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Background: Subthalamic deep brain stimulation (DBS) is an established

therapy to treat Parkinson’s disease (PD). To maximize therapeutic outcome,

optimal DBS settings must be carefully selected for each patient.

Unfortunately, this is not always achieved because of: (1) increased

technological complexity of DBS devices, (2) time restraints, or lack

of expertise, and (3) delayed therapeutic response of some symptoms.

Biomarkers to accurately predict the most effective stimulation settings for

each patient could streamline this process and improve DBS outcomes.

Objective: To investigate the use of evoked potentials (EPs) to predict clinical

outcomes in PD patients with DBS.

Methods: In ten patients (12 hemispheres), a monopolar review was

performed by systematically stimulating on each DBS contact and measuring

the therapeutic window. Standard imaging data were collected. EEG-based

EPs were then recorded in response to stimulation at 10 Hz for 50 s on each

DBS-contact. Linear mixed models were used to assess how well both EPs

and image-derived information predicted the clinical data.

Results: Evoked potential peaks at 3 ms (P3) and at 10 ms (P10) were observed

in nine and eleven hemispheres, respectively. Clinical data were well predicted

using either P3 or P10. A separate model showed that the image-derived

information also predicted clinical data with similar accuracy. Combining

both EPs and image-derived information in one model yielded the highest

predictive value.
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Conclusion: Evoked potentials can accurately predict clinical DBS responses.

Combining EPs with imaging data further improves this prediction. Future

refinement of this approach may streamline DBS programming, thereby

improving therapeutic outcomes.

Clinical trial registration: ClinicalTrials.gov, identifier NCT04658641.

KEYWORDS

evoked potentials, deep brain stimulation, electroencephalography, Parkinson’s
disease, programming

1. Introduction

Subthalamic nucleus (STN) deep brain stimulation (DBS) is
an established neurosurgical therapy for advanced Parkinson’s
disease (PD), involving implantation of a lead to precisely
deliver electrical stimulation to the brain (Benabid et al.,
1991; Limousin et al., 1998; Coenen et al., 2008; Kalia
et al., 2013). Identification of optimal DBS settings is
essential to maximize therapeutic outcome. However, even
with accurate lead positioning this remains time-consuming
and is highly dependent on programmer expertise (Volkmann
et al., 2002; Picillo et al., 2016; Lange et al., 2021).
Traditionally, DBS settings are selected via a monopolar
review assessment, where the optimal DBS-contacts are
identified by systematically evaluating the clinical response
elicited when stimulating on each contact separately. With
the advent of new technologies such as directional leads and
multiple independent current-controlled (MICC) stimulators,
the programming parameter space has expanded exponentially.
This technology allows improved stimulation precision, and
thus optimized DBS therapy, but comes at the cost of greatly
increased programming complexity and time (Wagle Shukla
et al., 2017; Santaniello et al., 2018; Koeglsperger et al.,
2019). Finally, not all symptoms respond immediately to DBS
meaning that a clinician may not be able to determine the
best setting during a single clinical visit (Wagle Shukla et al.,
2017). Consequently, not all DBS patients receive optimal
therapy.

Imaging offers one potential solution to guide
programming. This approach involves visualization of the
lead and different contacts in relation to the relevant nuclei.
Studies have shown that image-guided programming can be
significantly less time-consuming whilst still leading to non-
inferior motor improvements compared to conventional
programming (Pourfar et al., 2015; Lange et al., 2021;
Malekmohammadi et al., 2022). More recently, image-
guided approaches also visualize the DBS-induced spread
of electrical stimulation to give the programmer a clearer
theoretical indication of the stimulated area, such as the

electric field (EF), to guide and improve stimulation effects
(Hemm et al., 2005; Åström et al., 2009; Nguyen et al., 2019).
The EF overlap with the relevant image-derived anatomical
structures can then be used to explain the DBS effects in an
individual patient (Maks et al., 2009; Aström et al., 2010;
Frankemolle et al., 2010; Mikos et al., 2011). Furthermore,
individual patient data can be pooled to create probabilistic
stimulation maps for different (clinical) outcome parameters
(Butson et al., 2011; Akram et al., 2017; Gourisankar et al.,
2018). For example, a recent study reported the reconstruction
of probabilistic stimulation maps in PD patients covering the
dorsolateral STN as well as surrounding white matter and
predictive of a good motor outcome, a so-called sweet spot
(Dembek et al., 2019), which has already been proposed to
use as a programming guide (Phibbs et al., 2014). A recent
functional magnetic resonance imaging (fMRI) study showed
that clinically optimal stimulation produces a characteristic
fMRI brain response marked by preferential motor circuit
engagement, which is indicative of a functional sweet spot and
hence, could be used as a biomarker of clinical response (Boutet
et al., 2021). However, the precise location (and even existence)
of a neuroanatomical sweet spot for DBS within STN remains
disputed (Hamani et al., 2017).

Another potential solution is the development of
electrophysiological biomarkers that can link DBS settings
to patient-specific clinical outcomes. Such biomarkers may
streamline the DBS programming process and have the potential
to improve therapeutic outcomes in sub-optimally programmed
patients. Intraoperative recordings of subthalamic local field
potentials (LFP) are already being used to determine the final
lead position but also to guide and improve DBS programming
as reported by multiple research groups (Chen et al., 2022;
Darcy et al., 2022; Hirschmann et al., 2022; Shah et al., 2022).
Other studies have recorded cortical evoked potentials (EPs)
in PD patients using both electroencephalography (EEG)
(Walker et al., 2012) and electrocorticography (Miocinovic
et al., 2018) approaches. These studies indicated that a short-
latency EP peak around 3 ms may be useful in predicting
clinical outcomes. Recently, a review article combined relevant
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DBS EP studies together and concluded that EPs may be
useful as a biomarker for DBS parameter selection, especially
with the expansion of the stimulation parameter space
(Dale et al., 2022).

In a recent study (Peeters et al., 2021) we recorded similar
short-latency EP at 3 ms (P3), in addition to a long-latency peak
around 10 ms (P10) using EEG and concluded that changing
the stimulation contacts significantly affected P3 and P10 peak
amplitudes. In a follow-up study, we found that the peak
amplitude was also significantly affected when applying MICC
technology to change the stimulation depth (Peeters et al., 2022).
Furthermore, by examining the correlation between EPs and
imaging-derived information we found that P3 was largest when
stimulating through the DBS-contacts closest to dorsolateral
STN, while P10 was largest when stimulating through the DBS-
contacts closest to substantia nigra (SN). This data indicates
that P3 may be a suitable biomarker for predicting which
contacts will lead to motor improvements, while P10 may
help predict which contacts lead to SN-related side effects.
In the present study, we investigated the correlation between
P3 and P10 peak amplitudes and clinical outcomes derived
from a classical monopolar review from each electrical contact
separately. We then compared our EP biomarker approach to
an image-guided programming approach, and finally examined
the complementarity of combining both approaches.

2. Materials and methods

2.1. Participants and surgery

Subjects who met the “UK PD Society Brain Bank Clinical
Diagnostic Criteria” for the diagnosis of PD who had DBS
surgery at least 3 months prior to enrollment, were included in
the study. Directional leads (Vercise Cartesia R©, Boston Scientific
Corporation, Marlborough, MA, USA) (Frey et al., 2022) were
bilaterally implanted in the STN. These leads have eight DBS-
contacts arranged in a 1-3-3-1 configuration, corresponding
to four levels with the middle two levels segmented into
three horizontal current steering directions (distal-to-proximal
contact numbering of left lead: C1-C8; numbering of right
lead: C9-C16, where “C” stands for “Contact”). The surgical
procedure was performed with micro-electrode recording
technique as standard-of-care, under local anesthesia and
intermittent sedation.

The study was approved by the Ethics Committee Research
UZ/KU Leuven (S62373) and registered on ClinicalTrials.gov
(NCT04658641). All subjects provided oral and written
informed consent. The study was conducted in accordance with
the Declaration of Helsinki, the Belgian law of May 7th, 2004 on
experiments on the human person and in agreement with Good
Clinical Practice guidelines.

2.2. DBS stimulation during EEG
recordings

Subjects were asked to refrain from PD medication intake
overnight. One hemisphere was tested at a time, while
stimulation in the other hemisphere remained off. Next, the
stimulation intensity used for EP recording was defined on
the clinical contact configuration (monopolar cathodic pulse
with return on the case, frequency of 130 Hz and a pulse
width of 60 µs). EPs were recorded at three stimulation
intensities: (1) at a subthreshold intensity of 0.5 mA as a
positive control where we expect no responses, (2) at the
intensity where rigidity was alleviated in the contralateral
wrist, (3) at the highest stimulation intensity without non-
transient side effects. Due to time constraints, only rigidity
was assessed to evaluate clinical effectiveness. After defining
the stimulation intensities, the frequency was decreased to
10 Hz. The EPs recorded at all three stimulation intensities
were used for an initial intensity analysis (see further). The
highest stimulation intensity was then used for all further
analyses. Standard-of-care clinical settings are shown in
Supplementary Table 1.

2.3. EEG recordings and
artifact-reduction method

A 64-channel ActiveTwo BioSemi system (Amsterdam, The
Netherlands) with a sample rate of 16.384 Hz and a built-in low-
pass filter (cut-off frequency of 3,200 Hz) was used for all EEG
recordings. This EEG system uses active recording channels
positioned according to the internationally standardized 10–
20 system (Jasper, 1958) and referenced to the vertex EEG
channel (Cz). No additional re-referencing was applied. One
additional EEG channel (EXG1) was positioned on the skin over
the implantable pulse generator (IPG) to record the stimulation
artifact, and served as a trigger channel to align all EPs. The
other two additional EEG channels were positioned on the left
(EXG2) and right (EXG3) mastoid to record the stimulation
artifact at a cranial location with negligible neural responses.
We stimulated each of the DBS-contacts individually as well
as the segmented contacts in ring mode in randomized order
(thus leading to ten tested configurations) for 50 s at 10 Hz,
yielding a total of 500 epochs with a duration of 100 ms for
each recording. Each epoch was then baseline corrected by
subtracting the average of a 1-ms period prior to stimulus onset,
after which the epochs were averaged to get the averaged EP.
A combination of linear interpolation and template subtraction
was applied to reduce the total stimulation-induced artifact. For
template subtraction, we generated a scaled template based on
the artifact recorded with EEG channels EXG2 and EXG3. After
artifact removal, two bandpass 2nd-order Butterworth filters
were applied to extract the short- and long-latency EPs: one
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for evaluation of short-latency EPs (high-pass cutoff frequency:
150 Hz; low-pass cutoff frequency: 1,000 Hz); the other filter was
designed for evaluation of long-latency EPs (high-pass cutoff
frequency of 1 Hz; low-pass cutoff frequency: 150 Hz). A detailed
description of the EEG protocol and template subtraction
method for artifact reduction can be found in Chen et al.
(2022). Note that the electrophysiological data recorded in some
participants included for the current article have already been
published in Chen et al. (2022) (see Supplementary Table 2 for
details).

2.4. Monopolar review assessment

At least 1 month after participating in the EEG recording
session, the subjects were asked to come back to the
hospital for a double-blinded monopolar review where both
the participant and the clinical evaluator were blinded to
stimulation intensity and DBS-contact. Stimulation was turned
off in both hemispheres at first and then turned on in one
DBS-contact (monopolar cathodic pulse with return on the case,
frequency of 130 Hz and a pulse width of 60 µs). Stimulation was
increased in steps of 0.5 mA and refined in steps of 0.1 mA until
rigidity in the contralateral wrist was alleviated. This intensity
was termed the bottom of TW (bTW). Stimulation was then
again increased in steps of 0.5 mA and refined in 0.1 mA
steps until side effects started to appear. This intensity was then
termed the top of TW (tTW). TW was defined as the difference
between tTW and bTW. One DBS-contact was tested at a time
as well as the segmented contacts in ring mode in randomized
order. Subjects were asked to refrain from PD medication intake
overnight. When side effects were induced before reduction in
rigidity was observed, TW was reported as 0 mA.

2.5. Imaging data analysis

Lead-DBS, an open-source image processing pipeline
(version 2.5.3, Berlin, Germany) (Horn and Kühn, 2015; Horn
et al., 2019) was used for postoperative lead reconstruction
analysis using the preoperative MRI scan and postoperative CT
scan. This analysis allowed for the determination of the specific
lead position and orientation on an individual hemispheric level.
More specifically, pre-and postoperative images were linearly
co-registered and normalized into Montreal Neurological
Institute (MNI)-space using the advanced normalization tools
module in Lead-DBS (Avants et al., 2008). Electrode trajectories
were automatically pre-localized using the PaCER toolbox
(Husch et al., 2018) but were manually refined when necessary.
Visualization to confirm lead position in reference to relevant
anatomical regions was performed in MNI space using the
DISTAL atlas (Chakravarty et al., 2006; Ewert et al., 2018), see
Supplementary Figure 1 for more details.

2.6. Prediction of clinical outcomes
using a neuroanatomical sweet spot

One aim was to compare our EP-based approach for
predicting clinical outcomes to an established image guided
approach. Therefore, we also used a published neuroanatomical
sweet spot [motor improvement using part III of the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale
(UPDRS)] (Dembek et al., 2019) approach to predict clinical
outcomes. To accomplish this, we calculated the electric field
(EF) at stimulation intensities of 1 mA for each investigated
contact using FastField (Baniasadi et al., 2020). We then
calculated sweet spot overlap of the EF by multiplying the
electric field with the binary mask of the neuroanatomical
sweet spot (centers the dorsolateral STN and covered dorsal
parts of both sensorimotor STN and associative STN as well
as surrounding white matter) (Dembek et al., 2019) and then
summed all EF values that laid inside the sweet spot. Since the
EF scales linearly with stimulation intensity, one can assume
that a contact with larger EF overlap with the neuroanatomical
sweet spot at 1 mA would require a lower stimulation intensity
to achieve rigidity suppression and thus probably have a lower
bTW. Furthermore, electrical stimulation of a contact with a
larger EF overlap with the neuroanatomical sweet spot at 1 mA
would only provoke side effects at a higher stimulation intensity
and thus have a higher tTW.

2.7. Software and statistical analysis

All data processing and statistical analyses were done in
MATLAB 2022a (Mathworks, Natick, MA, USA). A significance
level of 5% was used in all tests. A peak at 3 ms recorded
via the motor cortex EEG channel ipsilateral to stimulation
(i.e., F3 for left and F4 for right hemisphere) was extracted
based on the maximum peak amplitude between 2 and 5 ms.
Furthermore, a peak at 10 ms recorded via the prefrontal EEG
channel ipsilateral to stimulation (i.e., AF7 for left and AF8 for
right hemisphere) was extracted based on the maximum peak
value between 8 and 15 ms. Absolute peak amplitudes (in µV)
were used for quantifying the peak amplitudes. According to
the central limit theorem, the individual EPs recorded conform
to Gaussian assumptions so parametric statistics were used
(Central Limit Theorem, 2008). Since each EP consisted of
more than 400 epochs, sufficient data was available to perform
robust statistics at the individual hemispheric level. In the
previous study, a one-way ANOVA was used to investigate if
increasing the stimulation intensity significantly affected P3 and
P10 amplitude. If no significant effect of intensity was found on
the peak amplitude, no further analysis was performed in that
hemisphere as we determined that these leads were not close
enough to depict a solid P3 or P10 peak. For the remaining
hemispheres, we used a linear mixed model to investigate
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the relationship between the amplitude of P3 or P10 to the
monopolar review results at the group level. Linear mixed-effect
model analysis was also used to investigate the relationship
between the monopolar review results and the predicted clinical
outcome measures via the sweet spot atlas (Dembek et al., 2019)
at the group level. Lastly, we combined both EP and imaging
data and calculated additional linear mixed-effect models to
investigate the correlation of both EP and imaging data to the
monopolar review data. For all linear mixed-effect models, the
different hemispheres were included in the model as a random
factor (random intercept) and sweet spot EF overlap as well as
peak amplitudes and the clinical measures as fixed factors. The
distribution of the linear mixed model residuals can be found in
Supplementary Figures 2, 3.

For all previously described models, we used the Akaike
information criterion (AIC) to investigate the better model
fit for predicting monopolar review data. The AIC is a
mathematical model to evaluate how well a model fits the data. It
is calculated based on the number of independent variables used
to build the model and the maximum likelihood estimate of the
model. Here, we have calculated three linear mixed models for
TW, three for bTW and three for tTW, where we focused on EP
amplitudes first, then on image-derived information and lastly
on these variables combined. Each of these models generated an
AIC value that allows comparison between the three models.

3. Results

In total, 10 PD patients participated in this study. Eight
patients were tested in one hemisphere while two patients
were tested in both hemispheres, yielding a total of 12
hemispheres. Demographics and relevant clinical information
are summarized in Table 1. The intensity analysis revealed a
significant P3 peak in 9/12 hemispheres and a significant P10
peak in 11/12 hemispheres (see Supplementary Table 2). Short-
and long-latency EPs in response to DBS on each individual
contact as well as the relationships between detected EPs and
therapeutic window measures for all hemispheres separately are
shown in Supplementary Figures 4–15.

3.1. Relationship between therapeutic
window measures and short- and
long-latency EPs

Table 2 shows the full results from six different linear
mixed models using P3 and P10 to predict tTW, bTW, and
TW. The data from all correlations are shown in Figure 1.
In general, we found that the tTW of a DBS-contact could
be well approximated using either P3 or P10. Large P3
peak amplitudes corresponded to DBS-contacts showing high
tTW intensities (R2 = 0.70, p < 0.0001) while large P10

peak amplitudes corresponded to contacts showing low tTW
intensities (R2 = 0.67, p < 0.0001). We observed the opposite
relationship between P3 and P10 and bTW: large P10 peak
amplitudes corresponded to DBS-contacts showing high bTW
intensities (R2 = 0.35, p = 0.0074), while large P3 values
corresponded DBS-contacts showing low bTW intensities,
but this relationship did not reach significance (R2 = 0.38,
p = 0.2588). TW followed a similar pattern to tTW with large
P3 peak amplitudes corresponding to DBS-contacts with a wide
TW (R2 = 0.58, p < 0.0001) while large P10 peak amplitudes
corresponded to contacts with a narrow TW (R2 = 0.43,
p < 0.0001).

3.2. Relationship between therapeutic
window measures and image-derived
data

Table 2 shows the full results from three different linear
models using EF overlap with the sweet spot to predict tTW,
bTW, and TW. The data from all correlations are shown in
Figure 2. Here, we found that tTW could be estimated using
the sweet spot, where a large EF overlap corresponded to DBS-
contacts showing high tTW intensities (R2 = 0.68, p < 0.0001).
Interestingly, we found that bTW could also be estimated using
the sweet spot. However, here a large EF overlap corresponded to
contacts where bTW was reached at lower intensities (R2 = 0.43,
p < 0.0001). Again, TW followed a similar pattern to tTW with
large EF overlap corresponding to DBS-contacts with a wide TW
(R2 = 0.60, p < 0.0001).

3.3. Relationship between therapeutic
window measures and either short-or
long-latency EPs and image-derived
data

Finally, we investigated the effects of combining either
short- or long-latency EPs with the imaging data to predict
tTW, bTW, and TW. Table 2 shows the full results from the
six different linear models. In general we found that combining
either P3 or P10 and imaging data increased the predictive
power of the model (i.e., higher R2 values and lower AIC
values). DBS-contacts with high tTW intensities had large P3
peak amplitudes and large EF overlap (R2 = 0.75, pP3 = 0.0023,
pEF = 0.0003). In contrast, the same high tTW contacts had small
P10 peak amplitudes and again large EF overlap (R2 = 0.70,
pP10 < 0.0001, pEF = 0.0067). DBS-contacts with low bTW
intensities had large P3 peak amplitudes and large EF overlap
(R2 = 0.43, pP3 = 0.8210, pEF = 0.0029). In contrast, the same low
bTW contacts had small P10 peak amplitudes and again large
EF overlap (R2 = 0.41, pP10 = 0.5762, pEF = 0.0076). However, it
should be noted that when predicting bTW, neither P3 nor P10
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TABLE 1 Demographic data and stimulation parameters.

Subject
no.

Gender/
age (years)

PD dominant
hemicorpus

LEDD (in mg)
at time of EEG

experiment

Disease duration
(in years) at time

of EEG
experiment

Stimulation
intensity (mA)

at EEG
experiment

Time (in months)
between EEG

and monopolar
review

1R F/50 R 500 10 6.0 10

1L F/50 R 500 11 4.0 2

2L M/55 R 430 9 5.0 18

3L F/58 L 180 8 3.0 18

4L F/56 R 430 3 4.0 2

5L M/71 R 0 9 4.0 6

6L M/47 L 0 8 6.0 10

7R F/68 L 0 15 6.0 4

7L F/68 L 0 15 6.0 4

8R M/41 L 0 8 6.0 2

9L F/58 L 320 11 4.8 2

10L M/59 L 550 15 5.0 2

L, left; R, right; F, female; M, male; LEDD, Levodopa equivalent daily dose.

contributed significantly to the combined models. Lastly, DBS-
contacts with a wide TW had high P3 peak amplitudes and large
EF overlap (R2 = 0.67, pP3 = 0.0114, pEF < 0.0001), while the
same contacts had a low P10 peak amplitude and again large EF
overlap (R2 = 0.53, pP10 = 0.0005, pEF = 0.0002).

Figure 3 illustrates the EF overlap to the sweet spot for
each DBS-contact from each hemisphere where the highest EP
peak was recorded, showing that contacts where the strongest P3
peak was recorded, show a large overlap to the sweet spot. Also,
contacts where the strongest P10 peak was recorded, overlap
largely with the substantia nigra.

4. Discussion

The current study demonstrated that EPs can predict
therapeutic window outcomes in 10 PD patients (12
hemispheres). In general, the EP morphology was similar
to previously published data recorded in similar patient cohorts
(Walker et al., 2012; Miocinovic et al., 2018; Peeters et al.,
2021). As shown in Supplementary Figure 1, most leads
were positioned with the dorsal contacts closer to motor STN
thereby leading to a stronger P3 peak in dorsal contacts as
was already reported in a previous study (Peeters et al., 2021).
Even stimulation from contacts outside of the motor STN’s
border resulted in strong P3 peaks, suggesting the involvement
of zona incerta (ZI) and white matter tracts such as the
hyperdirect pathway (HDP), which are regions also covered
by the probabilistic sweet spot (Dembek et al., 2019) from
the imaging analysis. Results from this study thus strengthen
the hypotheses from previous studies (Butson et al., 2011;

Caire et al., 2013) implicating P3 involvement in generating
therapeutic DBS effects. Participants where no significant P3
peak was found showed a more medial position of the lead in
STN (participants 2L and 6L). For participant 9L, we found no
significant P3 peak despite accurate lead positioning, however,
the noisy dataset could help explain this.

The ventral contacts were closer to substantia nigra (SN),
thereby leading to a stronger P10 peak in ventral contacts, which
has already been reported previously (Peeters et al., 2021). The
use of an electrophysiological biomarker for side effects to guide
programming has been suggested in a previous study by Irwin
et al. (2020). For participant 10L, the ventral most contact was
positioned within the SN and a P10 peak was expected. Due
to the noisy long-latency recordings, however, we decided to
exclude this peak for all analyses. The tTW could adequately be
predicted by P3 and P10, where contacts with a strong P3 were
predictive of a high tTW intensity and contacts with a strong P10
were predictive of a low tTW intensity. Next, the bTW could
adequately be predicted by P10, where contacts with a strong
P10 were predictive of a high bTW intensity. No significant
relationship was observed between P3 peak amplitude and bTW.
Lastly, the TW could also be predicted by both P3 and P10 peak
amplitudes, where contacts with a strong P3 were predictive
of a large TW, while contacts with a strong P10 predicted a
narrow TW. These above-described results are in line with the
hypothesis that the P3 peak amplitude relates to DBS-contacts
that are clinically beneficial, while the P10 peak amplitude
relates to side effect-related contacts. We then evaluated if the
monopolar review outcomes in our patient cohort could be
predicted by images derived information using the Dembek
2019 (Dembek et al., 2019) atlas, which focused on mapping
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TABLE 2 Linear mixed model statistics.

tTW bTW TW

P3 Equation tTW ∼ P3 + (1| hemisphere) bTW ∼ P3 + (1| hemisphere) TW ∼ P3 + (1| hemisphere)

AIC 210.06 170.42 259.77

tStat 4.90 −1.14 4.52

R2 0.70 0.38 0.58

p-value <0.0001 0.2588 <0.0001

P10 Equation tTW ∼ P10 + (1| hemisphere) bTW ∼ P10 + (1| hemisphere) TW ∼ P10 + (1| hemisphere)

AIC 228.03 232.52 307.19

tStat −7.87 2.73 −6.90

R2 0.67 0.35 0.43

p-value <0.0001 0.0074 <0.0001

Sweet spot Equation tTW ∼ EF overlap + (1| hemisphere) bTW ∼ EF overlap + (1| hemisphere) TW ∼ EF overlap + (1| hemisphere)

AIC 267.71 239.68 335.88

tStat 6.07 −4.05 7.19

R2 0.68 0.43 0.60

p-value <0.0001 <0.0001 <0.0001

P3 and sweet spot Equation tTW ∼ P3 + EF overlap + (1|
hemisphere)

bTW ∼ P3 + EF overlap + (1|
hemisphere)

TW ∼ P3 + EF overlap + (1|
hemisphere)

AIC 199.25 163.64 241.5

tStat (P3) 3.14 | (EF) 3.73 (P3) 0.23 | (EF) −3.06 (P3) 2.58 | (EF) 4.77

R2 0.75 0.43 0.67

p-value (P3) 0.0023 | (EF) 0.0003 (P3) 0.8210 | (EF) 0.0029 (P3) 0.0114 | (EF) <0.0001

P10 and sweet spot Equation tTW ∼ P10 + EF overlap + (1|
hemisphere)

bTW ∼ P10 + EF overlap + (1|
hemisphere)

TW ∼ P10 + EF overlap + (1|
hemisphere)

AIC 222.85 227.53 296.37

tStat (P10) −4.69 | (EF) 2.77 (P10) 0.56 | (EF) −2.72 (P10) −3.60 | (EF) 3.87

R2 0.70 0.41 0.53

p-value (P10) <0.0001 | (EF) 0.0067 (P10) 0.5762 | (EF) 0.0076 (P10) 0.0005 | (EF) 0.0002

bTW, bottom of therapeutic window; tTW, top of therapeutic window; TW, therapeutic window; P3, P3 peak; P10, P10 peak.

clinical effects (sweet spot) in a similar patient population. We
found that contacts with a larger EF overlap to the sweet spot,
were predictive of a high tTW intensity, a low bTW intensity
and thus, a corresponding wide TW. These analyses confirm
that imaging-derived information can be used to guide DBS
programming of individual patients, as already shown prior
(Maks et al., 2009; Aström et al., 2010; Frankemolle et al.,
2010; Mikos et al., 2011; Phibbs et al., 2014; Dembek et al.,
2019).

With increasing technological complexity and growing
patient populations, an important long-term goal for the DBS
field is to optimize programming using data-driven biomarkers
approaches. In line with this, we were interested if both
electrophysiological data and image-derived information could
better predict the clinical measures than each of these datasets
separately. We found that the P3 and P10 peaks combined
with the EF overlap to the sweet spot could adequately predict

the tTW, bTW, and TW. Contacts with a large P3 peak and
strong EF overlap were predictive of a high tTW intensity,
while contacts with a large P10 peak and weak EF overlap
were predictive of a low tTW intensity. Next, contacts with
a large P3 peak and strong EF overlap to the sweet spot
were predictive of a low bTW, while contacts with a large
P10 peak and weak EF overlap were predictive of a high
bTW intensity. Note that P3 and P10 did not significantly
contribute to these models indicating that these combined
models are mainly driven by the EF overlap to the sweet
spot. Lastly, contacts with a large P3 peak and strong EF
overlap to the sweet spot were predictive of a wide TW,
while contacts with a large P10 peak and weak EF overlap
were predictive of a narrow TW. Overall, the combination of
both electrophysiological and image-derived data predicted the
clinical measures better than when each of these factors were
added independently (i.e., AIC value decreased which means
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FIGURE 1

Relationship between clinical measures and the evoked potential (EP) amplitudes at the group level. The top row illustrates the relationships
between top of therapeutic window (tTW) (A), bottom of therapeutic window (bTW) (B), and therapeutic window (TW) (C) and P3 amplitude at
the group level (n = 90). The bottom row illustrates the relationship between tTW (D), bTW (E), and TW (F) and P10 amplitude at the group level
(n = 110). The colors indicate the 10 deep brain stimulation (DBS)-contacts (i.e., eight individual contacts and two segmented contact levels in
ring mode) of the different hemispheres as is shown on the legend on the right side of each row. The black lines indicate the slope of the linear
mixed models with CI (dashed lines).

that adding both features to the model is worth the increased
model complexity).

Besides EEG-based approaches to record EP biomarkers,
studies have shown that the STN beta-band synchrony can be
recorded via intraoperative local field potential (LFP) recordings
as a correlate of PD symptoms (Kühn et al., 2009). LFP-based
programming is becoming a promising tool for advancing DBS
therapy toward a more objective and adaptive manner (Meidahl
et al., 2017; Noor and McIntyre, 2021; Chen et al., 2022;
Darcy et al., 2022; Hirschmann et al., 2022; Shah et al., 2022).
A distinct advantage of cortical EPs over LFPs recorded from
the lead, is that they can give much more information on the
specific neural networks being activated when different DBS
contacts are stimulated since both deep and cortical sources
can be recorded using EEG (Gransier et al., 2021a,b). We
furthermore believe that an EEG session is less burdensome
on the patients as it does not require any interaction of the
patient whilst still leading to more objective data compared

to a monopolar review assessment. However, completing a
whole session can take up to 2 h, thereby still requesting some
time and effort from the patient. Other emerging tools to
guide programming are fMRI combined with machine learning
(Phibbs et al., 2014) and biophysical model-based programming
(Howell et al., 2021). Furthermore, a recent study (Roediger
et al., 2022) even developed a fully automated algorithm to help
guide the programming of individual patients, termed “Stimfit.”
Adding electrophysiological data to image-derived information
could improve the programming of individual patients in a
complementary manner to optimize DBS programming. Also,
image-based programming with commercial software has also
proven an effective programming tool that leads to non-inferior
motor symptom control compared to standard programming
(Ewert et al., 2018). fMRI acquisition has been investigated
as a means to predict optimal DBS stimulation parameters
to enhance the therapeutic potential of DBS (Boutet et al.,
2021). Recently, a study was published where the use of fMRI
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FIGURE 2

Relationship between clinical measures and electric field overlap to the sweet spot at the group level. The relationship between top of
therapeutic window (tTW) (A), bottom of therapeutic window (bTW) (B), and therapeutic window (TW) (C) and the electric field overlap to the
sweet spot at the group level (n = 120). The colors indicate the 10 deep brain stimulation (DBS)-contacts (i.e., eight individual contacts and two
segmented contact levels in ring mode) of the different hemispheres as is shown on the legend on the right side. The black lines indicate the
slope of the linear mixed models with CI (dashed lines).

FIGURE 3

Electric field (EF) overlap to the sweet spot atlas for each deep brain stimulation (DBS)-contact with the highest evoked potential (EP) peak. EF
overlap with the sweet spot is shown for each DBS-contact with the highest P3 peak (upper row; n = 9) and for each DBS-contact with the
highest P10 peak (lower row, n = 11). 3D views from anterior (first column) and medial (third column) as well as slices through the
weighted-mean-effect image (coronal, second column; sagittal, fourth column) are provided. The Dembek sweet spot (overall motor
improvement) is shown in green and the different EFs in red. Anatomic structures: subthalamic nucleus (blue); substantia nigra (mint); red
nucleus (lilac). R, right; L, left; A, anterior; P, posterior.

in combination with machine learning led to reproducible
functional brain activity maps of therapeutic DBS activity
in a PD patient cohort, stating that fMRI may be used to
facilitate individualized programming and may guide DBS
programming.

There are some potential limitations to be noted. The
sample size is modest but note that programming patients, lead
positioning and monopolar review performance all happened
on a patient-specific level. Also, we were unable to record a P3 or

P10 peak in 25 and 8% of the tested hemispheres, respectively,
most likely due to lead location Also, we only considered rigidity
as a clinical outcome measure when performing the monopolar
reviews. However, the sweet spot atlas (Dembek et al., 2019)
focused on overall motor improvement using part III of the
UPDRS, thereby assessing more clinical outcomes than just
rigidity. Thus, P3 may be more closely linked to other clinical
effects but further investigation is needed to confirm this. This
limitation may account for the non-significant outcomes in
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the model investigating the relationship between bTW and P3.
Furthermore, given the stimulation intensity, it may be that the
internal capsule also contributes to P3, meaning that P3 may also
reflect capsular side effects.

In conclusion, we found that both the TW and tTW
measured from the different DBS-contact can be predicted
based on electrophysiological data and based on image-
derived information separately. However, combining both
electrophysiological and image-derived data in one linear mixed
model further improves the prediction of clinical outcomes.
Ultimately, these EPs may serve as biomarkers to guide
programming as a complementary approach to image-guided
programming of individual DBS patients in a more data-
driven manner.
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