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Openness to experience is one of the big five traits of personality which

recently has been the subject of several studies in neuroscience due to its

importance in understanding various cognitive functions. However, the neural

basis of openness to experience is still unclear. Previous studies have found

largely heterogeneous results, suggesting that various brain regions may be

involved in openness to experience. Here we suggested that performing

structural connectome analysis may shed light on the neural underpinnings of

openness to experience as it provides a more comprehensive look at the brain

regions that are involved in this trait. Hence, we investigated the involvement

of brain network structural features in openness to experience which has

not yet been explored to date. The magnetic resonance imaging (MRI) data

along with the openness to experience trait score from the self-reported

NEO Five-Factor Inventory of 100 healthy subjects were evaluated from

Human Connectome Project (HCP). CSD-based whole-brain probabilistic

tractography was performed using diffusion-weighted images as well as

segmented T1-weighted images to create an adjacency matrix for each

subject. Using graph theoretical analysis, we computed global efficiency (GE)

and clustering coefficient (CC) which are measures of two important aspects

of network organization in the brain: functional integration and functional

segregation respectively. Results revealed a significant negative correlation

between GE and openness to experience which means that the higher

capacity of the brain in combining information from different regions may

be related to lower openness to experience.

KEYWORDS
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Introduction

One of the main goals of personality psychology is to provide
valid taxonomies of human personality that can describe how
individuals differ from one another in behavior, motivation,
emotion, and cognition. The Five-Factor Model (FFM) is
the most widely used of these taxonomies which describes
individual differences as a consequence of variation in five big
traits: openness to experience, conscientiousness, extraversion,
agreeableness, and neuroticism (Costa and McCrae, 1992a,b).
Openness to experience can be defined as one’s tendency to seek,
appreciate, comprehend, and utilize information; It represents
the psychological function of cognitive exploration and usually
shows a positive correlation with IQ test performance (DeYoung
et al., 2014; DeYoung, 2015). In addition, it is the best predictor
of mind wandering and creativity, among the five big traits
(Karwowski and Lebuda, 2016; Ibaceta and Madrid, 2021).
Heightened openness to experience has also been linked to
psychosis proneness and some have speculated that there
might be common biological underpinnings between openness
and psychosis (DeYoung and Krueger, 2018; Blain et al.,
2020). Hence understanding the neurocognitive mechanisms
of openness to experience may also help in understanding its
relationship with psychosis. But debates remained unresolved
about the neural origins that cause individual differences in
openness to experience. Identifying neural correlates of the five-
factor model (including openness to experience) is a major
subfield in personality neuroscience and can have significant
implications for understanding the biological factors involved
in different cognitive and behavioral tendencies (DeYoung,
2015, p. 4). Personality neuroscience is a relatively new field
of study that seeks to find the neural underpinnings of
personality and therefore is an attempt to provide insight into
the causal mechanisms of individual differences (DeYoung,
2010). It allows researchers to investigate the brain mechanisms
underlying each trait using a wide variety of techniques. Among
different techniques that are used in personality neuroscience,
magnetic resonance imaging (MRI) is the most frequently
used method due to its versatile nature (Allen and DeYoung,
2016). MRI provides great opportunities and also interesting
challenges in understanding the neural correlates of openness
to experience.

Various MRI studies have been done on structural brain
regions that are associated with the trait of openness to
experience. Some studies investigated the relationship between
Fractional Anisotropy (FA) and Mean Diffusivity (MD) of
various white matter tracts with openness to experience. Both
increased FA and decreased MD may reflect greater white matter
microstructural organization. Openness has been reported to
have a positive correlation with FA values in the white matter
adjacent to the dorsolateral prefrontal cortex (DLPFC) in both
hemispheres while having a negative correlation with the mean
diffusivity (MD) of the same regions which show a relationship

between higher openness to experience and greater white matter
microstructural organization in the aforementioned regions
(Xu and Potenza, 2012). Later research partly replicated these
results and found a positive correlation between openness to
experience and FA values in inferior frontal-occipital fasciculus
(IFO) and inferior longitudinal fasciculus (ILF) (Privado et al.,
2017). Both of these studies used diffusion tensor imaging (DTI)
and had similar sample sizes (∼50 Participants), but there was
only partial overlap between the white matter tracts that were
analyzed which can explain the failure in replication of all the
results of the former study by the latter (Xu and Potenza, 2012;
Privado et al., 2017). However, three other studies found no
correlation between openness to experience and any of the
DTI measures in healthy individuals (Bjørnebekk et al., 2013;
Rodriguez et al., 2019; Avinun et al., 2020). The inconsistency
between the findings of these five studies might be due to factors
like effect size, multiple comparisons, or the use of different
methods in analyzing diffusion data. This inconsistency can be
observed in morphometric studies as well. Owens et al. (2019)
conducted a study based on the Human Connectome Project
(HCP) data (n= 597) and using the FreeSurfer software package
to investigate the neuroanatomical correlates of the big five traits
and reported that both cortical thickness and volume of several
regions are associated with openness to experience. However,
a recent study with the largest sample of any personality
neuroscience study to date (n = 1,107), failed to replicate these
FreeSurfer results (Avinun et al., 2020).

Since these results cannot be merged into a global
framework, we may need a more comprehensive view to
consider all these involved areas as structural/functional brain
networks. Accordingly, the study of the neural underpinnings
of personality can be advanced by moving beyond accounts that
are solely based on the structure and function of discrete brain
regions and subsequently adding a network perspective on brain
structure and function (Markett et al., 2018). Some functional
studies have already tried to investigate the relationship
between openness to experience and functional connectivity
in resting-state networks (Beaty et al., 2018; Wang et al.,
2018, 2022; Marstrand-Joergensen et al., 2021) and some of
these studies support the existence of a positive association
between openness to experience and functional connectivity
within and between resting state networks. However, these
studies did not evaluate the architecture and topology of
brain networks that are constructed by a huge number of
connections between all pairs of brain regions. To investigate
these complex network architectures, we need more advanced
approaches in network science like graph-theoretical analysis
(Bullmore and Sporns, 2009).

During the last 15 years, significant progress has been made
in the application of graph theory in analyzing the connectome.
Connectome is a network map of brain connectivity that can
be constructed from structural (e.g., diffusion MRI data) or
functional data (e.g., functional MRI data). This network map
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consists of nodes (brain regions) and edges (connectivity). It
can be summarized in the form of a connectivity (adjacency)
matrix (Sporns et al., 2005; Bullmore and Sporns, 2009), and
to analyze these connectivity matrices and extract topological
features of associated brain networks, graph theoretical analysis
is used. In this framework, two important topological network
measures which illustrate the architecture of connection in
the local and global circuits are the clustering coefficient and
global efficiency, respectively (Ghaderi et al., 2018, 2020). The
clustering coefficient, which is sensitive to the topology of local
and modular circuits, reveals brain network segregation and
global efficiency which is associated with the capacity of the
network in combining the neural signals from different regions,
disclosing brain network integration (Rubinov and Sporns, 2010;
Ghaderi et al., 2018, 2020).

Graph theoretical analysis has been used in some studies
investigating the relationship between personality and
functional connectome (Beaty et al., 2016; Toschi et al.,
2018; Cai et al., 2020), notably Toschi et al. (2018) assessed the
relationship between the big five traits and the different graph
measures gained from functional connectome in a functional
MRI data sample from Human Connectome Project (HCP).
They reported a positive association between conscientiousness
and graph measures of local connectivity, namely the local
clustering coefficient in the frontoparietal network (FPN)
and default mode network (DMN) but found no association
between openness to experience and any graph measure
(Toschi et al., 2018). Much fewer studies so far incorporated
the graph theoretical analysis into the investigation of the
structural connectome of the big five traits. Ueda et al.’s (2018)
study is the only study that we know of that applied graph
theoretical analysis to investigate the association between one
of the big five traits (neuroticism) and graph measures gained
from structural connectome (Ueda et al., 2018). They found a
significant relationship between neuroticism and graph measure
of betweenness centrality in several regions but did not find any
relationship between other graph measures and neuroticism.
Hence it remains to be determined if there is a relationship
between various graph measures gained from structural
connectome and openness to experience. Understanding the
relationship between openness to experience and structural
connectome is not only important in the face of heterogeneous
findings of previous studies, but also can provide a more
comprehensive view of the neural underpinnings of openness
to experience and its possible link with psychosis.

The current study aims to examine the relationship
between openness to experience and structural brain network
integration and segregation. To our knowledge, no study has
investigated the relationship between openness to experience
and graph measures gained from structural connectome to
date. Since previous studies found inconsistent results and
reported associations between various structural brain regions
and openness to experience, we decided to use structural

connectome analysis to investigate if there is a relationship
between structural brain network features and openness to
experience. Our study benefits from state-of-the-art High
Angular Resolution Diffusion Imaging data (HARDI) from HCP
(Van Essen et al., 2012b; Sotiropoulos et al., 2013) which is
ideal for the multi-tissue Constrained Spherical Deconvolution
(CSD) modeling (Jeurissen et al., 2014). CSD-based probabilistic
tractography has been indicated to be a superior method
in white matter fiber tractography compared to DTI-based
tractography (Farquharson et al., 2013; Auriat et al., 2015).

Materials and methods

Subject’s data

The minimally pre-processed structural and diffusion MRI
data along with the openness to experience trait score from self-
reported NEO-FFI of 100 subjects (50 men and 50 women; aged
from 22 to 35) were randomly selected and downloaded from
the HCP repository. Currently, the HCP repository contains
MRI, and personality data of 973 subjects, and since all HCP
subjects are healthy young adults (aged from 22 to 37), our only
inclusion criterion in the selection of subjects was the equal
number of men and women (Jenkinson et al., 2002, 2012; Glasser
and Van Essen, 2011; Marcus et al., 2011; Fischl, 2012; Van Essen
et al., 2012b; Glasser et al., 2013; Elam et al., 2021). Due to the
limited computational power that we had access to as well as
the time restrictions of the current study, we were not able to
analyze the whole data set, but we aimed for a sample size that is
larger than many similar studies (Xu and Potenza, 2012; Privado
et al., 2017; Ueda et al., 2018). The data is publicly available at
the HCP repository and the list of subjects’ IDs whose data were
analyzed in the current study is reported in the Supplementary
material.

Personality assessment

The sum of scores of openness to experience factor from the
NEO five-factor inventory (NEO-FFI) was used as a measure of
openness trait for each subject (Costa and McCrae, 1992c). It is
the shortened version of NEO-PI-R which has 240 Items (Costa
and McCrae, 1992c). NEO-FFI consists of 60 Items: 12 Items
for each of the five dimensions of personality. It assesses each
factor on a five-point Likert scale that is ranged from strongly
agree to strongly disagree. For each personality trait, scores
range from 0 to 48, and in the case of openness to experience,
a higher score represents a higher tendency to seek, appreciate,
comprehend, and utilize information (DeYoung, 2015). NEO-
FFI has shown excellent reliability and validity; Cronbach’s alpha
ranges from 0.75 to 0.82 for the five scales and 0.76 for openness
to experience (McCrae and Costa, 2004; McCrae et al., 2005).
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Magnetic resonance imaging scanning
protocol

Diffusion-weighted MRI is an imaging modality that can
be used to examine the anatomical connectivity and tissue
microstructure, by measuring the local diffusion of water
molecules (O’Donnell and Westin, 2011). Even though MRI is
an indirect method of measuring the structure and function
of the brain and MRI images are subject to noise, during the
last few years significant progress has been made in multiband
imaging techniques and image processing methods especially
in the context of human connectome project (HCP) (Feinberg
et al., 2010; Moeller et al., 2010; Setsompop et al., 2012;
Sotiropoulos et al., 2013; Uǧurbil et al., 2013), resulting in
substantial improvement of spatial and temporal resolution of
images (Shi and Toga, 2017; Schilling et al., 2018).

The MRI data were acquired on a customized Siemens
Magnetom Skyra 3T MRI system using a multi-band pulse
sequence. Compared to a standard Skyra MRI, the customized
hardware has a higher gradient strength which benefits
diffusion imaging (Feinberg et al., 2010; Uǧurbil et al., 2013).
The parameters selected for the diffusion-weighted imaging
include 270 diffusion-weighted volumes equally distributed
over three shells of b = 1,000, 2,000, and 3,000 s/mm2

and a total of 18 reference volumes (b = 0 s/mm2), voxel
size of 1.25 mm isotropic, 174 slices, 145 × 145 matrix,
and TR/TE = 5,520/89.5 ms. HCP High-resolution T1-
weighted anatomical images (T1w) were acquired using the
3D magnetization prepared rapid gradient echo sequence
(MPRAGE) (Mugler and Brookeman, 1990) with a voxel size
of 0.7 mm3, TR/TE = 2,400/2.14 ms, and flip angle of eight
degrees. The T1w images from all participants were subject to a
standard quality control process, including manual viewing and
rating of quality by an experienced rater. However, performing
comprehensive quality control for all diffusion MRI (dMRI) and
functional MRI (fMRI) scans was not feasible, and in the interest
of providing data, dMRI and fMRI scans were rarely excluded
for motion and hence quality issues may be present with some
scans. For more details about the data acquisition, preprocessing
pipeline, and image quality control, refer to the following papers
(Van Essen et al., 2012a,b; Marcus et al., 2013; Sotiropoulos et al.,
2013; Elam et al., 2021).

Estimation of structural connectivity

We followed the framework proposed by Civier et al. (2019)
in the estimation of structural connectivity using HCP Data
(Civier et al., 2019). The first step in processing the already
minimally preprocessed HCP diffusion data (Andersson et al.,
2003; Glasser et al., 2013; Andersson and Sotiropoulos, 2015,
2016) was biased field correction using Advanced Normalization
Tools (ANTs) (Tustison et al., 2010). To process the diffusion

data and model the white matter, gray matter, and cerebrospinal
fluid (CSF), we used the MRtrix3 software package1 (Tournier
et al., 2019). Since the HCP data is collected with multiple
shells, we used the multi-shell multi-tissue constrained spherical
deconvolution (CSD) method (Jeurissen et al., 2014) to generate
Fiber Orientation Densities (FODs) (Tournier et al., 2004,
2007). We then performed Multi-tissue informed log-domain
intensity normalization (Dhollander et al., 2021). Next, the
T1w anatomical images got segmented using FMRIB Software
Library2 (version 6.0.1) (Jenkinson et al., 2012) and co-
registered with diffusion-weighted images to create tissue
boundaries needed to perform the subsequent probabilistic
tractography using MRtrix3 (Tournier et al., 2004). A total
of 10 million probabilistic streamlines were generated using
Second-order Integration over Fiber Orientation Distributions
(iFOD2) (Tournier et al., 2010) and Anatomically-Constrained
Tractography framework (ACT) (Smith et al., 2012). ACT
ensures that streamlines that terminate in CSF will be dismissed.
In other words, ACT constrains streamlines to the white matter
and therefore makes them biologically more plausible (Smith
et al., 2012). Other parameters that were used in tractography
are dynamic seeding [which determines seed points dynamically
using the SIFT model (Smith et al., 2015a)], backtracking (an
option that allows tracks to be truncated and re-tracked if a
poor structural termination is encountered), FOD amplitude
threshold of 0.06, step size of 0.625 mm, and length of 5–300 mm
(Civier et al., 2019).

It is a known issue in neuroimaging that the number
of streamlines connecting different gray matter regions as a
measure of connection density is not a valid representation of
axonal count (Jones et al., 2013). Tractogram reconstruction
can introduce several biases that make the streamline count not
completely reflective of the underlying white matter structure
(Jones et al., 2013). Therefore, the second version of Spherical-
deconvolution Informed Filtering of Tractograms (SIFT2) was
used as a method to reduce these biases by selectively removing
some of the streamlines and as a result, creating a more
biologically meaningful measure of structural connectivity
(Smith et al., 2015b).

For each subject, regions of interest (ROIs) were selected
based on an already segmented T1w anatomical image using
FreeSurfer and the Desikan-Killiany atlas (Desikan et al.,
2006; Fischl, 2012). This particular atlas is used in several
personality studies (Ueda et al., 2018; Vartanian et al., 2018;
Delaparte et al., 2019; Avinun et al., 2020). All 84 ROIs of the
segmented images were chosen in order to create whole-brain
structural connectomes for the subsequent graph analysis. For
every subject, a whole-brain zero diagonal adjacency matrix
(84× 84) was constructed where each array presented structural
connectivity between the corresponding row and column. The

1 http://www.mrtrix.org

2 http://www.fmrib.ox.ac.uk/fsl/
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value of each array was computed by summing the weights
of the relevant streamlines. Weighted matrices were used for
subsequent graph analysis.

Graph theoretical analysis

We computed two measures of complex networks: global
efficiency (GE) and clustering coefficient (CC). These two
measures characterize topological aspects of whole brain
networks by presenting two important features, i.e., the
integration of all neural pathways and the segregation of local
modules, respectively. Many studies have suggested that these
two features are correlated with different aspects of brain
functions, cognition, and perception (Rubinov and Sporns,
2010; Fischer et al., 2014; Masuda et al., 2018; Ghaderi et al.,
2018, 2020). Although other topological measures of the whole
brain network, like characteristic shortest path and transitivity,
can also be used to assess these brain features, since these
measures are mathematically related to GE, and CC (shortest
path is the inverse of global efficiency and transitivity has
only coefficient difference with CC), we avoid calculating them.
Functional integration in the brain is the capacity of the brain
in combining information from different regions. It can also be
viewed as the ability of the brain network for efficient global
communication (Rubinov and Sporns, 2010). Several studies
show that structural brain networks can be considered highly
integrated (Bullmore and Sporns, 2009; Park and Friston, 2013).
Mathematically, GE is the average over the inverse shortest path
length between all pairs of nodes in a network (Latora and
Marchiori, 2001):

GE =
1
n

∑
i∈N

Ei =
1
n

∑
i∈N

∑
j∈N,j 6=i d−1

ij

n− 1
.

Where N is the set of all nodes in the network, n is the
number of nodes, and i, j are indices of nodes. dij is the shortest
path length (distance) between nodes i and j while Ei is the
efficiency of node i. In the structural brain networks, these
paths represent white matter pathways and the existence of
shorter pathways can suggest higher GE and therefore stronger
functional integration in the brain (Rubinov and Sporns, 2010).

Functional segregation is the capacity of the brain to
process information in local circuits (modules). Consequently,
in the human brain and the nervous system of many other
species, high functional segregation is the result of a large
number of modules’ existence (Rubinov and Sporns, 2010).
Structural modules provide two main functionalities: first, they
provide an efficient sharing of information among sets of
brain regions. second, they promote functional specialization
by limiting the boundaries of each module and preventing
the spread of information across the whole network (Rubinov
and Sporns, 2010; Sporns, 2016). CC is defined based on the
number of triangles (the node’s neighbors that are also neighbors

of each other) that a node creates with its neighbor nodes.
Mathematically, CC is calculated by Watts and Strogatz (1998):

CC =
1
n

∑
i∈N

Ci =
1
n

∑
i∈N

2ti

ki(ki − 1)
.

Where ki is the degree of node i, ti is the number of triangles
around the node i and Ci is the CC of node i (Ci = 0 for ki < 2).
The CC of all nodes can be used as a measure of segregation of
the whole network (Rubinov and Sporns, 2010).

The network measures of all 100 brain networks were
computed using Brain Connectivity Toolbox (BCT)3 (Rubinov
and Sporns, 2010) in MATLAB. The CC was computed for each
node, then the average CC of all nodes was calculated for each
subject. The GE of the whole brain network was computed for
each subject as well.

Statistical analysis

We performed linear and non-linear analysis using
MATLAB 2021b to evaluate the association of each network
measure (GE and CC) with the openness score. The linear
regression model was performed using the fitlm function twice:
first to evaluate the relationship between GE and the openness
trait score. Second, to investigate the association between CC
and the openness trait score. But before performing each
regression analysis, we calculated the Cook’s distance to detect
outliers that might have been affected by noise during image
acquisition and/or had an unusual openness score. Cook’s
distance is a method that is useful for identifying outliers
usually in the context of regression analysis. It takes into
account both the leverage and residual of each observation.
We used the plotDiagnostics function to detect observations
with Cook’s distance larger than three times the mean Cook’s
distance. A total of ten subjects got removed from the first
analysis and nine subjects got removed from the second analysis
due to having cook’s distances of more than three times the
mean (Cook, 1977; Ueda et al., 2018). Next, we corrected for
multiple comparisons (type one error) to correct for the number
of network measures using Bonferroni-Holm correction, and
corrected p-values less than 0.05 were considered significant
(Holm, 1979; Cho and Martinez, 2014).

We then conducted two linear and non-linear analyses,
namely Linear Regression and Gaussian Process Regression
(GPR) using the Regression learner Tool in MATLAB to see
how accurately graph measures can predict openness scores
using each of these two models. The regression learner tool
allows the user to train and validate regression models using
different algorithms and compare results to find the best model.
In general, different supervised learning algorithms (linear

3 https://sites.google.com/site/bctnet/

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.1040799
https://sites.google.com/site/bctnet/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1040799 December 8, 2022 Time: 6:31 # 6

Talaei and Ghaderi 10.3389/fnins.2022.1040799

regression and GPR among them) try to solve the problem of
input-output mapping from the training dataset using various
approaches. In other words, by estimating a function based on
the training data, they make predictions for new inputs that
were not part of the training data. The problem is that for
any given data set, there are potentially an infinite number of
functions that can fit it (Rasmussen and Williams, 2016). One
approach to solve this problem is to only consider a strict class
of functions, for example by only considering linear functions
of the input. GPR, as a non-parametric Bayesian approach to
regression, provides a different solution for the aforementioned
problem, which is allocating a probability to each of the
estimated functions based on prior knowledge (kernels). The
mean of the resulting probabilistic distribution represents the
most probable description of the data (Rasmussen and Williams,
2016). Consequently, GPR is one of the most versatile non-
linear methods in the field of machine learning and recently
has been widely used in neuroscience and psychology (Caywood
et al., 2017; Bahg et al., 2020). We compared results from GPR
with an exponential kernel, with the linear regression model
results to see if a non-linear approach can better describe our
data compared with a linear model. We used cross-validation
rather than hold-out validation, as the latter requires a very
large dataset to correctly function and the former is a powerful
preventative measure against overfitting, especially in relatively
small datasets. In cross-validation, the dataset gets partitioned
into k groups (i.e., k-fold). One of the groups is then used as a
test set and k-1 groups are used as the training set. The process of
training and testing is then repeated until each group is used as
the test set, which substantially reduces the over-fitting problem
(Browne, 2000; Yadav and Shukla, 2016). We did a five-fold
cross-validation which means that in each test, 80% of the data is
used for the training while 20% is used for testing. The complete
data analysis workflow is summarized in Figure 1. To evaluate
the accuracy of prediction for each model, we reported root
mean square error (RMSE) and accuracy:

Accuracy =

(
1−

(
PReal − Ppredicted

)
PReal

)
× 100

Where PReal is the real parameter and PPredicted is the
predicted parameter.

Results

The mean and standard deviation of openness to experience
scores before and after outlier removal is presented in Table 1.
The standard deviation of openness to experience scores
decreased by approximately 0.6 after outlier removal for each
regression analysis. The GE and CC measures gained from
the structural brain networks were initially both significantly
associated with openness to experience scores (GE: r = −0.344,
F = 11.8, p = 0.0008; CC: r = −0.222, F = 4.65, p = 0.0337).

After correcting for multiple comparisons using Bonferroni
correction, GE still had a moderate negative association with
the openness scores (p = 0.001), but the CC scores were not
(p = 0.067) (see Table 2). Figure 2 presents linear correlation
plots between openness to experience scores and CC and GE.
Results from the statistical analysis without outlier removal are
presented in the Supplementary material.

Both linear and non-linear regression models provided a
similar range of accuracy in their predictions of openness to
experience based on GE and CC measures. The Root Mean
Square Errors (RMSE) of GPR (with an exponential kernel) and
linear regression models for both inputs (i.e., GE and CC) were
as followed: GE: GPR= 5.534, Linear= 5.334; CC: GPR= 5.418,
Linear = 5.346 and the accuracy of models for two predictors
(GE and CC) was: GE: GPR = 83.8%, Linear = 84.6%; CC:
GPR = 83.7%, Linear = 83.9%. Figures 3, 4 show individual
distances between predicted and real values of openness to
experience based on CC and GE.

Discussion

Our goal in the current study was to investigate the
relationship between network features of the brain’s structural
connectome and openness to experience. Our results showed
that there is a significant negative correlation between GE
as a measure of integration in the network and openness
to experience which means higher openness to experience is
associated with a lower capacity of the brain in integrating
information from different regions. CC as a measure of network
segregation showed an initial significant association with
openness but after correcting for multiple comparisons, this
association was no longer significant. Then we used linear and
non-linear regression models to predict openness to experience
based on structural network features and these models predicted
the openness scores with a similar range of accuracy.

Most studies that investigated the structural/functional
underpinnings of personality have focused on regional brain
functions or structure (DeYoung et al., 2010; Xu and Potenza,
2012; Bjørnebekk et al., 2013; Privado et al., 2017; Wang et al.,
2018, 2022; Owens et al., 2019; Rodriguez et al., 2019; Avinun
et al., 2020). For example, some structural studies reported a
positive association between openness to experience and FA
values in IFO and ILF (Xu and Potenza, 2012; Privado et al.,
2017). Others found a negative correlation between openness
to experience and the cortical thickness of the dorsolateral and
ventrolateral prefrontal cortex (DLPFC and VLPFC) in both
hemispheres as well as a positive association with the area and
volume of the left inferior temporal cortex and the volume of
the right insula (Owens et al., 2019). Since the involvement
of various regions has been suggested, we argued that the
neural bases of openness to experience can be better understood
by utilizing the graph theoretical analysis as a comprehensive
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FIGURE 1

Data analysis workflow. Constrained spherical deconvolution (CSD)-based whole-brain probabilistic tractography was performed using
diffusion-weighted images as well as segmented T1w images. T1w images were segmented based on the Desikan-Killiany atlas for each subject.
A whole-brain adjacency matrix (84 × 84) was constructed for each subject. Graph theoretical analysis was performed on each matrix to
compute global efficiency (GE) and clustering coefficient (CC) as measures of integration and segregation in the brain structural networks.
Linear and non-linear analyses were performed to evaluate the association between each network measure and openness score.

TABLE 1 The mean and standard deviation of openness to experience, GE and CC scores before and after outlier removal using the cook’s distance
method.

State of outliers Number of
subjects

Openness scores GE scores CC scores

Mean
score

Standard
deviation

Mean
score

Standard
deviation

Mean
score

Standard
deviation

Without outlier removal 100 29.20 6.06 0.6414 0.0765 0.0551 0.00800

GE and openness regression
outlier removal

90 29.30 5.49 0.6441 0.0693 – –

CC and openness regression
outlier removal

91 29.29 5.45 – – 0.0554 0.00795

TABLE 2 The association between openness to experience scores and two graph measures of global efficiency and clustering coefficient using
linear regression.

Graph measure Pearson’s
r

R2 Adjusted
R2

RMSE Standard
error

F-statistic P-value Corrected
P-value

Number of
subjects

Global efficiency −0.3443 0.119 0.109 5.19 7.939 11.8 0.0008* 0.0016* 90

Clustering coefficient −0.2229 0.049 0.039 5.34 70.797 4.65 0.0337* 0.0674 91

*Indicates the p-values that were statistically significant (p < 0.05). RMSE, root mean square error; Corrected p-value = The p-value after multiple comparisons using
Bonferroni correction.

framework to study the structural networks (consisting of many
regions). Our result supports this argument as it suggests
a negative association between structural integration of the
network and openness to experience. According to this result,
when structural wiring between brain regions is more efficient
(to integrate distinct neural signals), openness to experience
is reduced. Hence, our result backs up the idea that adding a
network perspective to the investigation of brain structure and
function can advance our understanding of personality (Markett
et al., 2018; Toschi et al., 2018).

Another possible implication of our result is that it
might be suggestive of an overlap between the neurocognitive

mechanisms of openness to experience and psychosis. Several
studies have shown that psychosis is associated with heightened
openness to experience (Fyfe et al., 2008; DeYoung et al.,
2012; De Fruyt et al., 2013; Gore and Widiger, 2013; Thomas
et al., 2013), and emerging evidence suggest that default mode
network and frontoparietal control network are associated to
both psychosis proneness and openness to experience (Blain
et al., 2019, 2020). We speculate that openness to experience
and psychosis might also have similar neural mechanisms
at the level of structural connectivity. Schizophrenia as the
most prominent form of psychosis is associated with altered
structural connectivity, especially reductions in white matter
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FIGURE 2

Linear correlation plots. The plot on the left shows the association between global efficiency (x-axis) and openness to experience (y-axis). The
plot on the right shows the association between the clustering coefficient (x-axis) and openness to experience (y-axis).

coherence of tracts (Pettersson-Yeo et al., 2011; Cannon, 2015).
Some studies found that these alterations result in decreased
measures of network integration in the structural connectome
(Rubinov and Bullmore, 2013; Drakesmith et al., 2015). The
result from our study could be interpreted in relation to the
aforementioned studies, as both high openness to experience
and psychosis appear to be linked to decreased structural brain
network integration. Hence, our findings seem to be in line
with the idea that most symptoms of mental disorders exist
on a continuum with normal personality traits and typically
involve maladaptive forms of normal traits (DeYoung and
Krueger, 2018). Further research is needed to investigate the
relationship between openness to experience, psychosis, and
structural network features.

Although the current study was the first study that
investigated the relationship between graph measures gained
from structural connectome and openness to experience,
previous studies have investigated the relationship between
this trait and network features of functional brain networks.
Toschi et al. (2018) investigated the relationship between
openness to experience and various global and local graph
indices including global efficiency and clustering coefficient in
a large sample of 818 subjects but did not find any relationship
between measures of network integration and openness to
experience. On the other hand, Beaty et al. (2016) found a
significant positive association between openness to experience
and default mode network in two studies with sample sizes
of 68 and 86 subjects. While the inconsistency between the
results of these studies may be due to their significantly
different sample sizes, the incompatibility of their results with
our findings might be a consequence of intrinsic features of
brain architecture; namely the complex relationship between
structural and functional connectivity. Several studies have
shown that structural and functional connectivity cannot be
associated in a straightforward manner (Uddin, 2013). Although
in many cases there are positive correlations between structural

and functional connectivity (Straathof et al., 2019), it has long
been observed that functional connectivity can exist between
regions that are not directly connected with white matter
tracts. For example, research on split-brain has shown that
even in the absence of transverse fibers, bilateral resting-
state functional connectivity stays intact (Uddin et al., 2008;
Tyszka et al., 2011).

While numerous research has been done on the association
between graph measures of the functional connectome and
the five-factor model, few studies have investigated the
relationship between graph measures of structural connectome
and personality. The lack of straight forward relationship
between functional and structural connectome shows the
necessity of further research on the relationship between
personality and network features of the structural connectome.
In addition, given the complex relationship between structural
and functional connectivity, future research can explore the
relationship between personality traits and structural as well as
functional connectome using methods like multi-layer modeling
of brain networks (De Domenico, 2017). In a multi-layer
network, each layer represents a specific type of information
about the system, from neural activity with respect to various
tasks, to structural or functional connectivity. Compared with
a structural or functional network, a multi-layer network
will provide a more accurate representation of the complex
organization of the brain in spatial and temporal dimensions
and therefore might be able to provide a better account of
neurocognitive mechanisms of personality (De Domenico et al.,
2013; De Domenico, 2017).

Our study is associated with some limitations. We should
emphasize that this study was conducted using a subset of the
HCP dataset, and therefore a similar study that uses the whole
dataset would be favorable in evaluating our results. Future
studies can also evaluate the relationship between openness to
experience and influence measures (e.g., betweenness centrality)
which are important for detecting network hubs that are
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FIGURE 3

Prediction of openness to experience based on global efficiency (GE) scores. The plots show the result of the prediction of openness to
experience scores (y-axis) of each subject (x-axis) by (A) Gaussian Process Regression (GPR) and (B) linear regression based on the openness to
experience and GE scores as inputs. The predicted values are shown in orange and the actual data points are in blue. The orange lines depict
the difference between predicted values and the actual observations.
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FIGURE 4

Prediction of openness to experience based on clustering coefficient (CC) scores. Similar to Figure 3, the plots show the result of the prediction
of openness to experience scores (y-axis) of each subject (x-axis) by (A) Gaussian Process Regression (GPR) and (B) linear regression, but this
time based on the openness to experience and CC scores as inputs. The predicted values are shown in orange and the actual data points are in
blue. The orange lines depict the difference between predicted values and the actual observations.
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associated with openness to experience. Furthermore, although
HCP data is one of the most reliable open-access data (Van Essen
et al., 2013) and other personality studies also benefited from
using it (Toschi et al., 2018; Owens et al., 2019), the sample
is mainly comprised of young and healthy adults from the
United States which can affect the generalizability of our results.
Therefore, similar studies need to be done using more diverse
samples (regarding age, race, and ethnicity). The last point to
be noted is that since outlier removal affected the results, our
findings should be interpreted with caution, which again, shows
the importance of further research on the relationship between
openness to experience and network features of the structural
connectome.

In conclusion, our results provided new insights into the
relationship between openness to experience and structural
brain architecture at the network level. Since the whole-brain
network analysis consists of a wide range of cortical and
subcortical brain regions, our result may justify the involvement
of various distinct regions which came up in previous studies
(DeYoung et al., 2010; Xu and Potenza, 2012; Privado et al.,
2017; Owens et al., 2019). Specifically, our results showed
a significant negative relationship between structural brain
network integration and openness to experience. This can
suggest that lower integration in structural brain network wiring
is associated with higher openness to experience.
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