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Purpose: Brain 2-Deoxy-2-['8F]fluoroglucose ([*8FIFDG-PET) is widely used
in the diagnostic workup of Alzheimer's disease (AD). Current tools
for uptake analysis rely on non-personalized templates, which poses a
challenge as decreased glucose uptake could reflect neuronal dysfunction, or
heterogeneous brain morphology associated with normal aging. Overcoming
this, we propose a deep learning method for synthesizing a personalized
[18FIFDG-PET baseline from the patient's own MRI, and showcase its
applicability in detecting AD pathology.

Methods: We included [*8FIFDG-PET/MRI data from 123 patients of a local
cohort and 600 patients from ADNI. A supervised, adversarial model with two
connected Generative Adversarial Networks (GANs) was trained on cognitive
normal (CN) patients with transfer-learning to generate full synthetic baseline
volumes (sbPET) (192 x 192 x 192) which reflect healthy uptake conditioned
on brain anatomy. Synthetic accuracy was measured by absolute relative %-
difference (Abs%), relative %-difference (RD%), and peak signal-to-noise ratio
(PSNR). Lastly, we deployed the sbPET images in a fully personalized method
for localizing metabolic abnormalities.

Results: The model achieved a spatially uniform Abs% of 9.4%, RD% of 0.5%,
and a PSNR of 26.3 for CN subjects. The sbPET images conformed to the
anatomical information dictated by the MRI and proved robust in presence
of atrophy. The personalized abnormality method correctly mapped the
pathology of AD subjects while showing little to no anomalies for CN subjects.
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Conclusion: This work demonstrated the feasibility of synthesizing fully
personalized, healthy-appearing [*8FIFDG-PET images. Using these, we
showcased a promising application in diagnosing AD, and theorized the
potential value of sbPET images in other neuroimaging routines.

deep learning, artificial intelligence, FDG, brain PET/MRI, baseline, Alzheimer's
disease, anomaly detection

Introduction

(AD) is a
neurodegenerative disorder accountable for 50-75% of all

Alzheimer’s  disease progressive,
dementia cases (Lane et al., 2018). Early diagnosis is crucial, and
neuroimaging, primarily magnetic resonance imaging (MRI)
and positron emission tomography (PET), has proven to be
valuable for the detection of the disease in the early stages
(Garibotto et al., 2017). For this, 2-Deoxy-2-['3F]fluoroglucose
(['8F]FDG) is an accessible, accepted, and well-documented
tracer that can depict the distribution of glucose uptake
within the brain (Henriksen et al., 2016; Nestor et al.,, 2018;
Guedj et al.,, 2022). Translating ["*F]JFDG uptake to clinically
useful information is, however, a demanding task due to
high data-dimensionality, intra-patient heterogeneity of brain
morphology, and common AD mimicking conditions, such
as cerebrovascular disease (Burgos et al, 2017; Choi et al,
2019).  Consequently,
readouts often complement traditional visual assessment,

operator-independent, —quantitative
which has shown to improve classification rates and inter-rater
agreement (Garibotto et al., 2017). More specifically, clinicians
frequently interpret ['8F]JFDG-PET images through statistical
comparisons of the patient with healthy control templates of
similar demographics (Henriksen et al., 2016). This setup poses
a challenge as a detected decrease in ['®F]FDG uptake relative to
the healthy controls is unspecific and may be due to a number
of different conditions, including neurodegenerative diseases,
vascular damage, diaschisis, or intrinsic anatomical differences
between patient and controls stemming from age-related
atrophy (Baron et al., 1986; Burgos et al,, 2017; Choi et al,
2019). Consequently, there has been a growing interest in using
personalized computational tools to extract diagnostic-relevant
features from PET and MRI data (Garibotto et al., 2017; Burgos
et al., 2021; Wu et al., 2022).

Recent advances in artificial intelligence (AI) with
deep learning convolutional neural networks (CNN) have
successfully been expanded to aid clinicians in neuroimaging
routines (Ladefoged et al., 2020). For AD diagnostics, the
traditional AI approach has been to predict the category of
pathology in a patient directly from medical images (Wen et al.,
2020). Although often achieving high accuracy on datasets,
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the classification paradigm is perhaps unfit for clinical use,
as the reasoning behind disease predictions is difficult to
interpret from CNNs (Choi et al., 2019). Furthermore, such
models are tasked with predicting a finite number of certain
diseases, so performance may be limited by the training cohort
(Arbabshirani et al.,, 2017; Choi et al,, 2019). For instance,
a network trained on Alzheimer’s Disease Neuroimaging
Initiative (ADNI) studies might not generalize to an unselected
population of clinically referred patients as a cognitive decline
may be attributed to other pathologies not represented in the
dataset (Arbabshirani et al., 2017; Choi et al., 2019). Instead,
emerging studies focus on addressing the shortcomings of
ordinary statistical templates by utilizing neural networks for
image-to-image translation (Choi et al, 2019; Sikka et al,
2021). More specifically, the methods synthesize personalized
baselines that when compared against the patients’ own
["®F]JFDG-PET images produce interpretable abnormality
maps more resilient to anatomical variation (Burgos et al,
2017; Choi et al, 2019). Investigations had variational auto
encoders (VAE) synthesize healthy-appearing ['8F]FDG-PET
baselines tailored to the brain morphology of each patient,
which enabled easy detection of metabolic abnormalities even
in the case of rare disorders (Choi et al., 2019). Related studies
using adversarial architectures reached a similar conclusion;
personalized baselines in place of a statistical template increase
the robustness of the analysis against morphological variability
(Sikka et al., 2021). Concurrent with our work, a new method
showed promising results by using cross-modality MRI-to-
PET synthesis for personalized baselines (Sikka et al., 2021).
However, since most such models rely on ADNI studies for
training and testing, the clinical validity of the methodology is
yet to be established on newer, high-resolution scanners.

Addressing this issue, the aim of this study was to develop
and test the principle of a novel deep learning model for
synthesizing an individual, healthy ['*8F]FDG-PET image from a
patient’s own MR image. This was achieved by utilizing a locally
acquired cohort of cognitive normal subjects with PET/MRI
studies along with ADNI studies. To demonstrate the proof-of-
concept in one probable application, the synthetic “zero-dose”
images were used as personalized controls in the diagnosis of
Alzheimer’s disease.
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Materials and methods

Patients

Local cohort

A total of 123 [®F]JFDG-PET/MRI studies from 123
subjects were obtained retrospectively at Rigshospitalet,
Copenhagen University, Denmark. Among these, nine subjects
were of unknown diagnosis but exhibited clinically striking
imaging features such as severe cortical atrophy, ventricular
enlargement and/or ['8F]JFDG uptake characteristics of
dementia. This “Unknown” group was used to tune the
diagnostic method (Figure 1). The remaining 114 subjects
had undergone evaluation at the Memory Clinic for suspected
dementia. [*F]JFDG-PET/MRI studies complemented the
investigations, and in 104 of the subjects, the cognitive
function was considered normal after taking educational
and cultural background into account (Kaltoft et al., 2019).
Although considered cognitive normal (CN), some exhibited
other neurological and psychiatric disorders including,
vascular infarcts, epilepsy, psychosis, and presymptomatic
Huntington’s disease. Others showed significant atrophy
where an underlying cause could not be determined. These
104 subjects were assembled in a CN group, which was
75), holdout

validation during training (n = 19), and final holdout testing

divided into parts for model training (n =

(n = 10). Two nuclear medicine physicians examined the
['®F]JFDG-PET/MRI studies and patient journals of the
test subjects, which caused the removal of a single subject
with pre symptomatic frontotemporal dementia localized to
chromosome 3 (FTD3). Finally, 10 subjects clinically diagnosed
with dementia attributed to AD were collected in an AD group
and used for testing the diagnostic application (Kaltoft et al.,
2019).

The 122 subjects, 57 males and 65 females, ranged in
age from 27 to 87 years with a median value of 63. All
scans were performed between March 2011 and November
2019 with a fully integrated PET/MRI system (Biograph
mMR, Siemens Healthineers, Erlangen, Germany), and
data were extracted only in fully anonymized format in
compliance to the European General Data Protection
(GDPR) (Delso et 2011). Due to the

retrospective design of the study, approval of the regional

Regulation al.,

ethics committee was not required. Use of patient data
was approved by the Danish Patient Safety Authority (ref.
3-3013-1513/1).

Alzheimer’s disease neuroimaging initiative
A part of the imaging data of this study was obtained from
the Alzheimer’s Disease Neuroimaging Initiative database.! The

1 adni.loni.usc.edu
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ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease. For
up-to-date information, see http://www.adni-info.org.

[8F]FDG-PET images of pre-processing type CO-
REGISTERED AVERAGED and TIiw MR images were
obtained from 340 subjects all classified as cognitive
normal?2 Each ['8F]JFDG-PET scan was paired with the
Tlw MPRAGE scan closest in time, excluding pairs where
the difference in acquisition date exceeded 30 days, where
the subject transitioned away from CN within 5 years of
acquisition date, or where no unique MRI was available
for a given PET scan. Due to repeated visits, some
subjects ended with multiple paired ['®F]JFDG-PET and
MRI scans. The resulting cohort comprising 600 paired
PET and MRI studies from 276 subjects was split, on
subject level, into a pre-training segment and a validation
segment, with the latter enabling early stopping (Figure 1).
ADNI subject and image ID’s are listed in Supplementary
Table 1.

Imaging protocol

Local cohort

T1-weighted (T1w) MPRAGE images were acquired with
acquisition parameters listed in Supplementary Table 2.
Patients were placed head first-supine (HFS) in the scanner,
and data were acquired for 10 min with reconstruction
parameters: matrix size; 344 x 344 x 127 and voxel size;
0.8 mm x 0.8 mm x 2 mm. The scans had a mean post-
injection time of 49 min, [interquartile range (IQR): 44 min,
52 min] and patients were administered, on average, an
activity of 200 MBq ['8F]FDG, (IQR: 198, 201). Postprocessing
included reconstruction with 3D Ordinary Poisson-Ordered
Subset Expectation Maximization (OP-OSEM) using four
iterations, 21 subsets, and 3 mm Gaussian post-filtering. The
European GDPR was fulfilled by transforming the dataset
to anonymized data. ['8F]FDG-PET images were attenuation
corrected using a co-registered same-day CT (Andersen et al,,
2014).

Alzheimer’s disease neuroimaging initiative

T1w MPRAGE and ['®F]FDG-PET images from ADNI were
acquired with various imaging systems, acquisition parameters,
and reconstruction methods (see text foonote 1).

2 www.adni-info.org for criteria
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ADNI cohort Local cohort
n=600 n=122
I
v v v v v
CN CN Unknown CN AD
Train Validation Train Validation | |Validation Test Test
n=512 n=88 n=75 n=19 n=9 n=9* n=10
Model pre-training Model fine-tuning Diagnostic  Testing of model and
method diagnostic method
fine-tuning
FIGURE 1

Overview of cohorts, groups, and data splits and in which of the four stages of development these were used; model pre-training, model
fine-tuning, diagnostic method fine-tuning, and testing. *One subject was removed from the original 10 CN test subjects due to presence of

pre symptomatic FTD3.

Pre-processing

An ordinary registration and normalization scheme
standardized all scans to a common space (Wen et al,
2020). The MR images were bias-corrected via the N4ITK
algorithm, skull-stripped through HD-BET, and registered
to MNI space (MNI152 NLIN 2009a symmetric) via ANTs
Affine transformation (Fonov et al., 2009; Tustison et al,
2010; Avants et al, 2011). FSL FAST was used to segment
gray matter, white matter, and cerebrospinal fluid (CSF)
probability maps, and Hammersmith maximum probability
regions (Hammers_mith-n30r83) were nonlinearly registered
to each MRI with NiftyReg F3D (Hammers et al., 2003; Gousias
et al., 2008; Fonov et al., 2009; Modat et al., 2010; Jenkinson
et al, 2012). The images in MNI space, now of dimension
197 x 233 x 189, were cropped and padded to obtain a
192 x 192 x 192 isometric 1 mm?> space. The brain-masks
were dilated by 10 mm, which was theorized to aid model
predictions near the skull. Finally, the MRI signal intensity
was z-normalized with the mean and standard deviation
calculated only from voxels depicting gray or white matter. This
helped ensure robustness against varying degrees of atrophy.
To distinguish unmasked voxels from tissue-voxels, voxels
outside the 10 mm-dilated brain-mask were assigned a value of
—7.

The ['®F]JFDG-PET images were rigidly (affinely for the
ADNI-cohort) registered via ANTs to the MR images and
propagated to MNI space using the affine transformation
matrices derived from the MRI pre-processing (Avants et al.,
2011). The PET images were skull-stripped using the affinely
propagated brain-masks and cropped and padded to the same
isometric space as the MRIs. To ensure a common intensity
space, each PET image was normalized by the average of
the top 2% gray and white matter voxels following a 3 mm
gaussian blurring. See Supplementary Table 3 for software
versions.
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Model

The deep convolutional model was inspired by Kléser
et al. (2018) and Wei et al. (2018) consisted of two Pix2Pix-
like conditional generative adversarial networks (cGANs); an
ordinary cGAN, dubbed sketcher, used MR images to synthesize
preliminary ['8F]FDG-PET images, and an additional GAN,
dubbed refiner, enhanced the said images to final predictions
(Figure 2). Both ¢cGANs shared the same 3D-unet generator-
architecture and 3D Patch-Gan discriminator-architecture.
Ordinary binary cross-entropy was used for the adversarial
loss, and L1 for the recognition loss. In both cases, the brain-
mask confined optimization to within-brain voxel predictions.
Finally, the refiner generator was penalized with an additional
gray matter masked L1 term to emphasize tissue relevant to
neurodegenerative diseases (Garibotto et al., 2017).

To strengthen model generalization, training augmentations
were applied to the PET/MRI data and associated masks in
the form of random sagittal mirroring [probability (p) = 0.5],
random affine transformations in each dimension (scale
~ Uniform (0.9,1.1), degree rotation ~ Uniform (—10, 10),
p=1),and random bias field artifacts (p = 0.5). Hyperparameters
were tuned using the holdout splits, and the final sketcher-
refiner model, which consisted of 200 M trainable parameters,
was pre-trained on the ADNI CN cohort for 90,000 steps using
ADAM and a batch size of two. The initial generator and
discriminator learning rates were 1074, both decayed 10-fold
at step 20,000 and once again at step 50,000. Finally, the model
was fine-tuned for 60,000 steps on the local CN cohort using the
same initial learning rates and decay steps. All model training
was performed on a single NVIDIA TITAN V graphics card.

Since the memory considerations of whole-brain networks
inevitably restrict resolution or network size, our model was
trained to predict 3D patches of 32 neighboring, full, sagittal
slices. At inference, a total of 160 per-image overlapping patches
were extracted, fed through the model, and fused to a full
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Sketcher
-
Real
Paired Data G Ground Truth
Fake
A
FDG-PET PET Sketch
N
<
Refiner
T1w MRI
o
2 Real
=
i &
PET Residual E
o Fake
k L
Ground Truth
FIGURE 2

The adversarial sketcher-refiner framework inspired by Gousias et al. (2008), Jenkinson et al. (2012). The sketcher generator (G) predicts a
[*8FIFDG 3D patch (PET Sketch) from an MR 3D patch, and the refiner generator (Gr) enhances this to a final synthetic image patch (PET
Refined). During training, the sketcher discriminator (D) is shown patches from MR, PET Sketch, and real PET (Ground truth) images. Likewise,
the refiner discriminator is shown patches from MR, PET Refined, and real PET images. The discriminators try to distinguish real from synthetic
images, which motivates the generators to synthesize compelling PET patches.

192 x 192 x 192 synthetic baseline PET (sbPET). To handle
overlapping slice predictions and tissue inconsistency at patch
borders, a weighted average scheme was designed such that slice
influence decreased with the sagittal distance to the center of the
originating patch.

Quantitative and qualitative evaluation
of synthetic controls

Whole-brain synthetic accuracy was determined by
comparing the CN test images with their corresponding
synthetic images in terms of peak signal-to-noise ratio (PSNR),
mean relative %-difference (RD%), and mean absolute-value
relative %-difference (Abs%) (Wang et al,, 2004). All three
metrics have invariance to scale and, by extension, invariance
to the PET normalization scheme. The RD% metric can be
thought of as expressing bias, that is, whether the model
tends to over or underestimate uptake. Similarly, Abs% can
be likened to the model’s overall uncertainty, i.e., the average
magnitude of deviation between synthetic and true images. RD
and Abs% scores were also calculated for selected regions of
the Hammersmith atlas to examine the spatial distribution of
the synthetic error (Hammers et al., 2003; Gousias et al., 2008).
The same metrics were plotted for the AD subjects to ratify the
findings of the CN group. We then denormalized the synthetic
and true images of the CN group to the original MBq/ml space
and calculated the fraction of PET variance explained by each
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sbPET. In addition, the denormalized PET-sbPET joint uptake
distribution was visualized in a histogram to reveal possible
prediction biases.

Application in the diagnosis of
Alzheimer's disease

As a proof-of-concept for a clinical application, the
synthetic images were incorporated as personalized controls in
a quantitative and interpretable method for locating abnormal
["®F]FDG uptake. To ensure sbPET and PET scale consistency,
each sbPET images was post-normalized by the average signal
of a region of healthy uptake defined by the true PET image.
More specifically, the region mask captured the gray and white
matter voxels of the true PET with the top 2% uptake after
a 3 mm gaussian blurring. Following this normalization, both
PET and sbPET were blurred by a 3 mm gaussian, and a
simple abnormality map, Zy, was computed as the voxel-wise
relative %-difference of the true PET, Y, with respect to the
post-normalized sbPET, Y. That is, the Zy value at some voxel
coordinate, x, is computed as:

Y (x) — ¥ (%)

Zo (x) = -100%

This quantitative abnormality map can be interpreted as
the deviation of the subjects ["*F]JFDG uptake from the
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https://doi.org/10.3389/fnins.2022.1053783
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Hinge et al.

10.3389/fnins.2022.1053783

25 .
E 20 °
o
§ 15 .
=
8
g 10
g
]
= 5
b
=
(=)
- 0
= i
e
2 -5 .
o .
-10 *
Frontal Occipital Parietal Temporal
FIGURE 3
(Fonov et al., 2009; Modat et al., 2010).

— 30
o I AD (n=10)
c [ CN (n=9)
o L]
£ 25
[}
o
=
g L]
9]
2 20
7
o\o L]
015 .
'Jj L]
© .
g ¢ .
% 10
S . ==
(%] [
Q
<5
Frontal Occipital Parietal Temporal

Boxplots of the RD% (left) and Abs% (right) scores within selected Hammersmith brain regions for the CN (n = 9) and AD (n = 10) test subjects

personalized baseline. The essential strength is that the model
is trained to synthesize sbPET images of healthy appearance
taking brain anatomy into account. So for a healthy subject,
the sbPET and PET should be similar even in the presence of
atrophy or irregular morphology. In contrast, for a patient with
AD, the map should express abnormality in areas of metabolic
dysfunction, as the anatomical context by itself would not
explain the drop in true uptake.

To investigate clinical applicability, abnormality maps were
calculated for the CN and AD test subjects. The maps were
nonlinearly registered to MNI space and averaged within
groups to highlight differences between CN and AD subjects.
Additionally, maps of selected subjects were compared with
the vendor-provided statistical maps currently used in clinic.
Statistical deviation maps generated by Siemens Scenium
software were extracted for the true PET images using the
FDG2A template (age 46-79 years, cerebellar normalization
region). The two methods were qualitatively evaluated in
context of diagnosing neurodegenerative disease, and special
attention was put on robustness in presence of atrophy.

Results
Model training time was split between ADNI pre-training,

48 h, and local cohort fine-tuning, 24 h. On average, a full sbPET
volume took 12 s to synthesize.

Quantitative and qualitative evaluation
of synthetic controls

The fine-tuned synthetic model obtained an average score of
26.3 = 1.0PSNR, 0.5 £ 4.7% RD%, and 9.4 4 1.9% Abs% on
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the nine CN test subjects, which was an improvement over the
pre-trained model across all metrics (Supplementary Table 4).
The small magnitude RD% suggests an unbiased prediction
of uptake in cognitive normal subjects, and the corresponding
Abs% score establishes an average voxel error magnitude of less
than 10%. Figure 3 depicts group-average RD and Abs% within
Hammersmith atlas brain regions for both the CN and AD
group (Hammers et al,, 2003; Gousias et al., 2008). Evidently,
the RD% error is spatially uniform and zero-centered across
regions for the CN cohort, but consistently large (positive) for
the AD cohort. This observation of overestimation of uptake
in subjects with neurodegenerative disease is expected, as the
synthetic images reflect the high metabolism associated with
healthy brain activity. The deviation is especially notable in the
parietal lobe, which is a region often associated with dementia
pathology (Brown et al., 2014). For the region-wise Abs% scores,
the CN group exhibits an average error of 7-16%, while the error
of the AD group is significantly larger (8-26%) and dependent
on brain region. The joint histogram of ['®F]FDG uptake in
Figure 4 shows a high correlation between predicted and true
activity in CN subjects (R? = 0.90 + 0.02), shows no systemic
effect in the residual, and the linear fit is close to the theoretically
optimal identity line.

Application in the diagnosis of
Alzheimer's disease

Abnormality maps were generated for the 9 CN and 10
AD subjects, nonlinearly registered to MNI space, and averaged
within group (Figure 5). The abnormality metric is found to be
spatially uniform for CN subjects with an average close to zero
(no abnormality) almost everywhere. Contrarily, the AD group
exhibits significant hypometabolism (15-20% reduced uptake
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Summed joint histogram of predicted and true uptake for
within-brain voxels of the CN test group and the corresponding
linear fit (green). The average explained variance (R?) is
calculated for the linear fit with the standard deviation as
uncertainty measure.

on average) in the parietotemporal and frontal region indicative
of neurodegenerative disease.

Figures 6, 7 present PET, sbPET, abnormality maps, and
vendor-provided statistic maps for four test subjects: Two CN
subject; one with and without atrophy (Figure 6) and two
AD subjects (Figure 7). Note that in the less challenging case
of healthy subject A without atrophy, both the abnormality
map and the vendor-provided map correctly predict healthy
(green) whole-brain uptake (Figure 6A). In presence of atrophy,
however, the template-based method incorrectly determines
abnormality in areas of ventricular enlargement (Figure 6B).
With a patient-specific design, the abnormality map avoids
this issue altogether, as the conditioning on anatomy allows
the synthetic images to account for reduced uptake in

10.3389/fnins.2022.1053783

areas of atrophy. In both subjects with Alzheimer’s disease,
our method confidently localizes areas of abnormal uptake
(Figure 7). Note the estimated 40-60% reduction in uptake
in the parietotemporal gray matter region, and how the
method correctly predicts reduced metabolism in wide fissures
(Figure 7).

Discussion

This study demonstrated the feasibility of a novel deep
learning method for synthesizing healthy ['*F]JFDG-PET
images from patients own MR images. Through transfer-
learning, the model conformed to the high-resolution images
of modern PET/MRI systems, making the synthetic images
well suited for clinical tasks. As a proof-of-concept, one
such clinical application was showcased by employing the
synthetic images as personalized, healthy baselines in the
diagnosis of AD. Compared with vendor-provided statistical
maps, the personalized abnormality maps appeared more
robust to heterogeneous brain morphology. Consequently, this
methodology may improve differential diagnosis in elderly
populations with atrophy.

The synthetic images accurately reflected healthy [**F]FDG-
PET appearance and proved to be resistant to anatomical
variance. Figure 3 (left) shows a small, spatially uniform
synthetic error of £10% for CN subjects. Likewise, Figure 3
(right), Figure 4 suggest that the model prediction is unbiased
with respect to brain region and true uptake. It is difficult to
compare the results directly with related studies due to the small
test set and intrinsic differences in datasets, validation schemes,
synthetic resolution, and use of scale variant metrics, however,
a PSNR of 26.3 is considered high given the target resolution
(Manjooran et al., 2021). Combined, these observations suggest
that the model is both accurate and robust in its prediction
of healthy uptake, which is necessary for the images to act
as personalized baselines. The key finding is embodied by
CN test subject B, for whom the uptake prediction remains

Average of abnormality maps

.
1
!
I

FIGURE 5

Abnormality maps of the CN group (n = 9) and AD group (n = 10) nonlinearly registered to MNI space and averaged. On average, the
personalized method finds little to no abnormality for the CN group but significant hypometabolism in the gray matter of the AD group
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Sex: Male, Age: 59Y, MMSE: 30

sbPET [kBqg/ml] PET [kBg/mlI] Abn. map [%] Statistic [sd]
—

16 16 —-60 0 60 -8 0

FIGURE 6
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CN Patient sex; Male, Age: 63Y, MMSE: 23

sbPET [kBg/ml] PET [kBg/mlI] Abn. map [%] Statistic [sd]
[

15 0 15 -60 0 60 -8 0 8

Two CN subjects in MNI space (affine transformation); one with minimal atrophy (A) and one with substantial atrophy (B). The MNI coordinate is
denoted for each view. Columns from the left: Tlw MRI (normalized intensity), sbPET (post-normalized), true PET, abnormality map,

vendor-provided statistical map

A AD Patient sex: Female, Age: 87Y, MMSE: 19

sbPET [kBg/mI] PET [kBg/ml] Abn. map [%] Statistic [sd]
[

0 23 0 23 -60 0 60 -8 0

FIGURE 7
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B

AD Patient sex; Female, Age: 70Y, MMSE 23

sbPET [kBg/ml] PET [kBg/mlI] Abn. map [%] Statistic [sd]
[

25 0 25 -60 0 60 -8 0 8

Two AD subjects in MNI space (affine transformation); one with minimal atrophy (A) and one with substantial atrophy (B). The MNI coordinate is
denoted for each view. Columns from the left: TIw MRI (normalized intensity), sbPET (post-normalized), true PET, abnormality map,

vendor-provided statistical map.

accurate despite presence of both cortical and ventricular
atrophy (Figure 6B). Finally, the performance gap gained
through transfer-learning stresses the importance of including
high-resolution scans in the training cohort (Supplementary
Table 4).

Synthetic controls may be more suitable for clinical
applications compared to conventional computational methods.
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In the context of machine learning assisted diagnosis, a popular
approach has been to classify the disease directly from the
imaging data (Arbabshirani et al., 2017; Wen et al., 2020). For
several reasons, this classification methodology may be unfit
for clinical use; the first being that prediction reasoning is
inherently difficult to interpret from neural networks. Secondly,
such models may be limited by the cohort on which they
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are trained as comorbidities and rare disorders are often
not be represented in the dataset. Finally, binary classifiers
frequently ignore the underlying heterogeneity of each disorder,
that is, differences in the subtype and magnitude of the disease
(Arbabshirani et al, 2017). Usually, the optimal treatment
path varies according to these disease specifications, so the
limited information provided by classification-based models
may be less actionable in clinic (Arbabshirani et al., 2017).
The methodology embodied by synthetic controls largely avoids
these issues. Class-imbalance is circumvented as the model only
needs to characterize a single population: Healthy individuals.
Additionally, the simple interpretation and versatility of a
synthetic control permits it to complement existing clinical
routines rather than replacing them. Finally, instead of having
to train individual models for each clinical task, the same sbPET
can act as a high-dimensional feature in multiple neuroimaging
applications.

As a proof-of-concept for one such application, synthetic
images were incorporated into a personalized abnormality map
to aid the diagnosis of neurodegenerative disorders. The current
diagnostic methods of AD are not ideal as vendor-provided
statistical tools can interpret healthy, age-related atrophy as
abnormal uptake (Brown et al., 2014). Such is the case for
CN subject B of Figure 7 for whom the vendor-provided
statistical map incorrectly predicted hypometabolism in areas of
ventricular and cortical atrophy. The personalized map showed
less pronounced abnormality as the healthy synthetic control
accounted for the localized drops in uptake caused by atrophy.
This finding is further confirmed by the abnormality map
group-average, which is spatially uniform and zero-centered for
the CN test group (Figure 5). Importantly, the personalized
map remains sensitive to AD pathology, as AD maps, on
average, show abnormal metabolism in the parietotemporal and
frontal gray matter regions. For such subjects, one may more
confidently assume that illness is the cause of reduced uptake,
as the healthy sbPET images are strikingly different from the
true PET images. Although the results are based on a small
test set, this separation of atrophy and disease demonstrates
how a personalized control may enhance the diagnosis of
AD.

The methodology and advantage of personalized diagnostic
models is not a novel discovery. Burgos et al. (2017) and Choi
etal. (2019) propose pipelines for diagnosing neurodegenerative
disorders based on similar personalized, healthy controls.
Burgos et al. (2017) designed a semi-personalized model,
which comprised scans of subjects anatomically similar to the
patient. An abnormality map was then computed by comparing
the model and ground truth through a quantifiable Z-score.
Choi et al. (2019) suggested a fully personalized method by
having a VAE synthesize the ['®F]FDG-PET control in an
unsupervised manner and subsequently detect abnormality
via a mean square error metric. Our study builds on these
strengths by proposing a novel method that is fully personalized,
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quantifiable, and optimized on a clinical dataset. Importantly,
the interpretable abnormality map differentiates between hyper-
and hypometabolism and the synthetic process is void of any
cohort data and nonlinear registrations tools, which are often
vulnerable to atrophy.

The sbPET image may be deployed as a general tool in other
neuroimaging tasks and standard clinical routines. Rajagopal
et al. (2021) proposed the use of a deep-domain translated
image as a prior in the reconstruction of PET images from
sinograms. More specifically, a synthetic ['*F]JFDG-PET could
impose sparsity constraints on the reconstruction problem to
allow recovery of noisy low-dose PET/MRI. For the alignment
of multimodal images, a synthetic image could transform a
challenging PET-to-MRI registration to a unimodal PET-to-
synthetic-PET-registration problem (Han, 2017; Fu et al., 2020).
Lastly, the abnormality map approach may be extended to the
diagnosis of other disorders, for instance, in the segmentation of
brain tumors and localization of epileptic foci. However, further
work is required to explore these implementations (Sarikaya,
2015).

This study posed a number of limitations. Although the
ADNI-cohort is heterogenous, all scans of the local cohort were
performed at one hospital with the same PET/MRI system,
which could reduce generalizability to different scanners.
Notably, the test images were acquired simultaneously by a
hybrid PET/MRI system and were thus geometrically aligned,
which may not be the case for sequentially acquired images.
Furthermore, the CN subjects of the local cohort were examined
due to some suspicion of disease, perhaps arisen from a
behavioral or cognitive change (Weller and Budson, 2018).
Although cognitive impairment was ruled out by clinical
experts, it could be argued that the images of the CN subjects
do not resemble the uptake of healthy individuals. One example
is CN subject B whose MMSE score alone would suggest mild
cognitive impairment (Figure 6B; Weller and Budson, 2018).
The presence of epilepsy, vascular infarcts, and other conditions
in the fine-tuning training data did, however, not hinder
the abnormality map sensitivity toward AD uptake patterns
(Figure 5). Nevertheless, to ensure model generalizability in
a clinical setting, stricter inclusion criteria like that of ADNI
should be imposed, and the clinical dataset should be extended
to encompass multiple scanners and a wider demographic.
Importantly, a significantly larger test set is required to validate
the proof-of-concept application in AD.

The pre-processing pipeline was a limitation as the tools
for skull-stripping, intra-patient registration, and gray matter
segmentation were challenged by severe atrophy. Data quality
often dictates model performance, so imperfections in the pre-
processing stage may lead to inadvertent model penalization
and a reduction in synthetic accuracy (Han, 2017). Particularly,
the normalization method was less consistent in subjects with
extensive ventricular systems, since the large proportion of CSF
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resulted in a too low normalization constant. Although post-
normalization of the synthetic images mitigated most of the
intensity issues in relation to the abnormality map, the effect
of alternative normalization methods should be investigated.
In future studies, skull-stripping could possibly be omitted
altogether by implementing a minimal pre-processing approach.
Image misalignment may be improved by replacing the
multimodal MRI-to-PET registration with a simpler unimodal
PET-to-sbPET registration as suggested by Wen et al. (2020).

Conclusion

The aim of this work was to develop and test a model
that synthesizes individual healthy ["®F]FDG-PET images to
be used as patients’ own controls in neuroimaging tasks.
This was achieved through a synthetic model that deployed
a 3D convolutional neural network to predict ['®F]JFDG-PET
images from patients own MR images. The results showed
that the proposed deep learning model reliably produced
healthy-appearing images for cognitive normal subjects. As
a proof-of-concept for a clinical application, the model was
deployed in a personalized abnormality map for diagnosing AD.
Ultimately, this approach may strengthen patient examination
by eliminating dependence on statistical databases that currently
impede the diagnostic process. Before the model might be
utilized in clinic, further investigations should be made in
model generalization and task-specific implementation of the
synthetic controls.
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