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With the development of artificial intelligence and robotic technology in

recent years, robots are gradually integrated into human daily life. Most of

the human-robot interaction technologies currently applied to home service

robots are programmed by the manufacturer first, and then instruct the

user to trigger the implementation through voice commands or gesture

commands. Although these methods are simple and e�ective, they lack some

flexibility, especially when the programming program is contrary to user

habits, which will lead to a significant decline in user experience satisfaction.

To make that robots can better serve human beings, adaptable, simple,

and flexible human-robot interaction technology is essential. Based on the

neural mechanism of reinforcement learning, we propose a brain-inspired

intention prediction model to enable the robot to perform actions according

to the user’s intention. With the spike-timing-dependent plasticity (STDP)

mechanisms and the simple feedback of right or wrong, the humanoid robot

NAO could successfully predict the user’s intentions in Human Intention

Prediction Experiment and Trajectory Tracking Experiment. Compared with the

traditional Q-learning method, the training times required by the proposed

model are reduced by (N2
−N)/4, where N is the number of intentions.

KEYWORDS

human-robot interaction, intention prediction, brain-inspired model, spiking neural

networks, humanoid robot

1. Introduction

The research trend of the new generation of robots is to make robots participate in

human life, and improve the naturalness and flexibility of interaction between humans

and robots through human-robot interaction technology. Robots that can successfully

predict user’s intention and take appropriate actions according to the intention can

effectively improve interaction efficiency and user experience. Researchers have made

significant progress in user intention prediction modeling. These studies use a variety

of frameworks or models to enable robots to predict users’ intentions in specific

human-robot interaction tasks. These frameworks or models use a variety of methods,

such as probabilistic graphical models, deep learning techniques, and other methods that

include extreme learning machine algorithms, etc.
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There are many studies on the application of the probability

graph model to human intention prediction. Song et al. (2013)

proposes a probabilistic graphical model for predicting human

manipulation intention from image sequences of human-object

interaction. The model can enable the robot to successfully

infer intention in a house-hold task which contains four

intentions: hand-over, pouring, tool-use, and dish-washing.

Vinanzi et al. (2019) proposes a novel artificial cognitive

architecture to predict the intentions of a human partner.

The architecture contains unsupervised dynamical clustering of

human skeletal data and a hidden semi-Markov chain. With the

architecture, the iCub robot can engage in cooperative behavior

by performing intention reading based on the partner’s physical

clues. Besides that, Yu et al. (2021) proposes a Bayesian method

for human motion intention in a human-robot collaborative

task. Dermy et al. (2017) and Luo and Mai (2019) built

models based on Probabilistic Movement Primitives for human

intention prediction. Their models are verified in gaze guidance

experiment or tabletop manipulation task.

Deep learning techniques, especially deep long short-term

memory (LSTM) neural network, have also been used to predict

human intentions. Yan et al. (2019) presents an LSTM neural

network to recognize human intention. They designed a human-

robot collaboration environment using aUR5 robot and a Kinect

V2 depth camera. The experimental results show that the 2-

layers deep LSTM network enables the robot to understand

the human intentions even with only 40% of the motion

sequences. Liu et al. (2019) presents a deep learning system

combing convolutional neural network (CNN) and LSTM, and

this system could accurately predict the motion intention of the

human in a desktop disassembly task.

In addition, there are other methods for human intention

recognition. Wang et al. (2021) proposes a teaching-learning-

prediction (TLP) framework, which enables robots to learn and

predict human hand-over intentions in collaborative tasks. The

robot learns the human demonstrations via the extreme learning

machine (ELM) algorithm, which realizes the robot’s learning

and prediction of human hand-over intentions in collaborative

tasks. The experimental results show that the framework can

enable the robot to effectively predict the human hand-over

intention and complete the hand-over task. Since the framework

enables robots to learn through human demonstrations, it

can reduce human manual-programming efforts and improve

the efficiency of human-robot collaboration. Lin et al. (2017)

develops a human intention recognition framework in human-

robot collaboration scenarios. The framework contains an

inverse-reinforcement learning system to find the optimal

reward function of the policy and a Markov-Decision process

to model human intention. They use a coffee-making task

and a pick-and-place task to verify the validity of the model

and obtained the desired results. Li et al. (2020) proposes a

task-based framework to enable robots to understand human

intention from natural language dialogues. The framework

includes a language semantics module for extracting instruction

keywords, a visual object recognition module for identifying

objects, and a similarity computation module for inferring

intention based on the given task. With this framework,

the robot could comprehend human intentions using visual

semantics information.

It can be seen that most of the current studies use

relatively complex methods to complete specific human-robot

interaction tasks, and few studies use brain-inspired cognitive

computational modeling methods to solve intention prediction

tasks. Brain-inspired cognitive computational modeling is a

method that draws on the results of neuroimaging studies on

cognitive tasks, proposes feasible neural pathways and network

structures, and conducts modeling based on the spiking neuron

model.

Here, based on the neuroimaging studies of reinforcement

learning, we propose a brain-inspired intention prediction

model to enable the robot to perform actions according to

the user’s intention. Based on the brain-inspired network

structure, the humanoid robot NAO could successfully predict

the user’s intentions in Human Intention Prediction Experiment

and Trajectory Tracking Experiment only by using the spike-

timing-dependent plasticity (STDP) mechanisms and the simple

feedback of right or wrong.

2. Materials and methods

2.1. Architecture of the brain-inspired
intention prediction model

The architecture of the brain-inspired intention prediction

model is shown in Figure 1.

The dorsolateral prefrontal cortex (DLPFC) is responsible

for representing state information (Barbey et al., 2013). In our

computational model, the DLPFC receives input from visual

cortex and abstractly represents the visual information.

Popular theories implicate that the basal ganglia (BG) are

responsible for action selection (Stocco et al., 2010; Friend

and Kravitz, 2014). The striatum D1 (StrD1) and striatum D2

(StrD2) are components of BG (Villagrasa et al., 2018). In our

computational model, the BG is used for intention prediction,

that is, BG selects the actions that conform to the user’s intention

according to the visual information represented by DLPFC.

The thalamus is generally considered to be a relay

station, transmitting information between different cerebral

cortex (Hwang et al., 2017). In our computational model, the

thalamus acts as a relay station to transmit information from BG

to PMC and OFC.

The primary motor cortex (PMC) is a critical area for

controlling the execution of movement (Kakei et al., 1999). In

our computational model, the PMC is used to control the actions

of the robot.
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FIGURE 1

The architecture of the brain-inspired intention prediction model.

The substantia nigra pars compacta and ventral

tegmental area (SNc/VTA) play important roles in reward

cognition (Haber and Knutson, 2010; Zhao et al., 2018). In our

computational model, the SNc/VTA receives the user’s feedback

and determines the pathway of information transmission.When

the feedback information is positive, SNc/VTA combines the

information from PMC and transmits the stimulation to OFC_2

(a sub-region in orbitofrontal cortex). When the feedback

information is negative, the stimulation of SNc/VTA is 0.

The orbitofrontal cortex (OFC) is considered as a

critical frontal region for memory formation (Frey and

Petrides, 2002). The sub-region medial orbitofrontal cortex

(MOFC) and lateral orbitofrontal cortex (LOFC) respond

to positive reward (O’Doherty et al., 2001) and negative

reward (Kringelbach, 2005). In our computational model, the

OFC contains OFC_1 and OFC_2, MOFC and LOFC. The

OFC_1 and OFC_2 are used to receive and store information

from the thalamus and SNc/VTA. When the feedback

information is positive, the MOFC receives stimulation from

OFC_1, and the LOFC receives stimulation from OFC_2 and

is inhibited by MOFC at the same time. When the feedback

information is negative, only the LOFC receives the stimulus

from OFC_1 and OFC_2. Then the MOFC transmits the

information to DLPFC and StrD1 in BG, and the LOFC

transmits the information to DLPFC and StrD2 in BG.

2.2. Model implementation

The concrete neural network architecture of the model is

shown as Figure 2.

In order to describe one training process of the model

more directly, in Figure 2, we use orange neurons, blue neurons

and green neurons to represent the neurons be activated in

one training process. 1. The intention prediction process:

(a) The visual information of image category 1 is input into

DLPFC, and all neurons representing this category in DLPFC

are activated (orange neurons in DLPFC); (b) After the synaptic

weight matrix calculation between DLFPC and BG, the neuron

representing intention 1 in BG is activated (orange neuron in

BG); (c) Thalamus receives the results of BG (orange neuron

in Thalamus) and passes the information to PMC to control

motor generation (orange neuron in PMC). 2. The positive

reward process, if the user gives positive reward into SNc/VTA:

(a) The OFC_1 receives the stimulation form Thalamus (blue

neuron in OFC_1). The SNc/VTA combines the information

from PMC and transmits the stimulation to OFC_2. And all

neurons representing this action are activated (green neurons

in OFC_2). (b) Then the stimulation of OFC_1 and OFC_2

are transmitted to MOFC (blue neuron in MOFC) and LOFC

respectively, and LOFC is simultaneously inhibited by MOFC

(green neurons in LOFC). (c) MOFC transmits the information

to BG via StrD1 and to DLPFC at the same time. LOFC transmits

the information to BG via StrD2 and to DLPFC at the same time.

(d) The synaptic weight between DLPFC and BG is updated

according to the time difference between the neurons firing. In

short, the connection between image category 1 and intention

1 is strengthened, and the connections between image category

1 and other intentions are weakened. 3. The negative reward

process, if the user gives negative reward into SNc/VTA: (a) The

OFC_1 receives the stimulation form Thalamus, then transmits

the information to LOFC. (b) LOFC transmits the information

to BG via StrD2 and to DLPFC at the same time. (c) The synaptic

weight between DLPFC and BG is updated according to the time

difference between the neurons firing. In short, the connection

between image category 1 and intention 1 weakened, while

the connections between image category 1 and other intentions

remained unchanged.

We use the Izhikevich neuron model to build the

computational model. The Izhikevich neuron model achieves

a good balance in biologically plausible and computational

efficiency (Izhikevich, 2003). The neuron model is described as

Equations (1) and (2). The variable v represents the membrane

potential of the neuron and u represents a membrane recovery

variable. And a, b, c, and d are dimensionless parameters. If

the membrane voltage v is greater than 30 mV, the membrane
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FIGURE 2

The concrete neural network architecture of the brain-inspired intention prediction model. The sizes of the regions depend on the number of

intentions. Taking the number of intentions and actions as 12, the size of di�erent regions except PMC in the model is 12 x 12, and the size of

PMC is 1 x 12.

voltage and the recovery variable are reset according to the

Equation (2). I is input, calculated by Equation (3). TheWij is the

synaptic weight between presynaptic neuron and postsynaptic

neuron, and the Oij is the output of presynaptic neuron. If

multiple neurons fire at the same time, the neuron with the

largest membrane voltage will inhibit other neuronal firings. The

dimensionless parameters c and d are the same in different areas,

they are c = −65 and d = 8. And the dimensionless parameters

a and b of the neurons in StrD1, StrD2 and other areas are set

as a = 0.01, b = 0.01; a = 0.1, b = 0.5; a = 0.02, b = 0.6,

respectively.

v′ = 0.04v2 + 5v+ 140− u+ I

u′ = a(bv− u)
(1)

ifv ≥ 30mV , then







v ← c

u ← u+ d
(2)

Iij =Wij × Oij

Oij =

{

1 if vij ≥ 30

0 otherwise

(3)

Spike Timing Dependent Plasticity (STDP) is an important

learning mechanism in the biological brain, which updates the

synaptic weight between presynaptic and postsynaptic neurons

according to the time difference between their firing (Bi and Poo,

2001). And the STDP mechanism is widely used in our previous

work on brain-inspired cognitive computing modeling (Zeng

et al., 2016, 2017, 2020; Zhao et al., 2021b). Within a millisecond

time window, if the postsynaptic neurons are fired later than

the presynaptic neurons, the synaptic weights between them

increase, exhibit the long-term potentiation (LTP) mechanism;

if the postsynaptic neurons are fired earlier than the presynaptic

neurons, the synaptic weights between them decrease, exhibit

the long-term depression (LTD) mechanism. The mathematical

description of the STDP mechanism is shown in Equation (4).

A+ andA− are the learning rates under the LTPmechanism and

the LTD mechanism, respectively. τ+ and τ− are time constants

for synaptic updates under the LTP mechanism and the LTD

mechanism, respectively. To ensure the biologically plausible

of the computational model, according to the results of the

biological neuron fitting (Bi and Poo, 2001), we set A+=0.777,

A−=-0.237, τ+=16.8, and τ−=-33.7 ms. To enable the robot

to learn the user’s flexible intentions more quickly, the synapse
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weights are updated according to the ratio based on the current

weight, as shown in Equation (5). In the computational model,

synaptic plasticity occurs between DLPFC and BG, and the

synaptic weight is fixed between other brain areas.

1w=

{

A+ × e(1t/τ+) if 1t < 0

A− × e(1t/τ−) if 1t ≥ 0

1t = tDLPFC − tBG

(4)

W(t + 1)ij =W(t)ij +W(t)ij ×1w (5)

The stimulation transmitted fromMOFC to BG and DLPFC

exists as follows: the neurons in DLPFC fired first, and the

neurons in StrD1 fired later, the 1t is less than 0. And the

synaptic weight between DLPFC and BG increased, exhibiting

the LTP mechanism. The stimulation transmitted from LOFC

to BG and DLPFC exists as follows: the neurons in StrD2

fired first, and the neurons in DLPFC fired later, the 1t is

greater than 0. And the synaptic weight between DLPFC and

BG decreased, exhibiting the LTD mechanism. Therefore, when

the user gives the right feedback, the weight of intention options

selected by the model increases, while the weight of other

candidate intention options decreases. When the user gives

wrong feedback, the weight of intention options selected by the

model decreases, while the weights of other candidate intention

options are unchanged.

3. Results

We deploy the model on the humanoid robot NAO, and

verify the effectiveness of the model through Human Intention

Prediction Experiment and Trajectory Tracking Experiment.

3.1. Human intention prediction
experiment

3.1.1. Experimental settings

The Human Intention Prediction Experiment allows the

robot to predict human intentions through human gestures (the

intention refers to the action that human expects the robot to

perform), and to learn new intentions when human intentions

change. After 12 gestures and 12 intentions are defined, the

user can define the gesture-intention corresponding rules in

his mind. The user makes gestures and the robot recognizes

the gesture. Then the robot predicts the user’s intention and

performs the corresponding actions according to the proposed

model. The user gives the right or wrong feedback according

to whether the robot’s action complies with his intentions.

The robot can successfully predict the user’s intention through

multiple interactions. If some of the user’s gesture-intention

rules change, the robot can continue to learn those changed

rules through interaction based on the learned model, and the

unchanged rules are not affected, that is, the robot does not need

to relearn all the rules.

The predefined 12 gestures are shown in Figure 3. Gesture A,

both hands close to the body; Gesture B, single hand away from

the body; Gesture C, single hand moves to the left; Gesture D,

single hand moves to the right; Gesture E, single hand moves up;

Gesture F, single handmoves down; Gesture G, both handsmove

down; Gesture H, single hand above the left shoulder; Gesture

I, single hand above the right shoulder; Gesture J, both hands

above both shoulders; Gesture K, left hand and left shoulder

overlap; Gesture L, right hand and right shoulder overlap.

The predefined 12 intentions are shown in Figure 4.

The intentions can be roughly divided into three categories:

movement intentions (move forward, move backward, turn left,

turn right, stand up, squat down and sit down), interaction

intentions (clap the left palm, clap the right palm and clap both

palms), and service intentions (beat the left shoulder and beat

the right shoulder).

To make the experiment more intuitive, the initially defined

gesture-intention correspondence rules are shown in Figure 5.

After learning the gesture-intention corresponding rules, the

user modified the corresponding rules (as shown in Figure 6) to

verify the flexibility of the model, and then the robot continued

learning through interaction.

3.1.2. Experimental results

Considering that gesture recognition is not the focus of

the proposed model, to recognize the user’s gestures more

simply, we used a Kinect camera for image acquisition. The

Kinect camera can capture 25 user’s joints and record their

three-dimensional space coordinate. We defined 20 neurons to

represent the movement direction of the left and right hands

(upward movement, downward movement, left movement,

right movement, close to the body and away from the body),

as well as the position information of the left and right hands

compared with the left and right shoulders (overlap with the

left shoulder, overlap with the right shoulder, higher than the

left shoulder and higher than the right shoulder). These neurons

determine whether to fire based on the three-dimensional

coordinate information of the joint.

After obtaining the gesture features, we use an unsupervised

learning algorithm based on the STDP mechanism for gesture

recognition. When a gesture is detected, the correlation

coefficient of neurons firing pattern between the detected gesture

and the learned gesture is calculated, and the activated target

neuron is determined according to the correlation coefficient. If

the correlation coefficient is very small, the gesture is determined

as a new gesture, and a new target neuron is activated. The

synaptic weights update between the new gesture and the new

target are based on the STDP mechanism.
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FIGURE 3

Predefined 12 gestures. From left to right are: Gesture A, Gesture B, Gesture C, Gesture D, Gesture E, Gesture F, Gesture G, Gesture H, Gesture I,

Gesture J, Gesture K and Gesture L.

FIGURE 4

Predefined 12 intentions. From left to right are: Move forward, Move backward, Turn left, Turn right, Stand up, Squat down, Sit down, Clap the

left palm, Clap the right palm, Clap both palms, Beat the left shoulder and Beat the right shoulder.

The method is an online learning method, and the

recognition accuracy increases with the increase of the number

of training samples. We define a trial training set that contains

12 types of gestures, each of the gestures is performed once.

After the previous trial training ends, the next trial continues

learning on the trained model. Test at the end of each trial.

The test set consisted of 12 types of gestures performed 30

times each, with a total of 360 samples. When the training of

the sixth trial is completed, the gesture recognition accuracy

is 98.33%.
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FIGURE 5

Gesture-intention corresponding rules.

FIGURE 6

Changed gesture-intention corresponding rules.

The method is an online learning method, and the

recognition accuracy increases with the increase of the number

of training samples. The training set consists of repeated batch

training sets. We define a batch training set that contains

12 types of gestures, each of the gestures is performed once.

That is, there are 12 samples in a batch training set, which

are different types of gestures. A batch training indicates

that the model is trained on the batch training set. The

online learning method of the model is realized in the

following ways: after the previous batch training ends, the

next batch continues learning on the trained model. Test

at the end of each batch training. The test set consists of

12 types of gestures, each of which is executed 30 times.

The test set includes 360 samples. When the training of the

sixth batch is completed (that is, from the initial training,

a total of six batches of training were carried out, each

batch containing 12 gestures), the gesture recognition accuracy

is 98.33%.

The user makes gestures randomly, and the robot predicts

the user’s intention and performs the corresponding action

through the proposed model. Then, the user gives right or

wrong feedback according to the robot’s action and the initially

defined gesture intention correspondence rules. The experiment

is repeated many times until the robot could successfully predict

the user’s intention. The synaptic weights between DLPFC and

BG are shown in Figure 7. In general, the number of interactions

required to complete the training ranges from 12 (the robot

successfully predicts the intention of the gesture each time)

to 78 times (the robot tries all possible intentions until the

last time to successfully predict the intention). In most cases,

FIGURE 7

Synaptic weights between DLPFC and BG.

the robot needs 45 interactions to complete the training. Then

the user modifies the corresponding rules, and gives feedback

according to the modified rule. After modifying the rules,

the synaptic weights between DLPFC and BG are shown in

Figure 8. Since the synapse weights are updated according to

the ratio based on the current weight, when the rules change,

the robot can quickly forget the old rules. In general, after two

interactions, the robot can forget the old rules and start learning

the new ones.
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FIGURE 8

Synaptic weights between DLPFC and BG (Rules changed).

3.2. Trajectory tracking experiment

3.2.1. Experimental settings

The Trajectory Tracking Experiment can make the robot

learn to walk along the track only through the right and wrong

feedback of the remote control.

The training scenario and test scenario are shown in

Figures 9A,B, respectively. In the training scenario, the robot

makes behavioral decisions based on the collected image

information and the proposed model, such as move forward,

move backward, move left, move right, turn left and turn right.

Then the user gives right or wrong feedback based on the robot’s

behavior, and gradually makes the robot learn to walk along

the black track. The upper right corner of Figure 9A is the

collected image information by the robot. Compared with the

training scenario, the test scenario includes turn left and turn

right behaviors in a tracking experiment Figure 10.

3.2.2. Experimental results

We detect the trajectory in the image through traditional

image processing methods such as image binarization,

edge detection, and Hough transform, and classify the

trajectory according to its image characteristics. Finally, we

use six neurons to implement an abstract representation of

the results. The detection method is simple and effective,

which can ensure the robot identifies the trajectory with

high accuracy.

In the training scenario, the robot completed the training by

walking two times along the trajectory clockwise and two times

counterclockwise. In the test scenario, the robot can successfully

complete the trajectory tracking experiment.

3.3. Compared with Q-learning method

First, we test the training times required by the Q-learning

method (more details can be found in Supplementary material)

and the proposed model under different number of intentions

(form 1 to 9). All the intention-action corresponding rules

are considered in the test process, and the number of

rules corresponding to different intentions is shown in

Table 1. The number of rules refers to the number of

the intention-action corresponding rules, which is the total

number of permutations of intention-action corresponding

rules. For the intention-action corresponding rules under

the same intention number, the training times required

by the Q-learning method are fixed, while the training

times required by the proposed method is slightly different

according to different rules. In order to better compare

the performance of the proposed method, the mode of

training times [The Proposed Model (Mode)], minimum

training times [The Proposed Model (Min)], and maximum

training times [The Proposed Model (Max)] required by

the proposed method under different rules are selected for

comparison.

The result of detailed comparison between Q-learning

method and the proposed model is shown in Figure 11.

From Figure 11 and Table 1, it is easy to see that compared

with the Q-learning method, the number of training times

required by the proposed model decreases significantly with

the increase of the number of intentions. Taking the number

of intentions as 6 as an example, the number of all intention-

action corresponding rules is 720. The Q-learning method

requires 21 training times to complete the training, while

the proposed model requires at least 6 times and at most

21 times under different rules. The mean of mode is 13.5

times. In general, the proposed model needs 13.5 times to

complete training, which is 7.5 times less than Q learning

method.

As can be seen from Figure 11, the training times of

the proposed model under different rules are symmetrically

distributed, so its mode is equal to the average value. Therefore,

when the number of intentions is N, the improvement effect

(Trainimprove) of the proposed model on training times can be

calculated by Equation (6). The TrainQ is the training times

required by Q-learningmethod, and the TrainBIIP is themode of

training times required by the proposed model under the given

intention numbers.

Trainimprove = TrainQ − TrainBIIP

= (1+ N) ∗ N/2− (N + (1+ N) ∗ N/2)/2

= (N2
− N)/4

(6)

Finally, we compared the training times required by the

two methods when the number of intentions is 1–50. The

experimental result is shown in Figure 12.
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FIGURE 9

(A) Training scenario. (B) Test scenario.

FIGURE 10

The actions that the user expects the robot to perform according to di�erent images. From left to right are: Move forward (the black line is in the

center of the visual field), Move backward (no black line detected), Move left (the black line is on the left side of the visual field), Move right (the

black line is on the right side of the visual field), Turn left (the black line turns left) and Turn right (the black line turns right).

TABLE 1 Number of rules under di�erent intention numbers, and the comparison results of Q-learning method and the proposed model.

Number of intentions 1 2 3 4 5 6 7 8 9

Number of rules 1 2 6 24 120 720 5,040 40,320 362,880

Q-learning method 1 3 6 10 15 21 28 36 45

The proposed model (Mode) 1 2.5 4.5 7 10 13.5 17.5 22 27

The proposed model (Min) 1 2 3 4 5 6 7 8 9

The proposed model (Max) 1 3 6 10 15 21 28 36 45

4. Discussion

Based on the neural mechanism of reinforcement learning,

we propose a brain-inspired intention prediction spiking neural

network model to enable the robot to perform actions according

to the user’s intention. With the STDP mechanisms and the

simple feedback of right or wrong, the humanoid robot NAO

could successfully predict the user’s intentions in Human

Intention Prediction Experiment and Trajectory Tracking

Experiment. Compared with the traditional Q-learning method,

the training times required by the proposed model are reduced

by (N2
− N)/4, where N is the number of intentions.

Reinforcement learning, supervised learning and

unsupervised learning are considered as the three basic

machine learning paradigms. It has been successfully applied

to different robotic tasks, such as navigation, manipulation,

decision-making in human robot interaction. The Q-learning

method is a widely used and very effective reinforcement

learning method. Compared with the Q-learning method,

our model has two characteristics: biologically plausible and

requires fewer training times under the same task.

The biologically plausible of the model helps to reveal

the neural mechanism of reinforcement learning in the brain

from a computational perspective. We ensured the biologically

plausible of the model from three aspects: the network structure,

the neuron model and the learning mechanism. The network

structure refers to the neural mechanism of reinforcement

learning, including the relevant brain regions, the functions

of these brain regions and the pathways between these

brain regions. The neuron model is Izhikevich neuron model

which achieves a good balance in biologically plausible and

computational efficiency. The learningmechanism uses themost

important STDP mechanism in the biological brain, and the

results of the biological neuron fitting are used as the parameters

of the computational model.

Compared with Q-learning method, the direct reason that

our model needs fewer training times is the inhibition of LOFC

by MOFC in the process of positive reward processing. The

positive reward process indicates that the robot successfully

predicted the user’s intention. MOFC transmits the information

to BG via StrD1 and to DLPFC at the same time. This pathway

is used to strengthen the synaptic weight between the current
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FIGURE 11

Detailed comparison between Q-learning and the proposed

model. The horizontal axis is the number of intentions, and the

vertical axis is the number of training times. The blue bar is the

training times of the proposed model under di�erent

intention-action corresponding rules. The red diamond is the

mode of training times required by all intention-action

corresponding rules under di�erent intention numbers. If there

are multiple modes, the mean value is taken. The orange

triangle is the training times of Q-learning method under

di�erent intention numbers.

FIGURE 12

Comparison between Q-learning and the proposed model. The

horizontal axis is the number of intentions, and the vertical axis

is the number of training times. The red diamond is the mode of

training times required by all intention-action corresponding

rules under di�erent intention numbers. If there are multiple

modes, the mean value is taken. The orange triangle is the

training times of Q-learning method under di�erent intention

numbers.

visual input (such as Visual1) and the prediction intention

(such as Intention1) to ensure that the user’s intention can

be correctly predicted when the same visual input is received

in the future. Meanwhile, MOFC inhibits LOFC, then LOFC

transmits the information to BG via StrD2 and to DLPFC at the

same time. This pathway is used to reduce the synaptic weight

between the future visual inputs (Visualothers) and the currently

predicted intentions (Intention1), avoid new visual inputs to

choose the intentions that have been learned (Intention1), and

promote new visual inputs to select other unlearned intentions

(Intentionothers).

5. Conclusion

We propose a brain-inspired intention prediction model

based on the neural mechanism of reinforcement learning.

We deploy the model on the humanoid robot NAO, and

verified the effectiveness of the model through Human Intention

Prediction Experiment and Trajectory Tracking Experiment.

The experimental results show that the robot could successfully

predict the user’s intentions only through the simple feedback of

right or wrong. In this way, the robot can quickly learn new rules

without interfering with the learned and unchanged intention

rules. The proposed model is simple and effective, which can

effectively improve the flexibility and simplicity of human-robot

interaction.

In our future work, we will combine our previous work in

affective states recognition (Zhao et al., 2020, 2021a) to explore

the potential of the proposed model in affective interaction tasks

and improve the naturalness and flexibility of human-robot

interaction.

Data availability statement

The python scripts can be downloaded from the GitHub

repository of the brain-inspired cognitive intelligence engine

at Research Center for Brain-inspired Intelligence, Institute of

Automation, Chinese Academy of Sciences: https://github.com/

BrainCog-X/Brain-Cog/tree/main/examples/Social_Cognition/

Intention_Prediction. The script is based on the brain-inspired

cognitive intelligence engine (BrainCog), more details could be

found at https://github.com/BrainCog-X/Brain-Cog. Further

inquiries should be directed to the corresponding author.

Author contributions

All authors conceived the initial idea, designed the model,

carried out the experiments, and wrote the manuscript.

Funding

This work is supported by the Strategic Priority Research

Program of the Chinese Academy of Sciences (Grant No.

XDB32070100), the new generation of artificial intelligence

major project of the Ministry of Science and Technology of

the People’s Republic of China (Grant No. 2020AAA0104305),

the Beijing Municipal Commission of Science and Technology

(Grant No. Z181100001518006), the Key Research Program of

Frontier Sciences, CAS (Grant No. ZDBS-LY-JSC013).

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1009237
https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/Social_Cognition/Intention_Prediction
https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/Social_Cognition/Intention_Prediction
https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/Social_Cognition/Intention_Prediction
https://github.com/BrainCog-X/Brain-Cog
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao and Zeng 10.3389/fnins.2022.1009237

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.1009237/full#supplementary-material

References

Barbey, A. K., Koenigs, M., and Grafman, J. (2013). Dorsolateral
prefrontal contributions to human working memory. Cortex 49, 1195–1205.
doi: 10.1016/j.cortex.2012.05.022

Bi, G., and Poo, M. (2001). Synaptic modification by correlated
activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166.
doi: 10.1146/annurev.neuro.24.1.139

Dermy, O., Charpillet, F., and Ivaldi, S. (2017). “Multi-Modal intention
prediction with probabilistic movement primitives,” in 10th International
Workshop on Human-Friendly Robotics (Napoli), 1–15.

Frey, S., and Petrides, M. (2002). Orbitofrontal cortex and memory formation.
Neuron 36, 171–176. doi: 10.1016/S0896-6273(02)00901-7

Friend, D. M., and Kravitz, A. V. (2014). Working together: basal
ganglia pathways in action selection. Trends Neurosci. 37, 301–303.
doi: 10.1016/j.tins.2014.04.004

Haber, S. N., and Knutson, B. (2010). The reward circuit: linking
primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26.
doi: 10.1038/npp.2009.129

Hwang, K., Bertolero, M. A., Liu, W. B., and D’Esposito, M. (2017). The human
thalamus is an integrative hub for functional brain networks. J. Neurosci. 37,
5594–5607. doi: 10.1523/JNEUROSCI.0067-17.2017

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Kakei, S., Hoffman, D. S., and Strick, P. L. (1999). Muscle and movement
representations in the primary motor cortex. Science 285, 2136–2139.
doi: 10.1126/science.285.5436.2136

Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to
hedonic experience. Nat. Rev. Neurosci. 6, 691–702. doi: 10.1038/nrn1747

Li, Z., Mu, Y., Sun, Z., Song, S., Su, J., and Zhang, J. (2020). Intention
understanding in human-robot interaction based on visual-nlp semantics. Front.
Neurorobot. 14, 610139. doi: 10.3389/fnbot.2020.610139

Lin, H.-I., Nguyen, X.-A., and Chen, W.-K. (2017). Active intention inference
for robot-human collaboration. Int. J. Comput. Methods Exp. Meas. 6, 772–784.
doi: 10.2495/CMEM-V6-N4-772-784

Liu, Z., Liu, Q., Xu, W., Liu, Z., Zhou, Z., and Chen, J. (2019). Deep
learning-based human motion prediction considering context awareness for
human-robot collaboration in manufacturing. Procedia CIRP 83, 272–278.
doi: 10.1016/j.procir.2019.04.080

Luo, R. C., and Mai, L. (2019). “Human intention inference and on-line
human hand motion prediction for human-robot collaboration,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Macau: IEEE),
5958–5964.

O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., and Andrews,
C. (2001). Abstract reward and punishment representations in the human
orbitofrontal cortex. Nat. Neurosci. 4, 95–102. doi: 10.1038/82959

Song, D., Kyriazis, N., Oikonomidis, I., Papazov, C., Argyros, A., Burschka, D.,
et al. (2013). “Predicting human intention in visual observations of hand/object

interactions,” in 2013 IEEE International Conference on Robotics and Automation
(Karlsruhe: IEEE), 1608–1615.

Stocco, A., Lebiere, C., and Anderson, J. R. (2010). Conditional routing
of information to the cortex: a model of the basal ganglia’s role in cognitive
coordination. Psychol. Rev. 117, 541–574. doi: 10.1037/a0019077

Villagrasa, F., Baladron, J., Vitay, J., Schroll, H., Antzoulatos, E. G., Miller,
E. K., et al. (2018). On the role of cortex-basal ganglia interactions for
category learning: a neurocomputational approach. J. Neurosci. 38, 9551–9562.
doi: 10.1523/JNEUROSCI.0874-18.2018

Vinanzi, S., Goerick, C., and Cangelosi, A. (2019). “Mindreading for robots:
predicting intentions via dynamical clustering of human postures,” in 2019 Joint
IEEE 9th International Conference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob) (Oslo: IEEE), 272–277.

Wang, W., Li, R., Chen, Y., Sun, Y., and Jia, Y. (2021). Predicting
human intentions in human-robot hand-over tasks through multimodal
learning. IEEE Trans. Automat. Sci. Eng.19, 2339–2353. doi: 10.1109/TASE.2021.
3074873

Yan, L., Gao, X., Zhang, X., and Chang, S. (2019). “Human-robot collaboration
by intention recognition using deep lstm neural network,” in 2019 IEEE 8th
International Conference on Fluid Power and Mechatronics (FPM) (Wuhan: IEEE),
1390–1396.

Yu, X., He, W., Li, Y., Xue, C., Li, J., Zou, J., et al. (2021). Bayesian estimation
of human impedance and motion intention for human-robot collaboration. IEEE
Trans. Cybern. 51, 1822–1834. doi: 10.1109/TCYB.2019.2940276

Zeng, Y., Zhao, Y., and Bai, J. (2016). “Towards robot self-consciousness (i):
brain-inspired robot mirror neuron system model and its application in mirror
self-recognition,” in International Conference on Brain Inspired Cognitive Systems
(Beijing), 11–21.

Zeng, Y., Zhao, Y., Bai, J., and Xu, B. (2017). Toward robot self-consciousness
(ii): brain-inspired robot bodily self model for self-recognition. Cognit. Comput.
10, 307–20. doi: 10.1007/s12559-017-9505-1

Zeng, Y., Zhao, Y., Zhang, T., Zhao, D., Zhao, F., and Lu, E. (2020).
A brain-inspired model of theory of mind. Front. Neurorobot. 14, 60.
doi: 10.3389/fnbot.2020.00060

Zhao, F., Zeng, Y., and Xu, B. (2018). A brain-inspired decision-making spiking
neural network and its application in unmanned aerial vehicle. Front. Neurorobot.
12, 56. doi: 10.3389/fnbot.2018.00056

Zhao, Y., Cao, X., Lin, J., Yu, D., and Cao, X. (2021a). Multimodal
affective states recognition based on multiscale cnns and biologically inspired
decision fusion model. IEEE Trans. Affect. Comput. 1–14. doi: 10.1109/TAFFC.202
1.3093923

Zhao, Y., Yang, J., Lin, J., Yu, D., and Cao, X. (2020). “A 3D convolutional neural
network for emotion recognition based on eeg signals,” in 2020 International Joint
Conference on Neural Networks (IJCNN) (Glasgow: IEEE), 1–6.

Zhao, Y., Zeng, Y., and Qiao, G. (2021b). Brain-inspired classical
conditioning model. iScience 24, 101980. doi: 10.1016/j.isci.202
0.101980

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.1009237
https://www.frontiersin.org/articles/10.3389/fnins.2022.1009237/full#supplementary-material
https://doi.org/10.1016/j.cortex.2012.05.022
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1016/S0896-6273(02)00901-7
https://doi.org/10.1016/j.tins.2014.04.004
https://doi.org/10.1038/npp.2009.129
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1126/science.285.5436.2136
https://doi.org/10.1038/nrn1747
https://doi.org/10.3389/fnbot.2020.610139
https://doi.org/10.2495/CMEM-V6-N4-772-784
https://doi.org/10.1016/j.procir.2019.04.080
https://doi.org/10.1038/82959
https://doi.org/10.1037/a0019077
https://doi.org/10.1523/JNEUROSCI.0874-18.2018
https://doi.org/10.1109/TASE.2021.3074873
https://doi.org/10.1109/TCYB.2019.2940276
https://doi.org/10.1007/s12559-017-9505-1
https://doi.org/10.3389/fnbot.2020.00060
https://doi.org/10.3389/fnbot.2018.00056
https://doi.org/10.1109/TAFFC.2021.3093923
https://doi.org/10.1016/j.isci.2020.101980
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A brain-inspired intention prediction model and its applications to humanoid robot
	1. Introduction
	2. Materials and methods
	2.1. Architecture of the brain-inspired intention prediction model
	2.2. Model implementation

	3. Results
	3.1. Human intention prediction experiment
	3.1.1. Experimental settings
	3.1.2. Experimental results

	3.2. Trajectory tracking experiment
	3.2.1. Experimental settings
	3.2.2. Experimental results

	3.3. Compared with Q-learning method

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


