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Background: Changes in intestinal microbiome composition have been described in
animal models of Alzheimer’s disease (AD) and AD patients. Here we investigated how
well taxonomic and functional intestinal microbiome data and their combination with
clinical data can be used to discriminate between amyloid-positive AD patients and
cognitively healthy elderly controls.

Methods: In the present study we investigated intestinal microbiome in 75 amyloid-
positive AD patients and 100 cognitively healthy controls participating in the
AlzBiom study. We randomly split the data into a training and a validation set.
Intestinal microbiome was measured using shotgun metagenomics. Receiver operating
characteristic (ROC) curve analysis was performed to examine the discriminatory ability
of intestinal microbiome among diagnostic groups.

Results: The best model for discrimination of amyloid-positive AD patients from healthy
controls with taxonomic data was obtained analyzing 18 genera features, and yielded
an area under the receiver operating characteristic curve (AUROC) of 0.76 in the
training set and 0.61 in the validation set. The best models with functional data were
obtained analyzing 17 GO (Gene Ontology) features with an AUROC of 0.81 in the
training set and 0.75 in the validation set and 26 KO [Kyoto Encyclopedia of Genes
and Genomes (KEGG) ortholog] features with an AUROC of 0.83 and 0.77, respectively.
Using ensemble learning for these three models including a clinical model with the 4
parameters age, gender, BMI and ApoE yielded an AUROC of 0.92 in the training set
and 0.80 in the validation set.

Discussion: In conclusion, we identified a specific Alzheimer signature in intestinal
microbiome that can be used to discriminate amyloid-positive AD patients from healthy
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controls. The diagnostic accuracy increases from taxonomic to functional data and
is even better when combining taxonomic, functional and clinical models. Intestinal
microbiome represents an innovative diagnostic supplement and a promising area for
developing novel interventions against AD.

Keywords: Alzheimer’s disease, intestinal microbiome, taxonomic data, functional data, ensemble learning

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia
in the elderly. Neuropathological hallmarks of AD are
the deposition of extracellular B amyloid (AB) plaques,
intracellular accumulation of tau-containing neurofibrillary
tangles (NFTs), cortical atrophy and neuroinflammation in
the brain (Querfurth and Laferla, 2010). The mechanisms
leading to this AD pathology are still unknown. A multifactorial
genesis seems likely, with inflammatory changes in the brain
including altered microglia function playing an important
role (McGeer and McGeer, 1995; Wyss-Coray, 2006).
The mechanisms triggering these inflammatory changes
are also unknown.

The intestine with its mucosal lymphoid tissue is one of the
most important components of the immune system, containing
about 70-80% of the body’s immune system (Sochocka et al.,
2019). The colon contains about 39 x 1,012 bacteria and
many more microorganisms (Sender et al., 2016). The totality
of these microorganisms is called intestinal microbiome and
contains about 100 x more genetic information than the
human genome. The gut microbiome plays a pivotal role in
supporting human health by regulation of metabolic, endocrine,
immune and neurotrophic functions, e.g., by production
of short-chain fatty acids (SCFAs) (Silva et al., 2020) and
brain-derived neurotrophic factor (BDNF) (Lee et al., 2018;
Ranuh et al, 2019). The influence of the gut microbiome
is not restricted to the gastrointestinal (GI) tract, it also
plays an important role in the bidirectional communication
between the GI tract and the brain (microbiota-gut-brain axis;
Morais et al., 2021).

Taxonomic and functional changes to the composition
of the gut microbiome have been associated with multiple
human diseases, e.g., with chronic inflammatory diseases
such as Crohn’s disease, ulcerative colitis, and rheumatoid
arthritis (Manichanh et al, 2006; Vigsnas et al, 2012;
Zhang et al,, 2015). The composition of the gut microbiome
can be impacted by host and environmental factors. It
also holds different functional features across various life
periods (Kundu et al., 2017). While gut microbiome remains
mostly stable during the adulthood, it starts at the age
of 65 years—interestingly the predilection age for AD—to
shift into a less diverse and resilient state, which makes
the microbiome more susceptible to environmental factors
(Thursby and Juge, 2017).

Changes in the gut microbiome seem to be also linked
with AD. Several recent studies have demonstrated changes in
intestinal microbiome composition in animal models of AD
(Harach et al., 2017; Chen et al., 2020), in human AD patients

(Vogt et al.,, 2017; Li et al.,, 2019; Liu et al., 2019; Ling et al,,
2020) and in MCI patients (Li et al., 2019; Liu et al., 2019).
Most of these studies examined taxonomic data, only a few
also functional data and none investigated the combination
of taxonomic, functional and clinical data using an ensemble
learning approach. Composition of intestinal microbiome is
altered in animal models of AD even before the presence of
amyloid plaques in the brain and thus seems to be an early
phenomenon within AD pathogenesis (Chen et al., 2020). In
addition, it has been shown that animal models of AD develop
in the absence of intestinal microbiome less amyloid pathology
in the brain than animal models of AD with existing or replaced
intestinal microbiome (Harach et al., 2017; Dodiya et al., 2019,
2020).

The aim of the present study was to examine how well
taxonomic and functional intestinal microbiome data and their
combination with clinical data can be used to discriminate
between amyloid-positive AD patients and cognitively healthy
elderly controls.

MATERIALS AND METHODS

Participants

Seventy-five amyloid-positive AD patients and 100 cognitively
healthy controls were included in the study (Table 1). These
participants were recruited from the AlzBiom study. AlzBiom
is an observational longitudinal study performed in the Section
for Dementia Research at the Department of Psychiatry and
Psychotherapy in Tiibingen. The aim of this ongoing study
is to enroll mild cognitive impairment (MCI) patients, AD
dementia patients and control subjects without subjective or
objective cognitive decline. All participants underwent Mini-
Mental State Examination (MMSE)-scoring (Folstein et al., 1975)
and clinical assessment of cognitive status by means of the
Clinical Dementia Rating (CDR) scale (Morris, 1993, 1997).
For further statistical analysis, we randomly split the data into
training set consisting of 132 individuals (AD: n =59, HC: n = 73)
and validation set comprising 43 individuals (AD: n = 16, HC:
n=27).

AD patients fulfilled the NIA-AA core clinical criteria
for probable AD dementia (McKhann et al., 2011), had a
global CDR score of 0.5-1.0 and had evidence of cerebral
AB accumulation with AB42 cerebrospinal fluid (CSF)
levels of <600 pg/ml. HC individuals never reported
subjective cognitive decline (SCD), had no history of
neurological or psychiatric disease or any sign of cognitive
decline and had a global CDR score of 0 and a MMSE
score of >27.
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TABLE 1 | Clinical and demographic characteristics of healthy control (HC) individuals and amyloid-positive Alzheimer’s disease (AD) patients.

HC Amyloid-positive AD patients p-value
N 100 75
Age, years, mean (SD) 71.0 (4.4) 68.6 (8.6) 0.0323
Gender (m/f) 46/54 41/34 0.2565
MMSE, mean (SD) 28.9(1.9) 22.6 (5.1) <0.0001
GDS, mean (SD) 2.1 (2.6) 2.8(2.1) 0.0563
Body mass index (BMI), mean (SD) 25.9 (4.5) 24.9 (4.3) 0.1547
ApOE (e4/e4 carriers/single e4 carriers/non-e4-carriers; n) 2/18/38 5/30/18 0.0036
Arterial hypertension (yes/no) 42/58 29/46 0.6567
Diabetes mellitus (yes/no) 5/95 1/74 0.1871
Rheumatoid arthritis (yes/no) 7/93 2/73 0.6314
NSAIDs (yes/no) 24/76 18/57 1.000
Anticoagulants (yes/no) 4/96 2/73 0.6314
Antihypertensives (yes/no) 41/59 33/42 0.6910
Antidiabetics (yes/no) 4/96 0/75 0.0797
Statins (yes/no) 11/89 12/63 0.3326
Antidepressants (yes/no) 6/94 23/52 <0.0001
AChE inhibitors (yes/no) 0/100 43/32 <0.0001
CSF AB-42 (pg/ml) - 478.7 (101.7) -
CSF h-Tau (pg/ml) - 727.1 (386.5) -
CSF p-Tau (pg/ml) - 90.9 (38.9) -

Values are expressed as mean (standard deviation). N, number; HC, healthy control individuals; AD, Alzheimer’s disease patients; m/f, male/female; MMSE, Mini Mental
State Examination; GDS, Geriatric Depression Scale; NSAIDs, Non-steroidal antiphlogistics; AChE, Acetylcholinesterase; CSF, cerebrospinal fluid.
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FIGURE 1 | ROC curves for discrimination between amyloid-positive Alzheimer's disease (AD) patients and healthy controls in a training set (AD: n = 59, HC: n = 73)
and an independent validation set (AD: n = 16, HC: n = 27) based on (A) 18 genera features, (B) 17 GO (Gene Ontology) features and (C) 26 KO [Kyoto
Encyclopedia of Genes and Genomes (KEGG) ortholog] features.

The regional ethical committee approved the study and
written informed consent was obtained from each individual.

Determination of Apolipoprotein ¢4

Genotype

The procedure for determining the apolipoprotein (ApoE)
genotype was performed as previously described (Operto
et al.,, 2019). Briefly, total DNA was obtained from the blood
cellular fraction by proteinase K digestion followed by alcohol
precipitation, using the QIAamp DNA Blood Maxi Kit. APOE
genotyping was carried out using Applied Biosystems, Assay-
on-demand TagMan® SNP genotyping Assays, C_3084793_20
and C_904973_10 corresponding to APOE SNPs rs429358 and

rs7412, respectively, and run on a StepOne Real-Time PCR
Systems instrument. The ApoE e4 positive genotype was assigned
if at least one ¢4 allele was present.

Cerebrospinal Fluid Collection and
Analysis

CSF was obtained by lumbar puncture with aseptic technique
at the L3-L4 or L4-L5 intervertebral spinous process space,
using a 22- or 21-gauge needle. The determination of the
CSF concentrations of Amyloid-beta 1-42 (AP42) (cut-
of <600 pg/ml), total tau (t-tau) and phospho-taul8l
(p-tau) was performed by commercial ELISAs (INNOTEST®
B-AMYLOID[1-42], Fujirebio Germany, detection limit
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225 pg/ml; INNOTEST® hTAU Ag, Fujirebio Germany,
detection limit 40 pg/ml; INNOTEST® PHOSPHO-TAU[181P],
Fujirebio Germany, detection limit 15 pg/ml) according to the
manufacturer’s instructions.

Stool Collection, DNA Extraction, and

Shotgun Metagenomic Sequencing

We collected stool samples in a sterile plastic device (Commode
Specimen Collection System, Thermo Fisher Scientific,
Pittsburgh, United States). The majority of stool samples
were collected at the participants’ home using the DNA/RNA
Shield Fecal Collection Tube R1101 (Zymo Research, Irvine,
United States) and immediately sent to our laboratory by post.
Samples were stored at —20°C and DNA was extracted on
the same day using ZymoBiomics DNA Miniprep Kit D4300
(Zymo Research, Irvine, United States). DNA extraction was
carried out at the end of sample collection in batches of 12-18
samples. Shotgun metagenomic sequencing was carried out
in one batch at the GATC Biotech AG (Konstanz, Germany)
using the NEBNext Ultra DNA Library kit (New England
Biolabs, Ipswich, United States) for DNA library preparation
and an Illumina HiSeq platform for sequencing. A paired-end
sequencing approach with a targeted read length of 150 bp and
an insert size of 550 bp was conducted. We aimed for a median
sequencing depth of 40-50 million reads per sample.

Metagenomic Assembly

Trimmomatic (version 0.35) was used to acquire high-quality
reads through adapter removing and through a sliding window
trimming (Bolger et al., 2014). Reads were trimmed to a
minimum length of 100 bp. Quality control of trimmed reads was
performed with FastQC version 0.11.5." We used SPAdes (version
3.9.0) to assemble metagenomic scaffolds with a minimum length
of 1,000 bp (Bankevich et al., 2012).

Taxonomic Classification

Human contamination was removed by mapping reads against
the human genome (GRCh38) using KneadData.” Taxonomic
profiling was carried out with Kaiju (version 1.5.0) using the
greedy mode with a minimum alignment length of 11 amino
acids, a maximum of 1 mismatch, and a match score of 65
(Menzel et al., 2016). The NCBI RefSeq was used as reference
database. Counts for taxonomic units were normalized to a
relative abundance through dividing the hits by the sample read
count and multiplying the quotient by 10°. The resulting unit is
hits per million reads (HPM).

Functional Classification

Community functional profiles were analyzed using HUMAnN
2.0 (version 0.11.2) using the standard parameters (Franzosa
et al,, 2018). According to OUT and Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) (Langille et al., 2013), we identified the functional

Uhttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Zhttps://github.com/biobakery/kneaddata
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FIGURE 2 | ROC curves for ensemble learning for discrimination between
amyloid-positive Alzheimer’s disease (AD) patients and healthy controls in a
training set (AD: n = 59, HC: n = 73) and an independent validation set (AD:

n =16, HC: n = 27) including 4 models with 18 genera features, 17 GO (Gene
Ontology) features, 26 KO [Kyoto Encyclopedia of Genes and Genomes
(KEGG) ortholog] features and 4 clinical features (age, gender, BMI, ApoE).

categories based on a comparison of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) ortholog (KO)’ and of Gene
Ontology (GO) Resource.*

Statistical Analysis

For demographic characteristics and clinical information,
the statistical software package SPSS (version 23) was
used for data analyses. For all tests, the level of statistical
significance was set to p < 0.05. Levene’s test served to assess
homogeneity of variances. In case of continuous variables
(i.e., age and BMI) t-tests for independent samples were
used to detect differences between both groups. The non-
parametric Mann-Whitney-U-test was conducted to detect
group differences in MMSE and geriatric depression scale
(GDS). The Pearson chi-square test was used to detect
group differences in gender distribution, ApoE status
and medication. To investigate the potential influence of
antidepressant use and AChE inhibitor use on the relative
abundance of genera, we performed a Hotelling-T? test on
the first 101 principal components (to capture at least 95%
of the variance) of 1,014 normalized and isometric-logratio
transformed genera data.

As features we investigated taxonomic data (phyla, genera and
species), functional data (EGGNOG, GO, KO) and clinical meta
data (age, gender, BMI, ApoE). We randomly split the data into
a training and a validation set (ratio was 3:1) using caret library
(createDataPartition). Feature pre-selection was performed in the
training set using Wilcoxon test, and balances were calculated as

*https://www.genome.jp/kegg/pathway.html
“http://geneontology.org/
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FIGURE 3 | Box plots of the absolute abundances of the 18 genera used in the genera model compared to all genera in our study cohort. The 0.1, 1.0, 5.0, and
10.0% quantiles are given as horizontal lines starting from below.

part of compositional data analysis (Rivera-Pinto et al., 2018).
Resulting models were then trained applying a logistic regression
approach. In this training phase further feature selection was
achieved. For this we performed fivefold cross-validation with 30
repeats of models shrinking the number of features step by step.
Best models (Genera, GO, KO and clinical meta data) were then
assessed by application to the validation data sets.

In the last step we joined the best performing models
in an ensemble learning model, as described in http://www.
scholarpedia.org/article/Ensemble_learning. Like with individual
models, we trained the ensemble model with training data and
assessed the quality using the validation data.

Receiver operating characteristic (ROC) curve analysis was
performed to examine the discriminatory ability of intestinal
microbiome among diagnostic groups. From the best models
(Genera, GO, KO), bar plots were generated and heat maps
showed their correlation with clinical and biomarker data.
The pre-processing and statistical analysis of data was done
using customized R scripts and HeidiSQL (1.3) as a database
management tool in connection with RMariaDB (1.1.1). The
model training and its feature selection was coded in R scripts
relying on mlr (2.18.0) package. ROC curves were calculated
employing OptimalCutpoints (1.1-4) and plotted with ggplot2
(3.3.5). Codes and data as well as some instructions are available
at https://github.com/UliSchopp/AlzBiom. We give a full account

of the method and all steps involved in Supplementary Material.
The datasets presented in this study can be found at https://www.
ebi.ac.uk/ena, PRJEB47976.

RESULTS

Characteristics of the study sample are presented in Table 1.
HCs revealed significantly higher age (p = 0.032) and MMSE
scores (p < 0.0001) compared to amyloid-positive AD patients.
Gender was equally distributed between the investigated groups
(p =0.257). As expected, amyloid-positive AD patients took more
frequently AChE inhibitors (p < 0.0001) and antidepressants
(p < 0.0001). However, we found no statistically significant
influence of antidepressant use (p = 0.25) and AChE inhibitor use
(p = 0.21) on the relative abundance of genera.

The best model for discrimination of amyloid-positive AD
patients from healthy controls with taxonomic data was obtained
analyzing 18 genera features, and yielded an area under the
receiver operating characteristic curve (AUROC) of 0.76 (95% CI:
0.67-0.84) in the training set and 0.61 (95% CI: 0.42-0.80) in the
validation set (Figure 1A). The best models with functional data
were obtained analyzing 17 GO features with an AUROC of 0.81
(95% CI: 0.73-0.88) in the training set and 0.75 (95% CI: 0.56—
0.94) in the validation set (Figure 1B) and 26 KO features with
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an AUROC of 0.83 (95% CI: 0.74-0.91) and 0.77 (95% CI: 0.60—
0.93), respectively (Figure 1C). Using ensemble learning for these
three models including a clinical model with the 4 parameters
age, gender, BMI and ApoE yielded an AUROC of 0.92 (95% CI:
0.87-0.97) in the training set and 0.80 (95% CI: 0.65-0.94) in the
validation set (Figure 2).

Box plots of the absolute abundances of the 18 genera used
in the genera model compared to all genera in our study cohort
are shown in Figure 3. It turns out that all model genera are
quite evenly distributed around the median of all genera. The
differences of logarithmised medians of the features included in
the genera, GO and KO model are shown in Tables 2-4. The
non-significant associations between genera, GO and KO features
and AD clinical and biomarker characteristics are presented in
Tables 5-7.

DISCUSSION

This study investigated the capability of taxonomic and
functional intestinal microbiome data and their combination
with clinical data in discriminating amyloid-positive AD patients
from cognitively healthy elderly controls. To our knowledge,
this is the first study addressing this question using taxonomic
and functional data of shotgun metagenomics in a training
cohort and an independent validation cohort. Within taxonomic
data, we identified a genera model and within functional data,
we identified a GO and KO model showing best results for
discrimination of amyloid-positive AD patients from healthy
controls. Functional data showed a higher diagnostic accuracy
than taxonomic data. In a next step, we combined taxonomic,
functional and clinical models with an ensemble learning
approach. This ensemble model performed better than any of its
parts in the training data and with respect to genera and clinical
model also in the validation data. Our finding of an added value
of including clinical variables to gut microbiome data is in line
with previous studies, demonstrating an improved accuracy for
AD diagnosis adding clinical variables to blood-based biomarkers
(O’Bryant et al., 2011) or MRI data (Vemuri et al., 2008).

Several recent studies have demonstrated an altered intestinal
microbiome composition in animal models of AD (Harach et al.,
2017) and in human AD patients (Vogt et al., 2017; Li et al,
2019; Liu et al,, 2019; Ling et al., 2020) and MCI patients (Li
et al, 2019; Liu et al., 2019). Three studies investigated the
diagnostic accuracy for discrimination of clinically diagnosed AD
patients from healthy controls using genera data with AUROC
values ranging from 0.78 to 0.94 (Li et al, 2019; Liu et al,
2019; Ling et al., 2020). However, all three studies had some
limitations: They used limited bacterial 16S rRNA sequencing
technology, they did not validate their results in an independent
cohort with the same diagnosis and they did not examine
the diagnostic accuracy of functional data. Instead, Li and
colleagues (Li et al., 2019) showed that their genera model from
AD patients was able to predict 28 of 30 patients with MCI,
suggesting a similar pattern of gut microbiome changes in AD
and MCI patients. In contrast, Liu and colleagues (Liu et al.,
2019) could discriminate AD patients and MCI patients using

a genera model with an AUROC of 0.93, suggesting a different
pattern of gut microbiome changes in AD and MCI patients.
Both results are conflicting and also surprising, because MCI
is a heterogeneous syndrome with varying clinical outcomes:
up to 60% of MCI patients develop dementia within a 10-
year period, however, many people remain cognitively stable or
regain normal cognitive function (Manly et al., 2008; Mitchell
and Shiri-Feshki, 2009; Korolev et al., 2016). We hope in the
future to be able to resolve these conflicting results by providing
more information for differentiating microbiome patterns of
MCI patients and testing how much overlap there is with more
advanced pathology.

Interestingly, 10 of the 18 taxa in our genera model belong
to the phylum proteobacteria. Of these, 5 show higher levels
in healthy individuals and 5 in AD patients. This means, that
50% of taxa with higher levels in healthy controls and 62.5%
of taxa with higher levels in AD patients belong to the phylum
proteobacteria. However, on the phylum level we found no
significant difference of the relative abundance of proteobacteria
between AD patients and healthy controls (p = 0.41). This
result indicates that differences of taxa may play rather a
role on the genera level than on phylum level. The potential
meaning of proteobacteria in AD has been shown in a previous
study, describing increased proteobacteria levels in AD patients,
which correlated with the severity of cognitive impairment (Liu
et al., 2019). From the 17 features in the GO model, aldehyde
dehydrogenase showed the highest activity in AD patients. This
is an interesting finding, as this enzyme has been associated
with neuroprotective effects due to its aldehyde detoxification
and with neurodegenerative diseases such as AD (Michel et al,,

TABLE 2 | The differences of logarithmised medians of the features included in
the genera model.

Genus Phylum Differences of logarithmised
medians
Aliivibrio Proteobacteria —0.0816
Propionibacterium Actinobacteria —0.0496
Orrella Proteobacteria —0.0444
Veillonella Firmicutes —0.0416
Mucinivorans Bacteroidetes —0.0413
Paenarthrobacter Actinobacteria —0.0265
Plesiomonas Proteobacteria —0.0224
Roseovarius Proteobacteria —-0.018
Lactococcus Firmicutes —0.0165
Sulfuricella Proteobacteria —0.0045
Moritella Proteobacteria 0.0096
Parabacteroides Bacteroidetes 0.0195
Basfia Proteobacteria 0.021
Arsenophonus Proteobacteria 0.0224
Acidothermus Actinobacteria 0.0282
Aureimonas Proteobacteria 0.0508
Candidatus Arthromitus ~ Firmicutes 0.0653
Asaia Proteobacteria 0.0853

Negative values indicate higher levels in healthy controls; positive values indicate
higher levels in Alzheimer’s disease (AD) patients.
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TABLE 3 | The differences of logarithmised medians of the features included in the GO (Gene Ontology) model.

GO label Function Differences of logarithmised medians
GO 0047980 Hippurate hydrolase activity —0.1968
GO 0031647 Regulation of protein stability —0.1494
GO 0030412 Formimidoyltetrahydrofolate cyclodeaminase activity —0.1463
GO 0008953 Penicillin amidase activity —0.1402
GO 0008514 Organic anion transmembrane transporter activity —0.1301
GO 0004793 Threonine aldolase activity —0.1083
GO 0035556 Intracellular signal transduction —0.1056
GO 0070008 Serine type exopeptidase activity —0.0876
GO 0004038 Allantoinase activity —0.0793
GO 0071973 Bacterial type flagellum dependent cell motility —0.0539
GO 0008452 RNA ligase activity 0.0249
GO 0004866 Endopeptidase inhibitor activity 0.0562
GO 0004008 Copper exporting ATPase activity 0.0600
GO 0050385 Ureidoglycolate lyase activity 0.0683
GO 0008792 Arginine decarboxylase activity 0.0961
GO 0030596 Alpha-L-rhamnosidase activity 0.1039
GO 0033727 Aldehyde dehydrogenase FAD independent activity 0.1982

Negative values indicate higher levels in healthy controls; positive values indicate higher levels in Alzheimer’s disease (AD) patients.

TABLE 4 | The differences of logarithmised medians of the features included in the KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] model.

KO label Function Differences of logarithmised
medians
K02573 Ferredoxin type protein NapG —-0.2774
K01838 Beta phosphoglucomutase —0.2398
K02773 PTS system_galactitol specific A component —0.2318
K07497 Putative transposase —0.2010
K01089 Imidazoleglycerol phosphate dehydratase histidinol phosphatase —0.1793
K07448 Restriction system protein —0.1769
K06223 DNA adenine methylase —-0.1179
K01051 Pectinesterase —0.1030
K02041 Phosphonate transport system ATP binding protein —0.0841
K11065 Thiol peroxidase_atypical 2 Cys peroxiredoxin —0.07338
K07243 High affinity iron transporter —0.0676
K00244 Fumarate reductase flavoprotein subunit —0.0548
K01673 Carbonic anhydrase —0.0487
K00384 Thioredoxin reductase NADPH 0.0208
K01649 2 isopropylmalate synthase 0.0219
K02563 UDP N acetylglucosamine N acetylmuramyl pentapeptide pyrophosphoryl 0.0235
undecaprenol N acetylglucosamine transferase
K02120 V A type H Na transporting ATPase subunit D 0.0322
K02909 Large subunit ribosomal protein L31 0.0340
K00031 Isocitrate dehydrogenase 0.0410
K03296 Hydrophobic amphiphilic exporter 1 mainly G bacteria_HAE1 family 0.0474
K18369 Alcohol dehydrogenase 0.0634
K08963 Methylthioribose 1 phosphate isomerase 0.0675
K13940 Dihydroneopterin aldolase 2 amino 4 hydroxy 6 hydroxymethyldihydropteridine 0.1349
diphosphokinase
K00549 5 methyltetrahydropteroyltriglutamate homocysteine methyltransferase 0.1676
K02083 Allantoate deiminase 0.2029
K10547 Putative multiple sugar transport system permease protein 0.2212

Negative values indicate higher levels in healthy controls; positive values indicate higher levels in Alzheimer’s disease (AD) patients.
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2010; Griinblatt and Riederer, 2016). From the 26 features in the
KO model, putative multiple sugar transport system permease
protein showed the highest activity in AD patients. This protein
belongs to the ATP-binding cassette (ABC) transporters which
have been associated with AD pathogenesis due to their ability to
transport AP peptides out of the brain (Af brain clearance; Behl
etal., 2021).

The intestinal microbiome may have a direct impact
on amyloid pathology and neuroinflammation in the brain.
This hypothesis is supported by recent preclinical studies
showing that the absence or presence of intestinal microbiome
influenced the degree of cerebral amyloid pathology in animal

models of AD (Harach et al., 2017; Dodiya et al, 2019,
2020). Germ-free Alzheimers mice had less amyloid plaques
in the brain than Alzheimers mice with normal intestinal
microbiome. The colonization of germ-free Alzheimer’s mice
with microbiota from conventionally reared Alzheimer’s mice
resulted in a significant increase in cerebral amyloid load in
the brain, but not the microbiota of control mice (Harach
et al, 2017). In addition, treatment of male Alzheimer’s
mice with an antibiotic cocktail resulted in changes of gut
microbiome and was associated with reduced amyloid pathology
in the brain and transplants of fecal microbiota from male
Alzheimer’s mice restored the gut microbiome and partially

TABLE 5 | The associations between genera and Alzheimer’s disease (AD) clinical and biomarker characteristics.

Genus Age MMSE ApoE4 CSF AB CSF t-tau CSF p-tau
Acidothermus —0.025 -0.164 0.000 0.233 —0.151 0.009

Aliivibrio 0.097 0.026 —0.037 0.026 —0.020 0.013
Arsenophonus —0.046 0.001 0.111 0.110 —0.206 —0.154

Asaia 0.093 —0.058 0.013 0.027 —0.198 -0.113
Aureimonas —-0.116 —0.093 0.061 —0.010 —0.306 —0.075

Basfia 0.029 —0.063 —0.005 0.032 —0.120 —0.014
Candidatus Arthromitus 0.124 —0.026 0.039 0.055 —0.243 —0.108
Lactococcus —0.057 0.086 —0.044 0.007 —-0.177 —0.020

Moritella 0.000 —0.074 0.059 0.242 —-0.213 —0.237
Mucinivorans —0.050 —0.073 0.003 0.239 —0.428 —0.163

Orrella -0.107 0.076 0.005 0.088 —0.174 0.035
Paenarthrobacter —0.029 0.003 —0.05 0.158 —0.056 0.078
Parabacteroides 0.022 —-0.121 0.022 0.116 —0.306 —0.160
Plesiomonas 0.032 0.058 0.058 —0.003 —0.236 —-0.126
Propionibacterium —0.163 0.000 0.196 0.133 —0.180 —0.154
Roseovarius 0.009 0.019 —0.056 0.057 —0.260 —0.062
Sulfuricella 0.036 0.046 0.021 —0.025 —0.170 —0.009

Veillonella 0.002 —0.011 —0.091 0.015 —-0.173 —0.125

TABLE 6 | The associations between GO (Gene Ontology) features and Alzheimer’s disease (AD) clinical and biomarker characteristics.

GO label Function Age MMSE ApoE4 CSF AB CSF t-tau CSF p-tau
GO 0070008 Serine type exopeptidase activity —-0.123 0.163 —0.091 0.082 —-0.152 0.032
GO 0030412 Formimidoyltetrahydrofolate cyclodeaminase activity —0.002 0.230 0.032 —-0.137 0.048 —0.194
GO 0033727 Aldehyde dehydrogenase FAD independent activity 0.043 0.0381 0.082 -0.107 0.037 0.154
GO 0004793 Threonine aldolase activity —-0.047 0.279 —-0.073 —0.093 0.059 —0.098
GO 0008514 Organic anion transmembrane transporter activity —0.068 0.083 —-0.126 —0.043 0.049 0.099
GO 0035556 Intracellular signal transduction 0.010 0.234 —0.093 0.169 —0.154 —0.249
GO 0008953 Penicillin amidase activity 0.010 —0.098 0.029 —0.003 0.135 0.057
GO 0004866 Endopeptidase inhibitor activity —0.189 —0.222 —0.130 0.326 0.064 0.159
GO 0030596 Alpha L rhamnosidase activity —0.064 -0.125 0.191 —0.151 0.227 —0.025
GO 0047980 Hippurate hydrolase activity 0.059 0.210 —0.148 0.157 —0.054 —0.060
GO 0008792 Arginine decarboxylase activity —0.044 —-0.119 —0.051 0.291 —0.306 —0.229
GO 0004038 Allantoinase activity —0.024 0.137 —0.103 —0.035 0.261 0.222
GO 0050385 Ureidoglycolate lyase activity 0.013 —0.008 —0.005 -0.218 —-0.122 —0.233
GO 0008452 RNA ligase activity 0.018 -0.118 —0.035 —0.031 —0.032 —0.057
GO 0031647 Regulation of protein stability —0.016 0.118 0.002 —0.083 0.161 0.308
GO 0071973 Bacterial type flagellum dependent cell motility 0.026 0.173 0.003 0.020 —0.066 —0.022
GO 0004008 Copper exporting ATPase activity -0.116 0.002 0.263 —0.070 —-0.223 —0.007

Frontiers in Neuroscience | www.frontiersin.org 8

April 2022 | Volume 16 | Article 792996


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Laske et al.

Alzheimer Signature in Intestinal Microbiome

restored amyloid pathology in the brain (Dodiya et al., 2019).
A recent study showed that when the gut microbiota from
AD patients were transplanted into Alzheimer’s mice, the
recipient mice showed more severe cognitive impairment,
activated intestinal NLRP3 inflammasome, increased levels
of inflammatory factors in peripheral blood and activated
microglia in the hippocampus, and these effects could be
reversed by transplantation of healthy human gut microbiota
(Shen et al., 2020).

Which mechanisms could mediate the effects of intestinal
microbiome on amyloid pathology in AD patients? A recent
study has identified the bacterial products lipopolysaccharide
(LPS) and the short chain fatty acids (SCFAs) acetic acid and
valeric acid to be positively correlated with amyloid load in
the brain of AD patients, whereas butyric acid showed an
inverse correlation (Marizzoni et al., 2020). In addition, an
in vitro study revealed an anti-Af aggregation efficacy for
the SCFAs valeric acid, butyric acid, and propionic acid (Ho
et al,, 2018). This anti-amyloidogenic effect of some SCFAs
could be explained in part by their influence on maturation

and function of microglia in the brain (Erny et al, 2015),
which can clean up A fibrils and typically surrounds amyloid
plaques in the brains of AD patients (Calsolaro and Edison,
2016). In contrast, LPS is part of the outer membrane of
Gram-positive bacteria and has been shown to trigger systemic
inflammation and the release of proinflammatory cytokines
(Zhao and Lukiw, 2015) and to potentiate amyloid fibrillogenesis
(Asti and Gioglio, 2014).

The findings that gut microbiome is changed in AD
and directly influences the degree of amyloid pathology and
neuroinflammation in the brain indicate that it could represent
a promising target for the prevention or treatment of AD. In
this context, the use of a probiotic cocktail for 12 weeks has
shown beneficial effects on cognitive performance in AD patients
(Akbari et al,, 2016). The beneficial effect of gut microbiota
on cognition could be explained in part by the upregulation
of hippocampal BDNF and cAMP-response element-binding
protein (CREB), as shown for different lactobacillus species
(Lee et al, 2018; Ranuh et al., 2019). However, a meta-
analysis examining the effects of probiotic supplementation on

TABLE 7 | The associations between KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features and Alzheimer’s disease (AD) clinical and biomarker

characteristics.
KO label Function Age MMSE ApoE4 CSF AB CSF t-tau CSF p-tau
K07497 Putative transposase 0.035 0.126 —0.147 0.048 0.331 —0.149
K10547 Putative multiple sugar transport system permease protein 0.037 —0.093 0.143 —0.144 —0.053 —0.256
K02773 PTS system_ galactitol specific IIA component 0.061 0.202 —-0.102 0.067 0.135 0.125
K02909 Large subunit ribosomal protein L31 0.035 —0.074 0.024 —0.126 —0.069 —-0.175
K02083 Allantoate deiminase 0.022 0.001 0.047 -0.238 0.038 —0.238
K02573 Ferredoxin type protein NapG 0.022 0.165 —0.105 0.132 —0.085 0.057
K01838 Beta phosphoglucomutase 0.020 0.195 —0.019 —0.083 0.267 —0.145
K02120 V A type H Na transporting ATPase subunit D 0.179 —-0.144 —0.042 —0.084 0.093 0.114
K00384 Thioredoxin reductase NADPH 0.019 —0.291 0.012 —0.060 —0.103 0.073
K13940 Dihydroneopterin aldolase 2 amino 4 hydroxy 6 —0.003 —0.238 0.108 0.021 0.058 0.237
hydroxymethyldihydropteridine diphosphokinase
K07243 High affinity iron transporter —0.006 0.142 —0.188 0.044 0.200 0.375
K00549 5 methyltetrahydropteroyltri-glutamate homocysteine —0.042 —0.041 —0.096 0.058 0.221 —0.076
methyltransferase
K07448 Restriction system protein 0.144 —0.011 0.075 —0.057 —0.091 —0.043
K01673 Carbonic anhydrase 0.002 0.04 —0.121 0.01 0.197 0.184
K11065 Thiol peroxidase_atypical 2 Cys peroxiredoxin 0.095 0.033 0.091 —0.084 0.064 —0.051
K01051 Pectinesterase —0.050 0.218 —0.057 0.057 0.084 —0.086
K01649 2 isopropylmalate synthase 0.101 —0.198 0.010 0.218 —0.170 0.070
K02563 UDP N acetylglucosamine N acetylmuramyl pentapeptide 0.097 —0.138 —0.012 —0.099 0.127 0.175
pyrophosphoryl undecaprenol N acetylglucosamine
transferase
K00244 Fumarate reductase flavoprotein subunit —0.06 0.248 —0.08 0.16 —0.166 —-0.121
K18369 Alcohol dehydrogenase —0.082 0.001 —0.009 0.083 —0.061 —0.134
K08963 Methylthioribose 1 phosphate isomerase 0.063 —-0.176 —0.032 0.031 —0.102 —0.222
K02041 Phosphonate transport system ATP binding protein —0.074 0.205 —0.105 —0.164 0.304 0.083
K06223 DNA adenine methylase 0.08 0.135 —-0.128 0.064 0.022 —0.158
K03296 Hydrophobic amphiphilic exporter 1 mainly G bacteria 0.088 —0.135 —0.06 0.135 —0.135 —-0.107
HAET family
K00031 Isocitrate dehydrogenase 0.01 —0.026 —-0.012 —0.008 0.053 —0.009
K01089 Imidazoleglycerol phosphate dehydratase histidinol 0.11 —0.02 —-0.027 —0.001 0.084 -0.012

phosphatase
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cognition in dementia could not find a significant beneficial effect
(Krtger et al., 2021).

Despite its significant implications, the present study has
some limitations to be discussed. First, this study used a
cross-sectional design. To determine whether the characteristic
intestinal microbiome in AD is the cause or result of the
disease, well designed longitudinal studies with adequate sample
size are needed. Second, CSF was not available in our healthy
control group. The reason for that is that we got no permission
from our ethics committee to perform lumbar puncture in
healthy controls without any signs of cognitive impairment.
As the prevalence of preclinical AD among cognitively healthy
elderly people is estimated to be about 20%, we cannot
exclude the same prevalence for our cohort (Parnetti et al,
2019). Therefore, our findings should be replicated in an
independent cohort including healthy controls without signs of
AD pathology. Third, even though we found no statistically
significant influence of antidepressant use (p = 0.25) and
AChE inhibitor use (p = 0.21) on the relative abundance of
genera, taxonomic and functional differences between the AD
patients and healthy controls may have been influenced by
drug exposure. Furthermore, we measured no metabolites in the
collected gut samples.

In conclusion, we showed that intestinal microbiome can
be used to discriminate amyloid-positive AD patients from
healthy controls. The diagnostic accuracy increases from
taxonomic to functional data and is even better when
combining taxonomic, functional and clinical models. Intestinal
microbiome represents a promising area for developing novel
interventions against AD.
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