating high-quality images for GAN.
Most importantly, themethods that perform best at “naturalness”
do not guarantee that the object categories of reconstruction
will always match those of the original images, as in the case
ofMozafariBigBiGAN.Other non-generativemethods developed
for natural image reconstruction, such as BeliyEncDec or
ShenDNN, do not produce realistic-looking images. However,
whenever the fidelity of the reconstructions is preferable, these
non-generative methods should be considered, as they exhibit
closer similarity to the original images in terms of low-level
features, which are supported both visually and quantitatively.

In this work we advocate the fairness in reconstruction
evaluation procedure and discuss several criteria which should
be standardized across the methods. At the same time, we believe
that the evaluation procedure presented in this work can be
further improved in the following ways.

Availability of large-scale imaging data. The primary
challenge for current deep learning-based methods is that
they are required to resolve the limitation of small-size fMRI
data. Nowadays, the lack of training data is compensated by
pretraining DNN components on external image data (Beliy

et al., 2019; Shen et al., 2019a,b), self-supervision on additional
image-fMRI pairs (Beliy et al., 2019; Gaziv et al., 2020) and
generation of new surrogate fMRI via pretrained encoding
models (St-Yves and Naselaris, 2018). Several brain imaging
datasets are available for reconstruction tasks. However, larger
scale datasets are still required. The availability of large-scale
imaging data may improve current state-of-the-art results and
foster research on reconstructing more complex and dynamic
visual perception, including imagined images or videos. This, in
turn, may lead to broader adoption of the proposed frameworks
for real-world purposes.

Developing new computational similarity metrics

corresponding to human vision. While some of the deep
learning methods achieve encouraging results on high-level
perceptual similarity metrics, an open question about the
correspondence of these computer-based metrics to human
vision remains. Because most accuracy evaluation metrics
are oriented toward computer vision tasks, they often fail to
capture the characteristics of human vision. Research in this
direction might further advance natural image reconstruction by
developing more advanced learning and evaluation metrics.

7. CONCLUSION

This paper presented an overview of state-of-the-art methods
for natural image reconstruction task using deep learning.
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These methods were compared on multiple scales, including
architectural design, benchmark datasets, and evaluationmetrics.
We highlighted several ambiguities with the existing evaluation
and presented a standardized empirical assessment of the
methods. This evaluation procedure can help researchers in
performing a more comprehensive comparative analysis and
elucidating the reason for the effectiveness of their method.
We hope this study will serve as a foundation for future
research on natural image reconstruction targeting fair and
rigorous comparisons.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ZR: conceptualization, methodology, software, writing, and
evaluation. QJ: software, evaluation, and writing—review and
editing. XL: conceptualization, data curation, and writing—
original draft preparation. TM: supervision and writing—review
and editing. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was partly supported by JST CREST (Grant Number
JPMJCR1687), JSPS Grant-in-Aid for Scientific Research
(Grant Number 21K12042, 17H01785), and the New Energy
and Industrial Technology Development Organization (Grant
Number JPNP20006).

ACKNOWLEDGMENTS

We thank Prof. Yukiyasu Kamitani from Neuroinformatics
Lab at Kyoto University for providing valuable comments that
improved the manuscript. We also thank Katja Seeliger, Milad
Mozafari, Guy Gaziv, Roman Beliy, and Tao Fang for sharing
their reconstructed images and evaluation codes with us. We use
images from ImageNet and CelebA datasets: ImageNet https://
image-net.org/about.php, and CelebA http://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.795488/full#supplementary-material

REFERENCES

Bandettini, P. A. (2012). Twenty years of functional MRI: the science and the

stories. Neuroimage 62, 575–588. doi: 10.1016/j.neuroimage.2012.04.026

Beliy, R., Gaziv, G., Hoogi, A., Strappini, F., Golan, T., and Irani, M. (2019). “From

voxels to pixels and back: self-supervision in natural-image reconstruction

from fMRI,” in Advances in Neural Information Processing Systems 32, eds H.

Wallach, H. Larochelle, A. Beygelzimer, F. D. Alche-Buc, E. Fox, and R. Garnett

(Vancouver, BC: Curran Associates, Inc.), 6517–6527.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.

(2015). “Semantic image segmentation with deep convolutional nets and fully

connected CRFs,” in 3rd International Conference on Learning Representations,

ICLR 2015, eds Y. Bengio and Y. LeCun (San Diego, CA).

Chen, M., Han, J., Hu, X., Jiang, X., Guo, L., and Liu, T. (2014). Survey of encoding

and decoding of visual stimulus via FMRI: an image analysis perspective. Brain

Imaging Behav. 8, 7–23. doi: 10.1007/s11682-013-9238-z

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., et al. (2014). “Learning phrase representations using RNN

encoder-decoder for statistical machine translation,” in Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP) (Doha: Association for Computational Linguistics), 1724–1734.

doi: 10.3115/v1/D14-1179

Chrabaszcz, P., Loshchilov, I., and Hutter, F. (2017). A downsampled variant

of ImageNet as an alternative to the CIFAR datasets. arXiv [Preprint].

arXiv:1707.08819.

Corel Corporation (1994). Corel Stock Photo Library. Ottawa, ON.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

“ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Donahue, J., and Simonyan, K. (2019). “Large scale adversarial representation

learning,” in Advances in Neural Information Processing Systems 32, eds H.

Wallach, H. Larochelle, A. Beygelzimer, F. D. Alche-Buc, E. Fox, and R. Garnett

(Vancouver, BC: Curran Associates, Inc.).

Dosovitskiy, A., and Brox, T. (2016). Inverting visual representations

with convolutional networks. arXiv preprint arXiv:1506.02753.

doi: 10.1109/CVPR.2016.522

Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. (2017). Seeing it all:

convolutional network layers map the function of the human visual system.

Neuroimage 152, 184–194. doi: 10.1016/j.neuroimage.2016.10.001

Fang, T., Qi, Y., and Pan, G. (2020). “Reconstructing perceptive images from brain

activity by shape-semantic GAN,” in Advances in Neural Information Processing

Systems, Vol. 33 (Vancouver), 13038–13048.

Fujiwara, Y., Miyawaki, Y., and Kamitani, Y. (2013). Modular encoding and

decoding models derived from bayesian canonical correlation analysis. Neural

Comput. 25, 979–1005. doi: 10.1162/NECO_a_00423

Gaziv, G., Beliy, R., Granot, N., Hoogi, A., Strappini, F., Golan, T., et al.

(2020). Self-supervised natural image reconstruction and rich semantic

classification from brain activity. bioRxiv [Preprint]. doi: 10.1101/2020.09.06.2

84794

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., et al. (2014). “Generative adversarial nets,” in Proceedings of the 27th

International Conference on Neural Information Processing Systems, NIPS’14

(Cambridge, MA: MIT Press), 2672–2680.

Güçlütürk, Y., Güçlü, U., Seeliger, K., Bosch, S., van Lier, R., and van Gerven,

M. A. (2017). Reconstructing perceived faces from brain activations with deep

adversarial neural decoding. Adv. Neural Inform. Process. Syst. 30, 4246–4257.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini,

P. (2001). Distributed and overlapping representations of faces and objects

in ventral temporal cortex. Science 293, 2425–2430. doi: 10.1126/science.10

63736

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv [Preprint]. arXiv:1503.02531.

Horikawa, T., and Kamitani, Y. (2017). Generic decoding of seen and

imagined objects using hierarchical visual features. Nat. Commun. 8:15037.

doi: 10.1038/ncomms15037

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). “Image-to-image

translation with conditional adversarial networks,” in 2017 IEEE Conference on

Frontiers in Neuroscience | www.frontiersin.org 17 December 2021 | Volume 15 | Article 795488

https://image-net.org/about.php
https://image-net.org/about.php
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.frontiersin.org/articles/10.3389/fnins.2021.795488/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2012.04.026
https://doi.org/10.1007/s11682-013-9238-z
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2016.522
https://doi.org/10.1016/j.neuroimage.2016.10.001
https://doi.org/10.1162/NECO_a_00423
https://doi.org/10.1101/2020.09.06.284794
https://doi.org/10.1126/science.1063736
https://doi.org/10.1038/ncomms15037
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rakhimberdina et al. Natural Image Reconstruction From fMRI

Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI), 1125–1134.

doi: 10.1109/CVPR.2017.632

Kamitani, Y., and Tong, F. (2005). Decoding the visual and subjective contents of

the human brain. Nat. Neurosci. 8, 679–685. doi: 10.1038/nn1444

Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D.,

Menon, D. K., et al. (2017). Efficient multi-scale 3D CNN with fully connected

CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78.

doi: 10.1016/j.media.2016.10.004

Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L. (2008). Identifying

natural images from human brain activity. Nature 452, 352–355.

doi: 10.1038/nature06713

Kingma, D. P., and Welling, M. (2014). Auto-encoding variational bayes. arXiv

[Preprint]. arXiv:1312.6114.

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling

biological vision and brain information processing. Annu. Rev. Vision Sci. 1,

417–446. doi: 10.1146/annurev-vision-082114-035447

Krizhevsky, A. (2009). Learning Multiple Layers of Features From Tiny Images.

Technical report. University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification

with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25,

1097–1105.

Langr, J., and Bok, V. (2019). GANs in Action. Manning Publication.

Larsen, A. B. L., Sonderby, S. K., Larochelle, H., and Winther, O. (2016).

“Autoencoding beyond pixels using a learned similarity metric,” in

International Conference on Machine Learning (PMLR) (New York, NY),

1558–1566.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

et al. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Comput. 1, 541–551. doi: 10.1162/neco.1989.1.4.541

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).

“Microsoft COCO: common objects in context,” in Computer Vision – ECCV

2014, eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Cham: Springer

International Publishing), 740–755. doi: 10.1007/978-3-319-10602-1_48

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). “Deep learning face attributes in

the wild,” in 2015 IEEE International Conference on Computer Vision (ICCV)

(Santiago), 3730–3738. doi: 10.1109/ICCV.2015.425

Logothetis, N. K., and Sheinberg, D. L. (1996). Visual object recognition.

Annu. Rev. Neurosci. 19, 577–621. doi: 10.1146/annurev.ne.19.030196.

003045

Maaten, L. V. D. (2009). A New Benchmark Dataset for Handwritten Character

Recognition. Tilburg: Tilburg University.

Mahendran, A., and Vedaldi, A. (2015). “Understanding deep image

representations by inverting them,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Boston, MA), 5188–5196.

doi: 10.1109/CVPR.2015.7299155

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). “A database of human

segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics,” in Proceedings Eighth IEEE

International Conference on Computer Vision, ICCV 2001 (Vancouver, BC),

416–423. doi: 10.1109/ICCV.2001.937655

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., and Terzopoulos,

D. (2021). Image segmentation using deep learning: a survey. IEEE Trans.

Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3059968. [Epub ahead of

print].

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M.-,a., Morito, Y., Tanabe, H.

C., et al. (2008). Visual image reconstruction from human brain activity

using a combination of multiscale local image decoders. Neuron 60, 915–929.

doi: 10.1016/j.neuron.2008.11.004

Mozafari, M., Reddy, L., and VanRullen, R. (2020). “Reconstructing natural

scenes from fMRI patterns using BigBiGAN,” in 2020 International

Joint Conference on Neural Networks (IJCNN) (Glasgow: IEEE), 1–8.

doi: 10.1109/IJCNN48605.2020.9206960

Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L. (2011).

Encoding and decoding in fMRI. Neuroimage 56, 400–410.

doi: 10.1016/j.neuroimage.2010.07.073

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., and Gallant, J. L. (2009).

Bayesian reconstruction of natural images from human brain activity. Neuron

63, 902–915. doi: 10.1016/j.neuron.2009.09.006

Nestor, A., Lee, A. C. H., Plaut, D. C., and Behrmann, M. (2020). The face of image

reconstruction: progress, pitfalls, prospects. Trends Cogn. Sci. 24, 747–759.

doi: 10.1016/j.tics.2020.06.006

Ogawa, S., Lee, T.M., Kay, A. R., and Tank, D.W. (1990). Brainmagnetic resonance

imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci.

U.S.A. 87, 9868–9872. doi: 10.1073/pnas.87.24.9868

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D. (2009). A

high-throughput screening approach to discovering good forms of

biologically inspired visual representation. PLoS Comput. Biol. 5:e1000579.

doi: 10.1371/journal.pcbi.1000579

Poldrack, R. A., and Farah, M. J. (2015). Progress and challenges in probing the

human brain. Nature 526, 371–379. doi: 10.1038/nature15692

Qiao, K., Chen, J., Wang, L., Zhang, C., Tong, L., and Yan, B. (2020).

BigGAN-based Bayesian reconstruction of natural images from human

brain activity. Neuroscience 444, 92–105. doi: 10.1016/j.neuroscience.2020.

07.040

Qiao, K., Zhang, C., Wang, L., Chen, J., Zeng, L., Tong, L., et al.

(2018). Accurate reconstruction of image stimuli from human functional

magnetic resonance imaging based on the decoding model with capsule

network architecture. Front. Neuroinform. 12:62. doi: 10.3389/fninf.2018.

00062

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant

visual representation by single neurons in the human brain. Nature 435,

1102–1107. doi: 10.1038/nature03687

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv

[Preprint]. arXiv:1511.06434.

Rakhimberdina, Z., Liu, X., and Murata, T. (2020). Population graph-based multi-

model ensemble method for diagnosing autism spectrum disorder. Sensors

20:6001. doi: 10.3390/s20216001

Ren, Z., Li, J., Xue, X., Li, X., Yang, F., Jiao, Z., et al. (2021).

Reconstructing seen image from brain activity by visually-guided

cognitive representation and adversarial learning. Neuroimage. 228:117602.

doi: 10.1016/j.neuroimage.2020.117602

Roelfsema, P. R., Denys, D., and Klink, P. C. (2018). Mind reading and

writing: the future of neurotechnology. Trends Cogn. Sci. 22, 598–610.

doi: 10.1016/j.tics.2018.04.001

Rolls, E. T. (2012). Invariant visual object and face recognition: neural and

computational bases, and a model, VisNet. Front. Comput. Neurosci. 6:35.

doi: 10.3389/fncom.2012.00035

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: convolutional networks

for biomedical image segmentation,” in Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015, eds N. Navab, J. Hornegger,

W. M. Wells, and A. F. Frangi (Cham: Springer International Publishing),

234–241. doi: 10.1007/978-3-319-24574-4_28

Schoenmakers, S., Barth, M., Heskes, T., and van Gerven, M. (2013). Linear

reconstruction of perceived images from human brain activity. Neuroimage 83,

951–961. doi: 10.1016/j.neuroimage.2013.07.043

Schomaker, L., Vuurpijl, L., and Schomaker, L. (2000). Forensic Writer

Identification: a Benchmark Data Set and a Comparison of Two Systems.

NICI (NIjmegen Institute of Cognitive Information), Katholieke Universiteit

Nijmegen.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.

(2018). Brain-score: which artificial neural network for object recognition is

most brain-like? bioRxiv [Preprint]. doi: 10.1101/407007

Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., and van Gerven,

M. A. J. (2018). Generative adversarial networks for reconstructing

natural images from brain activity. Neuroimage 181, 775–785.

doi: 10.1016/j.neuroimage.2018.07.043

Shen, G., Dwivedi, K., Majima, K., Horikawa, T., and Kamitani, Y.

(2019a). End-to-end deep image reconstruction from human brain

activity. Front. Comput. Neurosci. 13:21. doi: 10.3389/fncom.2019.0

0021

Shen, G., Horikawa, T., Majima, K., and Kamitani, Y. (2019b). Deep image

reconstruction from human brain activity. PLoS Comput. Biol. 15:e1006633.

doi: 10.1371/journal.pcbi.1006633

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for

large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556.

Frontiers in Neuroscience | www.frontiersin.org 18 December 2021 | Volume 15 | Article 795488

https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1038/nn1444
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1038/nature06713
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1146/annurev.ne.19.030196.003045
https://doi.org/10.1109/CVPR.2015.7299155
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/j.neuron.2008.11.004
https://doi.org/10.1109/IJCNN48605.2020.9206960
https://doi.org/10.1016/j.neuroimage.2010.07.073
https://doi.org/10.1016/j.neuron.2009.09.006
https://doi.org/10.1016/j.tics.2020.06.006
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1371/journal.pcbi.1000579
https://doi.org/10.1038/nature15692
https://doi.org/10.1016/j.neuroscience.2020.07.040
https://doi.org/10.3389/fninf.2018.00062
https://doi.org/10.1038/nature03687
https://doi.org/10.3390/s20216001
https://doi.org/10.1016/j.neuroimage.2020.117602
https://doi.org/10.1016/j.tics.2018.04.001
https://doi.org/10.3389/fncom.2012.00035
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.neuroimage.2013.07.043
https://doi.org/10.1101/407007
https://doi.org/10.1016/j.neuroimage.2018.07.043
https://doi.org/10.3389/fncom.2019.00021
https://doi.org/10.1371/journal.pcbi.1006633
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rakhimberdina et al. Natural Image Reconstruction From fMRI

St-Yves, G., and Naselaris, T. (2018). “Generative adversarial networks conditioned

on brain activity reconstruct seen images,” in 2018 IEEE International

Conference on Systems, Man, and Cybernetics (SMC) (Miyazaki), 1054–1061.

doi: 10.1109/SMC.2018.00187

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking

the inception architecture for computer vision,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE),

2818–2826. doi: 10.1109/CVPR.2016.308

Thirion, B., Duchesnay, E., Hubbard, E., Dubois, J., Poline, J.-B., Lebihan,

D., et al. (2006). Inverse retinotopy: inferring the visual content of

images from brain activation patterns. Neuroimage 33, 1104–1116.

doi: 10.1016/j.neuroimage.2006.06.062

van Gerven, M. A. J., de Lange, F. P., and Heskes, T. (2010). Neural

decoding with hierarchical generative models. Neural Comput. 22, 3127–3142.

doi: 10.1162/NECO_a_00047

VanRullen, R., and Reddy, L. (2019). Reconstructing faces from fMRI

patterns using deep generative neural networks. Commun. Biol. 2, 1–10.

doi: 10.1038/s42003-019-0438-y

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE Trans. Image

Process. 13, 600–612. doi: 10.1109/TIP.2003.819861

Xu, K., Du, C., Li, C., Zhu, J., and Zhang, B. (2021). “Learning implicit

generative models by teaching density estimators,” in Machine Learning

and Knowledge Discovery in Databases, eds F. Hutter, K. Kersting, J.

Lijffijt, and I. Valera (Cham: Springer International Publishing), 239–255.

doi: 10.1007/978-3-030-67661-2_15

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a

Gaussian denoiser: residual learning of deep CNN for image denoising.

IEEE Trans. Image Process. 26, 3142–3155. doi: 10.1109/TIP.2017.26

62206

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). “The

unreasonable effectiveness of deep features as a perceptual metric,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake

City: IEEE), 586–595. doi: 10.1109/CVPR.2018.00068

Zhang, X., Yao, L., Wang, X., Monaghan, J. J. M., McAlpine, D., and

Zhang, Y. (2020). A survey on deep learning-based non-invasive brain

signals: recent advances and new Frontiers. J. Neural Eng. 18:031002.

doi: 10.1088/1741-2552/abc902

Zhao, J. J., Mathieu, M., and LeCun, Y. (2017). “Energy-based generative

adversarial networks,” in 5th International Conference on Learning

Representations, ICLR 2017 (Toulon).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Rakhimberdina, Jodelet, Liu and Murata. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 19 December 2021 | Volume 15 | Article 795488

https://doi.org/10.1109/SMC.2018.00187
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1016/j.neuroimage.2006.06.062
https://doi.org/10.1162/NECO_a_00047
https://doi.org/10.1038/s42003-019-0438-y
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-030-67661-2_15
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1088/1741-2552/abc902
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Natural Image Reconstruction From fMRI Using Deep Learning: A Survey
	1. Introduction
	1.1. Visual Decoding Using fMRI
	1.2. Natural Image Reconstruction
	1.2.1. Contributions


	2. Benchmark Datasets
	3. Deep Learning-Based Approaches for Natural Image Reconstruction
	3.1. Non-generative Methods
	3.1.1. Convolutional Neural Network (CNN)
	3.1.2. Deterministic Encoder–Decoder Models

	3.2. Generative Methods
	3.2.1. Generative Adversarial Network (GAN)
	3.2.2. VAE-GAN


	4. Reconstruction Evaluation
	4.1. Human-Based Evaluation
	4.2. Image-Metric-Based Evaluation
	4.2.1. MSE
	4.2.2. PCC
	4.2.3. SSIM
	4.2.4. PSM

	4.3. Image Comparison Setting

	5. Fair Comparison Across the Methods
	5.1. Evaluation on a Common Dataset
	5.2. Evaluation Across Common Metrics
	5.3. Visual Comparison Results
	5.4. Quantitative Comparison Results on Natural Images From DIR
	5.4.1. Performance Using Low-Level Metrics
	5.4.2. Performance Using the High-Level PSM Metric


	6. Discussion
	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


