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Studying the decoding process of complex grasping movement is of great significance
to the field of motor rehabilitation. This study aims to decode five natural reach-
and-grasp types using sources of movement-related cortical potential (MRCP) and
investigate their difference in cortical signal characteristics and network structures.
Electroencephalogram signals were gathered from 40 channels of eight healthy
subjects. In an audio cue-based experiment, subjects were instructed to keep no-
movement condition or perform five natural reach-and-grasp movements: palmar, pinch,
push, twist and plug. We projected MRCP into source space and used average
source amplitudes in 24 regions of interest as classification features. Besides, functional
connectivity was calculated using phase locking value. Six-class classification results
showed that a similar grand average peak performance of 49.35% can be achieved
using source features, with only two-thirds of the number of channel features. Besides,
source imaging maps and brain networks presented different patterns between each
condition. Grasping pattern analysis indicated that the modules in the execution stage
focus more on internal communication than in the planning stage. The former stage
was related to the parietal lobe, whereas the latter was associated with the frontal lobe.
This study demonstrates the superiority and effectiveness of source imaging technology
and reveals the spread mechanism and network structure of five natural reach-and-
grasp movements. We believe that our work will contribute to the understanding of
the generation mechanism of grasping movement and promote a natural and intuitive
control of brain–computer interface.

Keywords: natural reach-and-grasp decoding, movement-related cortical potential, EEG source imaging, phase
locking value, brain network

INTRODUCTION

Brain–computer interface (BCI) is a control system, which enables users to directly communicate
with the external environment through electroencephalogram (EEG) (Wolpaw et al., 2000). In
many applications of BCI, the field of motor rehabilitation has attracted many researchers’
attention. Moreover, as an essential human skill, hand function is the first choice for many people
with dyskinesia want to restore (Snoek et al., 2004). Studies in the early 21st century have shown
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that neural prosthesis control can be achieved by noninvasive
BCI, but mainly depends on simple and repeated imagination of
motor tasks (Pfurtscheller et al., 2003; Rohm et al., 2013), which
gives an unnatural controlling feeling for BCI users.

To extend the BCI instruction set and realize a natural
and intuitive control, many researchers have investigated the
possibility of decoding complicated grasping information using
movement-related cortical potentials (MR) (Jochumsen et al.,
2015; Ofner et al., 2016; Pereira et al., 2017; Shiman et al.,
2017). MRCP is considered as a low-frequency EEG negative shift
that contains rich movement information, including movement
types, force, and speed (Shakeel et al., 2015). Using MRCP,
Schwarz et al. (2018) successfully decoded three natural grasp
types (palmar, pincer, lateral) in the same limb and no-movement
condition with a peak performance of 65.9% and identified their
significant differences in MRCP. Ofner et al. (2019) investigated
MRCPs of five attempted arm and hand movements, and the
peak accuracy of five-class classification was 45%. Moreover, they
found discriminative signals originated from central motor areas
based on pattern analysis. In our previous study, we investigated
five natural grasp types and no-movement condition using
MRCP, and five-class classification accuracy was significantly
better than significance level (Xu et al., 2021).

However, most of these studies are based on channel features.
As we know, limited by the volume conductor effect, the spatial
resolution of EEG signals is low, which is not conducive for us
to understand how EEG is produced and distributed in the brain.
To solve this problem, EEG source imaging (ESI) may be a good
solution. Many studies about decoding of hand movement EEG
reported that the source-based method outperformed sensor-
based method (Yuan et al., 2008; Handiru et al., 2016). The
previous study by Edelman et al. (2016) verified that ESI can
improve decoding performance when classifying four complex
right-hand motor imagery (MI) tasks: the accuracy of individual
task classification and overall classification after using ESI was,
respectively, 18.6 and 12.7% higher than the peak performance
obtained using the sensor-based method. Moreover, a recent
study that combined scout ESI and convolutional neural network
presented a high classification performance for 4-class MI tasks:
the overall accuracy was 14.4% higher than the accuracy achieved
using the state of the art MI classification methods (Hou et al.,
2020). Because of the proximity of motor brain regions activated
by the same limb, we hope to improve spatial resolution using ESI
technology and obtain a higher classification result.

Recently, a novel and effective way to investigate the
communication patterns of the brain regions has attracted many
researchers’ attention, which is brain network analysis. The study
of brain network is often described by functional connectivity and
graph theory. For example, the recent study by Gu et al. revealed
the network distinction between left and right foot MI tasks based
on network-based statistics and graph theory indices (Gu et al.,
2020). In addition, Xiong et al. (2020) constructed functional
connectivity matrices in five frequency bands based on weighted
phase lag index and used the network metrics from these matrices
to decode different movement intentions. However, few studies
focus on constructing brain networks in MRCP frequency band,
especially on natural grasping movements.

In our study, we collected EEG signals for five natural
grasp types as well as no-movement condition. We applied ESI
technology on the MRCP frequency band and used phase locking
value (PLV) between the regions of interest (ROIs) to construct
functional connectivity matrices. In addition, five network
metrics were calculated to show the changes of brain networks
of different movements over time. Our study aimed to answer
three questions: (1) whether the classification performance can be
improved by using source features compared with using channel
features; (2) whether the conclusions obtained by using source
features are consistent with those obtained by using channel
features; and (3) whether there are significant differences in brain
networks and network metrics of different grasp types and what
changes they show in the whole reach-and-grasp process. We
hope our study can shed some light on other researchers.

MATERIALS AND METHODS

Subjects
This study was approved by the ethics committee of Southeast
University. Eight right-handed subjects (five female) aged
between 22 and 25 years were recruited. All subjects were
without any history of neuromuscular disorders and had normal
or corrected-to-normal vision. All subjects were accurately
explained the purpose and procedure of the experiment and
signed the informed consent.

Experimental Setup
The experiment was carried out in an electromagnetic and noise-
shielded room with weak light, good ventilation, and appropriate
temperature. We used an audio cue-based paradigm, as shown in
Figure 1A. Subjects were instructed to perform six kinds of tasks,
which were palmar, pinch, push, twist, plug, and no-movement,
as illustrated in Figure 1C, and these tasks appeared in random
order. At second 0, an auditory beep instructed subjects to place

FIGURE 1 | (A) Experimental paradigm of one trial. (B) Electrode layout. (C)
Five daily used natural reach-and-grasp movements.
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their right hands on the press button and take a 3-s rest. After
that, an auditory cue indicated a specific task, and subjects were
asked to stay focused and avoid swallowing or blinking. At
second 5, a “go” cue instructed subjects to execute the required
movement in 5 s, including reaching, grasping, and returning.
For no-movement instructions, subjects should avoid any eye
or body movement.

The experiment was divided into 8 sessions, and 10 trials
were recorded for each task in a session. Therefore, 480 trials
were obtained for each subject. Furthermore, we recorded a 10-s
rest at the beginning of the experiment, and an 8-min rest was
introduced between sessions to reduce the fatigue of subjects.

Data Recording
We used a 64-channel active electrode cap (BrainProducts,
Germany) and a SynAmps2 amplifier (Neuroscan Compumedics,
United States) for EEG recording. The electrodes were arranged
following the international standard 10–20 montage. Forty
electrodes positioned over frontal, parietal, and temporal lobes
were selected to collect the signals (Figure 1B). We used the
left mastoid as a reference and the FPz channel as ground.
The electrode impedances were kept less than 5 k�. EEG was
sampled with 1,000 Hz and prefiltered between 0.05 and 100 Hz.
Besides, a notch filter at 50 Hz was applied to remove power-
line noises. In addition, we used a press button and force
transducers to record force information and analyze the reach-
and-grasp phase.

Movement Onset Detection
For detecting the movement onset of each trial, the rising edge
of the pressure button was used. Similarly, the falling edge of the
pressure button was defined as the end of the movement. For no-
movement conditions, we calculated the mean reaction time of
movement trials of each subject and added it to the “go” cue onset
of no-movement trials. The reaction time was the period between
the “go” cue onset and the actual movement onset. In addition,
the time when subjects started and finished their grasp was also
determined by the rising and falling edge of corresponding force
signal. In this step, we discarded the trials that met one of the
following four conditions: (1) subject released press button before
“go” cue; (2) subject did not return to the press button in 5 s after
“go” cue; (3) subject’s reaction time was more than 1.5 s; and (4)
subject executed a wrong movement.

Signal Preprocessing
Signals were processed using MATLAB R2020b and EEGLAB
toolbox (Delorme and Makeig, 2004).

First, EEG signals were filtered from 0.1 to 40 Hz using a zero-
phase fourth-order Butterworth filter and then downsampled
to 100 Hz. Afterward, noisy channels were removed by
visual inspection.

To remove stationary artifacts, we high-passed filtered EEG
greater than 1 Hz using a zero-phase fourth-order Butterworth
filter and computed independent components (ICs) with the
extended infomax independent component analysis (ICA) (Lee
et al., 1999). In this step, the ICA weights were cached, and
contaminated ICs were visually identified and removed with the

help of EEGLAB implementation of ADJUST (Mognon et al.,
2011) and ICLabel (Pion-Tonachini et al., 2019). After that, the
rest ICs were projected back to the channel space and trials
with (1) amplitude exceeding ± 100 µV, (2) abnormal joint
probability, and (3) abnormal kurtosis were marked for rejection.
The threshold of (2) and (3) was five times the standard deviation
of their statistic.

Then, we applied the cached ICA weights to the original data
(0.1–40 Hz filtered). Previously identified ICs were rejected, and
data were back-projected to the channel space. We extracted
epochs in the [−2, 3.5] s interval of each trial as time ROI (tROI),
with 0 s corresponding to movement onset. Furthermore, trials
with rejection marks were excluded.

Lastly, data were converted to a common average reference.
We adopted a zero-phase fourth-order Butterworth filter between
0.1 and 3 Hz to get MRCP.

Electroencephalogram Source Imaging
To make results more explanatory, MRCP were mapped from the
channels to the cortical surface through ESI. The ESI processing
was based on Matlab Brainstorm (Tadel et al., 2011). Colin27
template boundary element head model was chosen because of
the high three-dimensional resolution. We used OpenMEEG
(Gramfort et al., 2010) to solve the forward problem and
sLORETA (Pascual-Marqui, 2002) to compute sources. To reduce
the impact of sensor noise, we used 10-s resting data, which were
similarly preprocessed as the movement data, to estimate a noise
covariance matrix.

The ROIs in our study were defined by an atlas of a subset
of the Brodmann areas (Fischl et al., 2008). There were 24 ROIs,
which covered somatosensory area (BA1, BA2 BA3a, BA3b),
primary motor area (BA4a, BA4p), premotor area (BA6), Broca
area (BA44, BA45), primary visual area (V1), secondary visual
area (V2), and visual area of middle temporal (MT) of both
hemispheres (Figure 2). The purpose of studying the visual
areas is to investigate whether different grasping objects have
significantly different activation patterns on the visual areas. To
reduce the computation, we averaged the sources of MRCP in the
same ROI and referred to it as sMRCP.

FIGURE 2 | Twenty-four ROIs defined by an atlas of a subset of the
Brodmann areas. Different colored regions referred to different ROIs. (A) Top
view. (B) Bottom view.
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Feature Extraction and Classification
In our study, we were interested in the six-class classification
performance, as in practical application scenarios, BCI
equipment should not only distinguish complicated grasp
types, but also recognize whether users want to grasp.

The feature extraction method and classifier in our study
followed the practice of Schwarz et al. (2018). The difference
was that they extracted the amplitude of MRCP as features,
while we extracted the amplitude of sMRCP. First, sMRCP was
resampled to 16 Hz to ease computational pressure. Next, a 1-s
time window was used to take amplitude values in 125-ms steps
as features. For classification, we used shrinkage-based linear
discriminant analysis classifiers (sLDA) (Blankertz et al., 2011).
For every trial, we moved the time window in steps of 1/16 s
over the tROI and finally obtained 88 sLDA models over the
whole tROI and 192 features for every model. Finally, fivefold
cross-validation was repeated 10 times, and the mean accuracy
was reported.

To figure out the impact of the volume conductor effect, we
compared the classification performance obtained using channel
features and source features. We also investigated the impact of
time window size on the overall classification performance using
four window sizes (one sample, 0.5, 1, and 1.5 s). Furthermore,
we calculated precision and confusion matrices at specific time
points to see which grasp type had a major impact on the
classification performance.

Brain Network Analysis
To investigate the motion coding process, we calculated
functional cortical connectivity using PLV (Lachaux et al., 1999).
PLV is a measure of synchronization in the time domain and the
single-trial formula definition is as follows:

PLV(t) =
1
N

∣∣∣∣∣
N∑

n=1

exp
(
j1ϕ(t)

)∣∣∣∣∣
where t is the specific time point, N is the number of sample
points, and 1ϕ(t) is the difference of instantaneous phases
between pairs of ROIs at time t. In this article, instantaneous
phases were obtained by computing analytic signal using Hilbert
transform, and a sliding window of 1 s with 0.1-s step size was
adopted for PLV calculation.

A network is usually represented as a graph that consists
of nodes and edges. In our study, nodes were 24 ROIs, and
the weight of edges was PLV between pairs of ROIs. To avoid
spurious connections, we filtered the edges whose PLV was
less than 0.65. Besides, we used Gephi to produce functional
connectivity maps (Bastian et al., 2009).

In this study, five network metrics were applied to investigate
the trends and properties of networks, which were the mean
degree (DE), density (DS), characteristic path length (CPL),
clustering coefficient (CC), and modularization (M) (Fornito
et al., 2016). DE of a node is the sum of the weight of edges
connecting this node with all other nodes, which describes the
significance of a node. DS is the ratio of the number of actual
connections to the maximum number of possible connections.

CPL is the average shortest path length between two nodes in
a network. CC can be thought of as the probability of finding
a connection between any two neighbors of the node. M can
be used to divide nodes into densely connected subgroups
called modules, and nodes within these modules are more
strongly connected than with other parts of the network. CPL
indicates functional integration, whereas CC and M indicate
functional segregation.

RESULTS

Behavioral Analysis
Figure 3 presents the results of behavioral analysis of all subjects
for each reach-and-grasp movement. The movement onset and
end were defined by the press button, and the grasping phase was
specified by force transducers. The 0 s in the figure corresponds
to the subject-specific movement onset. As shown in Figure 3, the
movement time was different between subjects but keep similar
between movement tasks, which pointed out that the more time
the subject spent on the palmar task than other subjects, the more
time he/she spent on other tasks. For every subject, there was
no significant reaction time difference between movement tasks.
Besides, we observed similar duration for the reaching phases
and returning phases. On average, all subjects completed grasping
in 2 s after movement onset. In our study, the pinch-and-twist
tasks were completed quicker than the other three tasks, which
generally cost 3 s.

Electroencephalogram Source Imaging
Figure 4 shows the grand average of all trials of sMRCPs for each
condition in BA2, BA4a, BA6, V1, V2, and BA44, corresponding
to six brain regions described above.

In Figure 4, we found that in motor-related ROI, for example,
BA2, BA4a, and BA6, movement-specific sMRCP in the left
hemisphere was more discriminative than that in the right
hemisphere, and lateralization could be observed. In addition,
we observed a common phenomenon in the left hemisphere of
primary motor area (BA4a) and premotor area (BA6): sMRCP
often kept steady before 0.7 s and then shifted sharply and
reached its peak at approximately 1.5 s, corresponding to the
time subjects started grasping. It is worth mentioning that the
peak amplitude and peak time of different movement tasks
show great distinction. In somatosensory areas, for example,
BA2, sMRCP has three peaks, which are at approximately
−1.5, 0, and 1 to 1.5 s, respectively. The polarity of these
peaks is the same in the left hemisphere, whereas in the right
hemisphere, the polarity of the third peak is opposite to that
of the first two peaks. Furthermore, the amplitude of the first
peak of no-movement is prominently higher than the first peak
of movement tasks.

In visual-related ROIs, such as V1 and V2, we did not observe
lateralization, but we found significant differences between
each grasp type and no-movement condition from 0 to 1 s,
corresponding to the reaching phase. Besides, the polarity of
sMRCP in the returning phase is opposite to that of the reaching
phase. Because of the significant directional sensitivity of the
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FIGURE 3 | Subject-specific behavioral analysis. In each subgraph, subjects are represented on the horizontal axis in ascending order of subject number from left to
right. The 0 s is the subject-specific movement onset. The color tone from dark to light corresponds to the four stages of reach-and-grasp action: reacting phase,
reaching phase, grasping phase, and returning phase.

visual areas, we speculated that these phenomena were caused
by the object position processing. Moreover, sMRCPs in the left
hemisphere of V1 and V2 show a very similar pattern, whereas
in the right hemisphere, sMRCP of all conditions in V2 is more
discriminative than that in V1 during reaching phase. These
phenomena indicated that the same movement activated the left
hemisphere of the visual areas in a similar way, whereas in the
right hemisphere, secondary visual area (V2) was responsible for
more advanced and finer visual processing tasks than the primary
visual area (V1).

Figure 5 presents the changes of sMRCP activity of a
representative subject for all conditions in the cortex over time.
In Figure 5, we found that grasping movements mainly activated
frontal and parietal areas, and the activation patterns were
different. In the time of [−1, 0.5] s, the activation of palmar on
the cerebral cortex is the least obvious, mainly focusing on the
ipsilateral region. In addition, we observed that two groups had
similar activation patterns during [−1, 0.5] s: pinch and push,
twist, plug, and no-movement. After 0.5 s, the activation starts
to spread from the frontal lobe to the parietal and temporal
lobes and then shrinks to the central area. Furthermore, we
found that the most pronounced activation was at 1 s in the
parietal area, except plug and no-movement, corresponding to
the time when the subject reached the object and started grasping.
At 2 s, we only found obvious activation in the central area,
except push. We speculated this was because this time point
corresponded to the start of the returning phase under other
conditions, but was still grasping phase for push. In addition,
Figure 5 also indicated that movement intention activated

frontal area most, whereas movement execution mainly activated
the parietal area.

Multiclass Classification Results
Figure 6A demonstrates the subject-specific and grand average
multiclass classification accuracy. The grand average significance
level for six-class classification is 17.95% (α = 0.05). In Figure 6A,
the grand average accuracy is above significance level during the
whole tROI, which not only verifies that sMRCPs can be used to
decode movement intentions of complicated grasp types, but also
shows excellent performance of source features. In the beginning,
the accuracy curves increase slowly until−1 s. After that, there is
a temporary decrease followed by a deep increase, which reaches
its peak at the grasping phase. We speculated that the temporary
decrease was affected by the “go” cue. Compared with the “Target
x” cue, “go” cue was a neutral stimulus, which would increase
redundant information and lead to the decrease in accuracy.

Figure 6B presents the grand average precision of each task
over tROI. All precision curves have similar trends, which
are consistent with Figure 6A, whereas the precision of no-
movement is significantly higher than that of movement types
before the grasping phase. Furthermore, in grasp types, palmar
and plug are the easiest to be discriminated, whereas push is the
hardest to be identified.

In Figure 6A, we found the classification performance varied
among subjects. According to their performance, we divided
these subjects into two groups. Group 1 consisted of three
subjects with better classification performance: S2, S7, and S8,
and the rest subjects were included in group 2. Figures 6C,D

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 797990

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-797990 November 24, 2021 Time: 14:3 # 6

Xu et al. Source Imaging Based Grasps Decoding

FIGURE 4 | Grand average of all trials of sMRCPs for all conditions. The 0 s corresponds to the movement onset. The dots below each figure were significantly
different (p < 0.05, Wilcoxon rank sum test) time points between every reach-and-grasp movement and the no-movement.

present confusion matrices of the two groups at grand average
peak time. In both groups, no-movement is easily recognized as
pinch, whereas pinch is most likely to be falsely identified as twist,
followed by push and no-movement. Group 1 has significantly
poor performance in push types, whereas the performance of all
types seems more similar in group 2.

Table 1 presents the peak performance obtained using
source features and channel features. For some subjects, using
source features can achieve better performance, whereas for
others, using channel features is better. However, grand average
performances are almost the same: 49.35% for source features and
49.65% for channel features. Besides, the reduction of features
greatly improves the classification efficiency, which is reflected
in the execution time: the single trial execution time of the
source-based method is only one-third of that of the channel-
based method, which indicates the effectiveness and superiority
of source-based method.

Besides, the effect of window size on the overall performance
was investigated. Figure 7A demonstrates the grand average
six-class classification performance obtained using four time
windows, which is one sample, 0.5, 1, and 1.5 s, respectively.
We found that with an increase in the window size, the peak
accuracy was higher, and the peak time was later. A one-way

repeated-measures analysis of variance was performed on the
peak accuracies of all subjects at four window sizes. The results
are shown in Figure 7B. There is also almost no difference
between the performance obtained using a time window of 1 and
1.5 s, but the 1-s window performs significantly better than the
0.5-s window. Therefore, we indicated that the length of source
discriminated information was between 1 and 1.5 s.

Brain Network
Figure 8 shows functional connectivity maps of a representative
subject (S2) for each condition. Tables 2–6 present DE,
DS, M, CC, and CPL of these networks at −1, 0, and
1.4 s, corresponding to the planning phase, movement onset,
and peak time. We observed some interesting phenomena
from these networks.

First, the ROI in the same module is almost always in the same
hemisphere. For all these networks, we found only one module
that contained ROIs in different hemispheres. This module
consists of V1, V2, and MT, representing the visual area.

Second, although the number of modules has a little difference
between these networks, which often kept 6, sometimes was
5 or 7, reflected in Table 4, we found (1) both hemispheres
of V1, V2, and MT; (2) left hemisphere of BA44 and BA45;
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FIGURE 5 | Average cortex maps’ changes for all the conditions of S2 in the time of [−1, 2] s, with 0 s corresponding to the movement onset. In this figure, the
activity of sMRCP less than 40% of the maximum activation amplitude was filtered.

(3) right hemisphere of BA44 and BA45; (4) right hemisphere
of BA2, BA3a, BA3b, and BA4p; (5) left hemisphere of BA2,
BA3a, and BA3b; and (6) left hemisphere of BA1, BA4a,
and BA4p are always in the same module in Figure 8.
On the one hand, these divisions are consistent with the
functions of these ROIs, which are described in the ESI
section. On the other hand, groups 4 to 6 show that the
connectivity of the left and right hemispheres is asymmetric, and
connectivity in the same hemisphere is stronger than that in
different hemispheres.

Third, we observed that with the time increased, connectivity
between modules decreased, whereas connectivity in modules
increased. Tables 5, 6 describe the same phenomenon, where CC
increases and CPL decreases over time. This finding indicated
that the brain focused more on the communication between
modules in the movement intention phase than in the movement
execution phase. The work of modules tended to be localized and
refined in execution phase.

Lastly, in Tables 2, 3, DE and DS of pinch, push, and twist
show a tendency that decreases first and then increases, which
is different from palmar, plug, and no-movement: DE and DS of
palmar keep increasing over time, whereas le the same properties
of plug and no-movement keep decreasing.

DISCUSSION

In this article, we successfully decoded five natural grasp
types and no-movement condition using sMRCP. Multiclass
classification results showed that for all subjects, accuracies were
better than the grand average significance level during the whole
tROI, and a grand average peak accuracy of 49.35% could be
achieved at grasping phase. Furthermore, by comparing cortex
maps, we found movement intention mainly activated the frontal
area, whereas movement execution activated the parietal area.
Besides, brain network analysis indicated that modules had more
communication in the movement intention phase. During the
movement execution phase, the work of modules tended to be
localized and refined.

Multiclass Classification Results
Figure 6A shows that the peak accuracy is achieved at grasping
phase. We believed that this was because the shape of hands
showed the most significant difference in grasping phase
compared with other phases, and this information was also
reflected in sMRCP.

Figure 6B demonstrates that the precision of no-movement
type is significantly higher than movement types before 1 s and
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FIGURE 6 | Multiclass classification results. (A) Grand average classification accuracy over tROI. The thin blue line represents subject-specific accuracy; the bold line
represents grand average accuracy; the shadow shows the standard deviation of grand average accuracy; the green dotted line represents grand average
significance level: 17.75%. (B) Grand average classification precision of each task over tROI. (C) Average confusion matrix of group 1 at grand average peak time.
(D) Average confusion matrix of group 2 at grand average peak time.

then keeps similar with movement types until the end of the
tROI. This phenomenon indicated that significant discriminated
information of natural grasp types mainly existed in the grasping
phase. In addition, in Figures 6C,D, no-movement is easiest to
be recognized as pinch, which may be because pinch uses fewer
fingers than other grasp types.

Besides, we found that with the window size becoming
larger, the peak performance became higher, and the peak
time became later. No significant difference was observed
between performances obtained using 1- and 1.5-s time window,
indicating that the length of discriminative information in
sMRCP was between 1 and 1.5 s. These findings are consistent
with the study by Schwarz et al., although their study used
channel features (Schwarz et al., 2018).

To find out whether source features performed better than
channel features, Table 1 compares the peak performance and the
peak time achieved using source features and channel features.
Results show that grand average performances are almost the
same. It is worth mentioning that the number of source features

TABLE 1 | Peak performance of using source features and channel features and
their corresponding time point.

Subject Source features Channel features

Accuracy (%) Time (s) Accuracy (%) Time (s)

S1 43.16 1.1875 42.09 1.1250

S2 71.27 1.3750 68.19 1.3125

S3 40.67 1.1875 46.11 1.1250

S4 46.91 1.7500 47.80 1.8125

S5 45.37 1.9375 46.37 1.9375

S6 31.86 0.8125 34.41 0.9375

S7 66.98 1.4375 64.36 1.3750

S8 58.94 1.2500 59.70 1.2500

Grand average 49.35 1.3750 49.65 1.3750

The time is relative to movement onset.

is less than two-thirds of the number of channel features,
indicating that ESI technology is an effective way to improve
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FIGURE 7 | The impact of window size on the overall performance. (A) Grand average accuracies of using four window sizes. (B) The peak accuracies of all
subjects obtained using four window sizes.

TABLE 2 | The average degree of network for each condition of S2.

Time Palmar Pinch Push Twist Plug No-movement

−1 s 4.19 4 5.333 4.182 4.571 5.271

0 s 5.333 3.652 4.167 4.174 4.545 4.545

1.4 s 6.182 5 4.2 4.762 4.2 4

TABLE 3 | The density of network for each condition of S2.

Time Palmar Pinch Push Twist Plug No-movement

−1 s 0.21 0.174 0.267 0.199 0.229 0.237

0 s 0.267 0.166 0.181 0.19 0.261 0.216

1.4 s 0.294 0.263 0.221 0.238 0.221 0.2

TABLE 4 | The modularity of network for each condition of S2.

Time Palmar Pinch Push Twist Plug No-movement

−1 s 0.7 0.753 0.596 0.739 0.601 0.585

0 s 0.61 0.746 0.688 0.772 0.662 0.663

1.4 s 0.594 0.728 0.693 0.7 0.766 0.779

TABLE 5 | The average clustering coefficient of network for each condition of S2.

Time Palmar Pinch Push Twist Plug No-movement

−1 s 0.667 0.625 0.398 0.671 0.585 0.516

0 s 0.71 0.474 0.538 0.729 0.488 0.644

1.4 s 0.745 0.933 0.682 0.786 0.881 0.744

classification performance. Besides, in Table 1, compared with
the results obtained using channel features, subjects with high
performance can achieve better performance after using source
features, whereas subjects with a poor performance show poorer
results. Moreover, the signal quality also had a great influence on
the source imaging results: the better the signal quality, the more
accurate the source imaging results.

TABLE 6 | The average path length of network for each condition of S2.

Time Palmar Pinch Push Twist Plug No-movement

−1 s 2.462 2.154 2.309 1.4 2 2.211

0 s 2.026 2.021 2.429 1.513 2.556 2.778

1.4 s 1.976 1.138 2.222 1.545 1.345 1.419

Grasping Pattern Analysis
Previous studies have shown that the discriminative information
of grasp types originated from central motor areas (Ofner et al.,
2017, 2019). The same conclusion can be obtained from Figure 5.
Besides, we also observed signals of motor areas were more
discriminable in the left hemisphere, and this asymmetry was
also presented in the number of the network edges in Figure 8.
These phenomena reflected the contralateral control of the body
by the brain. In addition, we found that the highest distinction
of grasp types was in grasping phase in motor and sensorimotor
areas. Combined with the research of Sburlea et al. (2021), we
speculated that signals in this phase contained not only grasp-
type information but also the number of fingers.

Besides, cortex maps in Figure 5 show a pattern that grasping
movements mainly activate the frontal-parietal brain networks,
which verifies the results in previous studies. Furthermore,
in Figure 5, we found that the frontal area was associated
with movement intention, whereas the parietal area correlated
with movement execution. This is in line with the finding
of Sburlea et al. (2021): frontal-central and parietal-occipital
activations represent object properties at the planning and
execution stage, whereas the primary somatosensory, motor,
and parietal areas focus on the processing of grasp types and
number of fingers.

In addition, visual area shows a different pattern from
motor areas. On the one hand, sMRCPs of motor-related
ROIs in Figure 4 presented significant lateralization, but we
did not observe the same phenomenon in visual-related ROIs.
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FIGURE 8 | Functional connectivity maps of S2 for each condition. The size of a node indicates DE of the node. The width of an edge indicates the weight of the
edge. The edges whose weight is less than 0.65 are filtered. Different colors indicate different modules. Each column represents network structure at different time
points, which from left to right are −1, 0, and 1.4 s, respectively.
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However, significant differences between each grasp type and
no-movement condition were found in the reaching phase.
We speculated that visual areas were mainly responsible for
processing the object shape and position at this stage. On the
other hand, in Figure 8, only visual modules contain ROIs
of both hemispheres. For motor modules, ROIs of different
hemispheres are divided into different modules. This suggested
that connections in motor regions are more regional and
localized than in visual regions.

Limitations and Future Work
Our study proved that multiclass natural grasp types can be
discriminated by MRCP in source space, and source features
could achieve similar peak performance with channel features.
Besides, grasping pattern was also analyzed using cortex
maps and network measures. However, our work still has
some limitations.

On the one hand, we used the sLORETA to project MRCP into
the source level. Although sLORETA is a mature and popular
technology for solving the inverse problem, it is hard to obtain
the real source as it is an ill-posed problem. Nonetheless, because
of the perfect first-order localization of sLORETA, the source
obtained in this study is considered effective.

On the other hand, during brain network analysis, we set a
threshold of 0.65 for the PLV connectivity matrices for avoiding
spurious connections. We were not sure whether using different
thresholds could obtain similar conclusions. For future work, we
would compare the impact of using different thresholds.

Besides, the EEG data were collected in healthy people. Since
spinal cord injured (SCI) people have dyskinesia, the conclusions
obtained from the study of healthy subjects are not necessarily
applicable to them. In the future, we will verify our findings
on SCI subjects.

CONCLUSION

In our study, five natural reach-and-grasp movements and no-
movement were decoded from source amplitude of MRCPs.
Compared with using channel features, similar and satisfactory
grand average peak performance can be achieved using ESI
technology, with only two-thirds of the channel feature number.
Grasping pattern analysis demonstrated that the generation
patterns varied among different grasp types. Besides, we found

that frontal area was associated with movement intention,
whereas parietal area correlated with movement execution.
Multiclass classification results proved that hand movements
are the most distinguishable at grasping stage. Moreover,
during the transition from movement intention to movement
execution, the work of modules tended to be localized and
refined. These findings will contribute to the understanding
of the grasping process and eventually realize a natural and
intuitive control of BCI.
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