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Background: Advancements in hybrid positron emission tomography-magnetic
resonance (PET-MR) systems allow for combining the advantages of each modality.
Integrating information from MRI and PET can be valuable for diagnosing and treating
neurological disorders. However, combining diffusion MRI (dMRI) and PET data, which
provide highly complementary information, has rarely been exploited in image post-
processing. dMRI has the ability to investigate the white matter pathways of the
brain through fibre tractography, which enables comprehensive mapping of the brain
connection networks (the “connectome”). Novel methods are required to combine
information present in the connectome and PET to increase the full potential of PET-MRI.

Methods: We developed a CONNectome-based Non-Local Means (CONN-NLM) filter
to exploit synergies between dMRI-derived structural connectivity and PET intensity
information to denoise PET images. PET-MR data are parcelled into a number of
regions based on a brain atlas, and the inter-regional structural connectivity is calculated
based on dMRI fibre-tracking. The CONN-NLM filter is then implemented as a post-
reconstruction filter by combining the nonlocal means filter and a connectivity-based
cortical smoothing. The effect of this approach is to weight voxels with similar PET
intensity and highly connected voxels higher when computing the weighted-average to
perform more informative denoising. The proposed method was first evaluated using a
novel computer phantom framework to simulate realistic hybrid PET-MR images with
different lesion scenarios. CONN-NLM was further assessed with clinical dMRI and
tau PET examples.

Results: The results showed that CONN-NLM has the capacity to improve the
overall PET image quality by reducing noise while preserving lesion contrasts, and
it outperformed a range of filters that did not use dMRI information. The simulations
demonstrate that CONN-NLM can handle various lesion contrasts consistently, as well
as lesions with different levels of inter-connectivity.

Conclusion: CONN-NLM has unique advantages of providing more informative
and accurate PET smoothing by adding complementary structural connectivity
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information from dMRI, representing a new avenue to exploit synergies between MRI
and PET.

Keywords: diffusion MRI, PET-MRI, connectome, tractography, connectivity, image processing, denoising

INTRODUCTION

Magnetic resonance imaging (MRI) and positron emission
tomography (PET) provide complementary information that
can be exploited to enhance in-vivo imaging examinations
of the neurological system. MRI can provide high spatial
resolution ranging from mm to sub-mm clinically (Shah,
2019). In neuroimaging applications, MRI offers remarkable
versatility with multiple sequence types to examine structural,
functional, and physiological characteristics of the brain.
Alternatively, PET can be used to visualise and quantify
biochemically-specific metabolic processes with very high
sensitivity (Cherry et al., 2003). Clinical hybrid PET/MRI
systems have been developed to combine the advantages
of each modality through simultaneous acquisition of MRI
and PET data (Chen et al., 2018). Integrated PET/MRI
enables parallel acquisition of structural, perfusion, metabolic,
and functional data, which is useful in research and may
lead to useful clinical applications in neurological and
psychiatric disorders.

In order to realise the significant potential of hybrid
PET/MRI, complementary information can be used to
improve the quality of the data from each modality, for
example to perform artefact correction, enhance image quality,
and improve diagnostic accuracy. MRI has been used in
various ways to inform PET data processing, such as with
MRI-based PET-MR motion correction (Chun et al., 2012)
and incorporating MR priors into the PET reconstruction
(Somayajula et al., 2005; Mehranian et al., 2017). In the post
image reconstruction phase, MR-guided image filtering can
help correct the partial volume effect and optimise the PET
denoising process (Grecchi et al., 2017). PET images with
improved quality may lead to more accurate qualitative and
quantitative assessments.

The vast majority of methods developed to improve
PET image quality using MRI information have focused on
conventional structural MRI, i.e., T1- and T2-weighted imaging.
For instance, in combination with anatomical information in T1-
weighted images, a non-local smoothing method has been shown
to improve the PET image quality and quantitative accuracy
(Gao et al., 2018). Besides T1 and T2, diffusion MRI (dMRI)
can provide a wealth of information about microstructure and
connectivity, but its use in PET-MRI studies has been very
limited. In particular, dMRI can investigate the white matter
pathways of the brain through fibre tractography, allowing for
comprehensive mapping of the brain structural connectivity
networks (Jeurissen et al., 2019). Importantly, white matter
connectivity can be associated with abnormalities detected with
PET. For example, for imaging neurodegenerative disorders,
advances in novel PET tracers targeting beta-amyloid and tau
allow visualisation and quantification of neuronal dysfunction

(Bischof et al., 2019). By examining both PET and dMRI in-
vivo, tau-related white matter alterations were also reported
in studies based on diffusion tensor imaging (DTI) (Jacobs
et al., 2018; Wen et al., 2021). Among the affected white
matter pathways in Alzheimer’s disease, DTI findings showed
that long association fibres connecting distant brain regions
were mostly impacted (Mito et al., 2018). Similarly, studies on
human post-mortem tissue reported associations between white
matter degeneration and pathological changes in Alzheimer’s
disease (McAleese et al., 2017). Despite the presence of highly
associated information from MRI and PET, very few studies
have proposed new methods to exploit these synergies, likely due
to the complexities involved in incorporating the connectivity
information contained in fibre-tracking into PET post-processing
(Calamante, 2017).

Our study presents the development of a method for denoising
PET data based on dMRI-derived structural connectivity
information. The method is called CONNectome-based
Non-Local Means (CONN-NLM) filter1 (Sun et al., 2021).
The proposed CONN-NLM method integrates connectivity
information into the nonlocal means (NLM) weighting of PET
voxel neighbourhoods (Buades et al., 2005). We evaluated
the proposed method using realistic PET-MRI simulations
and illustrated its use in clinical examples of co-registered tau
PET/dMRI data from the Alzheimer’s Disease Neuroimaging
Initiative Phase 3 (ADNI3).2

THEORY

CONNectome-Based Non-local Means
Non-local Means Filter
The non-local means (NLM) filter was proposed to perform
nonlocal averaging of all pixels in an image (Buades et al.,
2005). The method can be used to reduce PET noise
by calculating the weighted average of voxel values, where
the weight is derived from an intensity similarity measure
within a relatively large (non-local) search window. The
NLM filter smooths voxel intensity value xi by performing a
weighted average of all voxel values xj in a search window

1A preliminary version of this work was presented at the 29th Annual Meeting of
the International Society for Magnetic Resonance in Medicine (Sun et al., 2021).
2Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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N(i) according to the similarity of patches around xi and
xj (Buades et al., 2005):

NL (xi) =
∑
j∈N(i)

wij × xj (1)

wij =
1

Z(i)
× exp

−||−→xi −
−→xj ||

2
2,a

h2

 (2)

Z (i) =
∑
j

exp

−||−→xi −
−→xj ||

2
2,a

h2

 (3)

where wij is the intensity similarity weight, −→xi denotes a vector
of intensity values within the square patch centred at voxel i,
and −→xj denotes a vector of intensity values within the square
patch centred at voxel j, and ||. . .|| 2,a represents the L2 norm
convolved with a Gaussian kernel of standard deviation a, which
is used as similarity distance (Buades et al., 2005). The similarity
between−→xi and−→xj is determined by a decreasing function of the
Gaussian-weighted Euclidean distance, such that the Euclidean
distance of the centre voxels is given more weight than the
surrounding voxels. The variation in weight with respect to
Euclidean distance is determined by h, a tuning parameter that
eventually determines the smoothing strength: the larger the h,
the more smoothing that is applied. The size of patches, M ×M,
and the similarity window, N × N, can be user defined. Typical
neighbouring patches are 3 × 3 pixels in a similarity window
of 11 × 11 pixels (Chan et al., 2014). Z(i) in Eq. (3) performs
normalisation to ensure the sum of weights,

∑
j wij = 1.

Distant/Local Connectivity
A common way to summarise the connectivity information is via
the connectome, which in our case corresponds to a connectivity
matrix representing the structural connectivity between pairs
of regions in a brain parcellation. Such connectivity matrices
are often used for subsequent graph theoretical analysis in
connectomics (Fornito et al., 2013). In this study, we combined
a tractography-based connectome (to represent the distal
connectivity) with an intra-parcellation connectivity term (to
represent the local connectivity), to create a hybrid local/nonlocal
connectome model, similar to the model used in Hammond
et al. (2013) for EEG smoothing (Figure 1). To compute the
connectivity between a given voxel i in node Pa of the parcellation
and voxel j in node Pb(i.e.,i ∈ Pa, j ∈ Pb), the proposed hybrid
connectivity parameter Aij is expressed as:

Aij =

{
Alocal

= 1, Pa = Pb
Adist
= λ× SCab, Pa 6= Pb

(4)

where Alocal is assumed to be uniform (with a normalised value
of 1) for all voxels belonging to the same node, Adist is derived
from the tractography-based structural connectivity (SC) matrix,
and the parameter λ regulates the balance between distant
and local connectivity. Streamlines generated from tractography
are assigned to each node and the SC is generated using

MRtrix33 – see section “Diffusion Simulation and Fibre-Tracking
Processing” for further tractography details. The SC matrix is
log transformed and normalised to have a range between 0 and
1. For the results shown here, the 170 node AAL3 atlas (Rolls
et al., 2020) was selected – note, however, that the choice of
parcellation can be adapted according to the specific application.
The resulting SC matrix measures the connectivity between each
node pair: each element of the matrix (also referred to as an
“edge”) corresponds to the SC between the corresponding pair of
nodes (e.g., matrix element SCab corresponds to the SC between
nodes a and b of the parcellation).

CONN-NLM Filter
Modified versions of the NLM filter can be implemented by
incorporating structural information from CT and MRI to
denoise PET (Chan et al., 2014; Gao et al., 2021). In these
methods, the similarity calculation is based on a structural image
instead of PET (Figure 2). The proposed CONN-NLM filter
combines the NLM similarity weighting in Eq. (2) with the hybrid
connectivity measure in Eq. (4) to form a connectome-based
weighting:

w′ij = wij × Aij =
1

Z′(i)
× exp

−||−→xi −
−→xj ||

2
2,a

h2

× Aij (5)

w′i,j is normalised similarly to Eq. (3), by dividing by Z(i) where:

Z′ (i) =
∑
j

exp

−||−→xi −
−→xj ||

2
2,a

h2

× Aij (6)

Applying this combined weight with the CONN-NLM filter,
the filtered PET intensity value at voxel i becomes:

CONN_NL(xi) =
∑
j∈N(i)

w′ij × xj =
∑
j∈N(i)

1
Z′(i)

× exp

−||−→xi −
−→xj ||

2
2,a

h2

× Aij (7)

Figure 3 provides a step-by-step pseudo-code for implementing
the CONN-NLM filter. Because tractography measures 3D
structural information, the CONN-NLM filter is extended to
perform 3D smoothing similar to the approach used in the
method proposed by Chan et al. (2014). This 3D smoothing
method computes the similarity between 2D patches in a 3D
search window. In the current study, the 3D search window
N × N × S (S represents the number of slices) is defined as the
entire image volume, and the size of the 2D patches, M ×M, is
defined as 5× 5.

Parameter Estimation
Similarity Smoothing Strength (h)
The parameter h in Eq. (2) regulates the NLM filter
strength and, following recommendations by Chan

3https://www.mrtrix.org/
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FIGURE 1 | Illustration of proposed hybrid connectivity weighting. Each column from left to right: the noisy images without postfiltering plus structural connectivity
information (schematically indicated by the connecting streamlines), the local connectivity, the structural connectivity-derived distant connectivity, and the hybrid
connectivity weighting. Top row: a schematic demonstration of the computation of distant connectivity and local connectivity for smoothing voxel i (indicated by a red
box). These two matrices are combined to form a hybrid connectivity weighing. Bottom row: a realistic example of smoothing voxel i (indicated by *) in a noisy
positron emission tomography (PET) image. λ is set to 0.5 in both examples.

FIGURE 2 | (A) Schematic illustration of the proposed connectome-based NLM filter applied to voxel intensity xi (inside the blue cube), which incorporates
connectivity (both local and distant) and intensity similarity information. Each coloured cube schematically represents a node of the brain parcellation; the dashed
lines between the blue cube and other cubes represent the inter-nodal (distal) structural connectivity. (B) The filtered value for any given voxel i is computed as the
weighted sum of values for every brain voxel. This weighting is based on voxel-wise PET intensity similarity and connectivity strengths between each pair of nodes in
the parcellation (distant connectivity) and intra-node distance measurements (local connectivity).

et al. (2014) is set proportional to the PET image noise
level:

h2
= C × σ2

PET (8)

where σ2
PET is the standard deviation of PET voxel values and C

is a constant (Chan et al., 2014). In general, the noisier the PET

data prior to filtering, the larger the filtering strength. Users can
fine-tune h2 to achieve a desired smoothness outcome.

Connectivity Ratio (λ)
Similar to the NLM filter strength, and to scale in proportion to
the connectivity data quality, the parameter λ in Eq. (4), which
corresponds to the ratio of distant-to-local connectivity, can be
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FIGURE 3 | Pseudocode for implementing the connectome-based non-local means (CONN-NLM) filter.

set to be proportional to the variance of the track-density image
(TDI) (Calamante et al., 2010):

λ = B× σ2
TDI (9)

where B is a constant regulating the distant-to-local connectivity
weighting to account for the connectome sensitivity and tracking
quality: the worse the quality of the diffusion MRI data, the worse
the quality of the fibre-tracking results (and thus the lower the
reliability of the distant connectivity estimates), which translates
to lower contrast of the associated TDI map (Calamante et al.,
2010); this in turn results in a lower λ value, consistent with
less weighting given to the distant connectivity term in the
case of lower diffusion MRI quality data. A number of factors
affect TDI variance including initial diffusion weighted imaging
quality, tractography processing methods, and TDI resolution
(Calamante, 2017). Depending on specific applications, fine
tuning can be performed to find the optimal connectivity ratio –
see below for an example.

EXPERIMENTS AND EVALUATION

Simulated Data
In order to test and optimise CONN-NLM, a novel PET/dMRI
simulation framework (Figure 4) was developed to simulate
realistic PET/dMRI data. Detailed instructions to generate the
phantom are included in the Supplementary Material.

Diffusion Simulation
A realistic brain diffusion-weighted image (DWI) dataset
(2 mm isotropic, 90 diffusion-encoding directions,
b = 1,000, 2,000, 3,000 s/mm2, similar to the diffusion
gradient scheme used in the Human Connectome Project)
was simulated based on 25 manually segmented white
matter fibre bundles from the ISMRM 2015 Tractography
challenge data (Maier-Hein et al., 2017) using the Fiberfox
(Neher et al., 2014) software. The simulated multi-
shell DWI was up-sampled to 1 mm3 resolution for
tractography processing.

Positron Emission Tomography Simulation
Analytical PET simulation was performed based on a modified
T1-weighted image with added simulated lesions. The T1-
weighted structural image is a fabricated T1-weighted image
based on the 25 white matter fibre bundles used in diffusion
simulation (Maier-Hein et al., 2017). The T1-weighted image
was first segmented into grey matter (GM), white matter (WM),
and CSF tissue types using Volbrain (Manjón and Coupé,
2016). Because the proposed CONN-NLM filter uses network
connectivity information, both connected and isolated lesions are
needed to properly evaluate the effects of the filter. To simulate
lesion phantoms, the endpoints of specific ground-truth fibre
tracks were first selected as the starting seeds. While the choice
of lesion locations can be arbitrary in a simulated phantom, we
placed the simulated lesions within the dorsal attention network
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FIGURE 4 | Overview of data simulation, processing and CONN-NLM filtering framework. (A) Top: simulation of DWIs based on ground-truth fibre tracks; bottom:
simulation of raw PET sinograms, which are then reconstructed to generate PET images (B) the simulated DWIs are processed to generate tractogram and
structural connectivity matrices (C) the proposed post-reconstruction filter is applied to improve the PET image quality.

FIGURE 5 | Lesion phantom simulation. (A) AAL1 and AAL65 are highly connected regions; ALL66 is not connected to either AAL1 or AAL65. (B) The endpoints of
ground-truth white matter tracks connecting AAL1 and AAL65 regions are extracted. The entire AAL66 region is used to create an isolated lesion. (C) The selected
endpoints in AAL1 and AAL65 were dilated to form uniform high-intensity lesions, which were added to segmented T1 data to form a phantom image for PET
simulation. This image was also used as the ground-truth for method evaluation.

(DAN), one of the major white matter pathways affected in
Alzheimer’s disease (Hansson et al., 2017). The starting seeding
points were filtered to be exclusively located within three major
nodes within the DAN approximately in the AAL1, AAL65,
and AAL66 nodes. The fibre endpoints of the ground-truth
fibre tracks in AAL1 and AAL65 were extracted and dilated to
form clusters of voxels to represent two lesion areas (Figure 5).
AAL1 and AAL65 have strong ipsilateral connections, while
there is no contralateral connection to AAL66. Thus, the entire
AAL66 was extracted to form an isolated lesion. Note that
for the two connected lesions, the seeding voxels were chosen
within a particular ROI, but after dilation, the lesions were not
constrained within a single AAL region. To avoid confusion, the
lesions with seeding voxels in AAL1, AAL65, and AAL66 were
named as “connected lesion 1,” “connected lesion 2,” and “isolated
lesion,” respectively. In this way, a realistic brain simulation was
constructed, containing three lesions (two interconnected and
one disconnected), thus allowing to investigate the performance
of the method under a range of connectivity conditions.

The ground-truth PET phantom image was generated
by assigning a uniform value to each segmented class. In

particular, lesions were simulated with two intensity levels,
approximately × 2.5 (for the lesions in AAL1 and AAL66)
or × 1.8 (for the lesion in AAL65) higher than GM intensity.
Noisy PET sinograms were simulated in ASIM (Elston et al.,
2012) based on the phantom image with a total count of 107

and 108 at 20% noise. The simulated PET sinograms were
normalised and reconstructed using OSMAP-OSL within the
STIR package (Thielemans et al., 2012) for a total of 60 sub-
iterations (12 subsets).

Clinical Data
Three sets of clinical data containing tau-PET, dMRI, and
T1w images were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu)
to illustrate the proposed CONN-NLM filter on a real
patient example.

The T1-weighted scan was acquired at 2 × 2 × 2 mm3

resolution. dMRI was acquired using the ADNI3 advanced
protocol, with b = 500, 1,000, 2,000 s/mm2 applied in a total
112 diffusion weighted directions, and with voxel size: 2 × 2 × 2
mm3. The tau-PET images were acquired using the standard
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FIGURE 6 | Optimising the filtering strength (h2) and connectivity ratio (λ) according to lesion contrast-to-noise ratios for connected lesion 1 (AAL1), connected
lesion 2 (AAL65), and the isolated lesion (AAL66) in the high-count phantom. The first column shows CNR vs. h2 plots at different λ values, where λ = 0 means only
intra-node voxels are included to calculate similarity weights. The horizontal dashed lines indicate the baselined CNR for the noisy PET image without filtering. The
second column shows CNR heatmaps; the location of the brightest colour (outlined with a black box) in the CNR heatmaps indicates the preferred h2 (y-axis) and λ
values (X-axis). The last two columns present the filtered images and the corresponding difference maps (filtered – ground truth image). The chosen parameters are
h2
= 0.25, λ = 0.1 in panel (A), which is optimal for the connected lesion in AAL1; h2

= 0.25, λ = 10 in panel (B), which is optimal for the connected lesion in
AAL65; and h2

= 0.3, λ = 1 in panel (C), which is optimal for the isolated lesion in AAL66.

ADNI3 AV-1451 PET protocol with 300 MBq ± 10% injected,
and six 5-min frames were acquired. Please refer to ADNI3
Procedures Manual Version 3.0 for more details regarding the
acquisition protocol and patient inclusions/exclusion criteria.
Our research included MRI and PET images of a healthy subject, a
mild cognitive impaired (MCI) patient, and a Alzheimer’s patient.
All three subjects met all of our selection criteria, including
undergoing both dMRI and PET within 15 days, and having
dMRI with advanced protocols. Both the PET and T1-weighted
images were co-registered to the diffusion space using the FSL
registration tool (Jenkinson et al., 2002).

Fibre-Tracking Processing
Tractography analysis was performed using MRtrix software
(Tournier et al., 2012, 2019). Multi-shell multi-tissue constrained
spherical deconvolution (Jeurissen et al., 2014) was used
to compute the local fibre orientation distributions, and
probabilistic diffusion tractography (10 million tracks) was
carried out using Anatomically Constrained Tractography
(ACT) framework (Smith et al., 2012), followed by spherical
deconvolution informed filtering of tractogram 2 (SIFT2) (Smith
et al., 2015), which was applied to optimise the connectivity

quantification accuracy. To perform quantitative connectome
analysis, the AAL brain atlas (Rolls et al., 2020) (170 node
parcellation) was chosen to construct a SC matrix, based on the
sum of the SIFT2 weights for the streamlines connecting each pair
of nodes. For the clinical patient dataset, the extra following pre-
processing steps were also carried out: the DW images were first
corrected for noise and bias-field, and distortion correction was
performed using Synb0 (Schilling et al., 2019).

Quantitative Evaluations
In addition to visual inspection, quantitative evaluations of the
entire image and lesion ROIs were performed to assess the
effect of the CONN-NLM filter on image quality. The following
quantitative metrics were used (Chan et al., 2014):

Mean Squared Error
Mean Squared Error (MSE) is defined as:

MSE =
1
N

∑
j

(xTRUEj − xj)
2

(10)
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FIGURE 7 | Denoising effects on the high-count simulated PET data. (A) From left to right and from top to bottom: ground truth noiseless image, unfiltered noisy
PET image, Gaussian filtering (GF), total variation (TV), non-local means (NML) filtering, and the proposed CONN-NLM filtering. (B) Mean squared error (MSE) for the
whole image plotted against the normal GM noise variance (%). For each filter, six points were chosen to produce approximately the same range of noise variance,
by varying the corresponding filter parameter.

where N is the number of voxels in the entire image, xj is the
intensity value of filtered PET image, and xTRUEj is the intensity
value of the ground-truth PET phantom image.

Lesion Contrast-to-Noise Ratio
Contrast-to-Noise Ratio (CNR) is defined as:

CNR =
ML −MGM

σGM
(11)

where ML is the median lesion intensity and MGM is the median
background intensity measured in the GM region. The median
was used because the ROI mask covered the entire lesion region
whose values have a bimodal distribution. Using the mean in a
non-normal distribution might lead to significant quantification
bias. Noise was measured by σGM , the variance of voxel values in
the GM. In order to examine lesions with different connectivity
characteristics, lesion CNRs were computed for each of the three
lesions separately.

Lesion Contrast Recovery Coefficient
Contrast Recovery Coefficient (CRC) is defined as:

CRC (%) =
ML
MGM
− 1

CR− 1
× 100 (12)

where CR is the true lesion-to-background contrast, ML is the
measured median lesion intensity, and MGM is the median
background intensity measured in normal GM.

RESULTS

Simulated Data
Optimisation of Filter Parameters
We recommend using the following guidelines to find initial
estimates of h2 and λ, followed by fine-tuning in specific
applications. As initial estimates, we used C= 8 for the simulated
phantom to find a range for testing. According to equation 8,
h2 was estimated to be 0.18 with a background noise variance of
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0.023. We further expanded the range for testing to h2
= 0.05 –

0.3 to better understand the effect of filtering strength h2 on
performance. As for the connectivity ratio λ, we used B = 0.5×
10−5for the artefact-free, high-quality TDI, corresponding to
λ = 1. Based on this initial estimate, we expanded the test range
to λ= 0 – 103.

Figure 6 shows the performance of the proposed CONN-NLM
filter as a function of the filtering parameters, h2 and λ, for the
high-count simulated PET phantom. CNRs are plotted for each
of the three lesions separately, as they differ in their inter-regional
connection (high structural connection vs. no connection) and
intensity values (connected lesions have different intensity).
Connected lesion 1 refers to the lesion in AAL1 (upper right
location); connected lesion 2 refers to the lesion in AAL65 (lower
right); and the isolated lesion is located in the lower left of the
image slice in AAL66. The curves for λ = 0 refer to the special
case when smoothing is based only on voxels within the same
node, or local smoothing. At larger values of λ, the weighting
of distant connectivity increases. Higher CNRs at λ > 0 suggest
improvements made by introducing information about distant
structural connectivity. In broad terms, CNR increases as h2

increases for the connected lesions 1 and 2. For the isolated lesion,
however, as h2 reaches large values (>0.2), CNR decreases for
λ = 100 and λ = 1,000. When considered across connectivity
ratios, the best CNR occurs at λ = 0.1, 10, and 1 for the connected
lesions 1 and 2, and the isolated lesion, respectively. The highest
lesion CNR is achieved for connected lesion 1 when h2 = 0.25 and
λ = 0.1; for connected lesion 2 when h2 = 0.25 and λ = 10; and for
isolated lesion 1 when h2 = 0.3 and λ = 1. The optimal parameters
are highlighted by square boxes in the CNR heatmaps to indicate
the highest CNRs (Figure 6). Based on the combined results of all
three lesions, the optimal overall performance is achieved when
h2= 0.25 and λ = 1.

The corresponding results for the low count simulation are
shown in Supplementary Figure 1. Using the same constants
as the high-count simulation, C = 8, B = 0.5× 10−5, the initial
estimates were h2

= 0.44, λ = 1. Overall, the low count results
showed similar trends, with CNR increasing as h2 increases for
connected lesions 1 and 2. The optimised parameters for all three
lesions are similar to each other. In both simulations, Because the
low count simulation is noisier, higher h2 value at 0.4 is expected
[i.e., see Eq. (8)]. The CNR curve of the isolated lesion is slightly
different from the high-count simulation where there is an initial
decrease in CNR for high λ.

Comparison With Other Filtering Methods
For comparison purposes, Figure 7A shows the images filtered
with a Gaussian filter (GF), a total variation filter (TV), the
nonlocal means (NLM) filter, and the proposed CONN-NLM
filter. While GF reduced noise significantly, it also blurred tissue
boundaries and lesions which could lead to quantitative bias
due to partial volume averaging. Both TV and NLM filters
reduced the overall noise and improved lesion contrast, with
NLM significantly improving the contrast of connected lesion 1
(upper right lesion). CONN-NLM further improved the image
by increasing the contrast of the lesions, and by sharpening
the image across tissue boundaries. Figure 7B displays the

quantitative evaluation of the filtered images in Figure 7A
by computing the overall image MSE vs. background noise
variance (%). For each filter, six points were chosen to produce
approximately the same range of noise variance, by varying the
corresponding filter parameter. The six points on the CONN-
NLM correspond to connectivity ratios of λ = 0, 0.01,1,10,100
(from right to left). Additionally, three filtering levels at h2 = 0.2,
0.25, and 0.3 were plotted for CONN-NLM. CONN-NLM with
h2 = 0.25 and h2 = 0.3 outperformed the GF, NLM, and NLM
filters by producing the lowest MSE at comparable noise variance.

For each lesion, Figure 8 plots the lesion CRC vs. average
noise variance. Average variance is calculated by combining
variances of the normal GM region and the indicated lesion,
i.e., (σ2

GM + σ2
lesion)/2, to reflect the effect of the filters on

performance in both areas. In the noisy (unfiltered) PET image,
the CRC is very high, but the variance is also very high because
of the noise. GF and NLM reduce noise at the cost of reduced
lesion contrast. NLM produced the highest CRC. However, when
the variance continues to decrease, the CRC also drops rapidly
because the lesions have been oversmoothed at higher filtering
strengths. Both TV and CONN-NLM filters reduce noise without
compromising the lesion CRCs, as indicated by their flat response
curves. CONN-NLM performs slightly better than TV filter with
higher overall CRC.

The low count simulation follows a very similar performance
(Supplementary Figure 2). CONN-NLM with h2 = 0.3, 0.4, and
0.5 outperforms GF, TV, and NLM filtering.

Clinical Data
Figure 9 shows the filtered results from three clinical dataset
from the ADNI3 study. These three examples demonstrate three
different diagnostic groups including a health control, a MCI
patient, and an Alzheimer’s patient. In contrast to the simulated
data, it should be noted that the noisy PET image has been already
post-smoothed according to the standard ADNI3 processing
protocol, and no unfiltered data were available in this case.
We compared the post-filtering results using GF, TV, NLM,
and CONN-NLM filters. We chose h2 = 2300 (C = 8, σ2

=

6.7× 108) as an initial estimate and fine-tuned the parameters.
For comparison purposes, parameters were chosen to produce
approximately the same level of noise for each filter. CONN-
NLM was implemented with h2 = 200 and λ = 1, h2 = 3,000,
and λ = 1, h2 = 2,000, and λ = 1. GF suppressed noise but also
blurred tissue boundaries. TV suppressed noise, similar to GF,
and yielded slightly sharper boundaries between the regions of
enhanced tau-PET signal and normal grey matter. Both NLM and
CONN-NLM further improved the images by suppressing noise
in the GM. CONN-NLM showed higher contrast in regions of
enhanced tau-PET signal and clearer boundaries between tissues
than the other methods.

DISCUSSION

This study proposed CONN-NLM, a new method of denoising
PET images taking into account structural connectivity
information from dMRI data from the same subject. The
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FIGURE 8 | CRC% plotted against the average variance (background and lesion variance combined) for each lesion separately, for the high-count simulated PET
data. For each filter, six points were chosen to produce approximately the same range of noise variance, by varying the corresponding filter parameter.

FIGURE 9 | Applying image smoothing on clinical tau-PET and MRI data from (A) a health-control subject (B) a mild cognitive impairment patient and (C) a
Alzheimer’s disease patient. From left to right: T1-weighted image, noisy PET image, Gaussian filtering (GF), total variation (TV), nonlocal means (NLM) and the
proposed CONN-NLM filtering. Filtering parameters were chosen for all filters to produce approximately the same level of image noise.

method assumes that structurally connected voxels (i.e.,
the “CONN” part of the method) and voxels with similar
intensity patterns (i.e., the NLM part of the method) should
be highly weighted when performing non-local denoising.
CONN-NLM effectively brings further non-local information
into the denoising process. CONN-NLM exploits the highly
associated information that can be present in dMRI and PET
data (McAleese et al., 2017; Jacobs et al., 2018; Mito et al., 2018;
Wen et al., 2021), to provide a new means to synergise the
structural connectivity from dMRI and the molecular imaging
information from PET. Specifically, the proposed filter smooths
across grey matter regions that are structurally connected
via white matter tracts. The method exploits the information
from the endpoints of the diffusion MRI streamlines, and
therefore, relates to the PET signals arising from the grey matter

areas whose white matter pathways are connected. We have
demonstrated that this method effectively suppresses noise
while preserving or improving lesion contrast in both simulated
and clinical data.

Data Simulation
As there was no appropriate simulated data that realistically
simulated the brain structural connectivity and the PET lesions,
we developed here a new simulation framework (Figure 3) to
generate realistic hybrid dMRI and PET data in order to evaluate
the methods with reference to a known ground-truth. dMRI data
were simulated using manually segmented white matter tracts,
with a brain phantom that is currently considered among the
most complex and realistic (Maier-Hein et al., 2017). Raw PET
data were simulated using the modified structural T1-w image
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as the voxelised phantom and a realistic PET simulation method
(Elston et al., 2012). Our combined simulation framework not
only provides perfectly overlapping dMRI and PET images
without requiring registration but importantly provides flexibility
to add lesions with specific user-defined locations, anatomical
characteristics, PET contrast, as well as connectivity information
for particular applications.

A similar concept of hybrid connectivity has been applied in a
different context, to smooth EEG signals (Hammond et al., 2013).
In that study, a distance-based local connectivity and a dMRI-
based structural connectivity based distant connectivity were
combined to form a hybrid connectivity to effectively smooth
EEG signals. Similarity, we use the parameter λ to control the
ratio of distant to local connectivity, with λ = 0 indicating the
weighting is based only on voxels within the same node. The
method we propose is the first attempt to include information
from distant nodes for the denoising of PET data, which is
especially useful when lesions are connected via white matter
pathways. When selecting an appropriate λ ratio for filtering,
it is vital to take into consideration the quality of dMRI data
when determining the accuracy of connectivity inferences (see
“Estimating Parameters” section below).

In the current study, we used the AAL atlas with 180 nodes in
both the simulated and clinical data. However, we expect different
atlases can be used for specific applications. With increased
parcellation resolution, a higher number of streamlines should
be generated in order to construct a reliable connectome. Users
can also choose a network-based connectome to explore regions
of interest within particular networks.

Lesion Characteristics
The distribution of lesions in neuropathological diseases is
extremely diverse, and a thorough investigation of the range of
configurations is beyond the scope of this study. We, however,
created three lesions with different connectivity characteristics
to test the effect of the proposed filtering method under
varying conditions. Indeed, the filter affected the isolated lesions
differently than the connected lesions (Figure 6), especially
at higher filtering strengths (h2 > 0.25) and high weighting
of distant connectivity (λ > 100). This behaviour is due to
the lack of underlying white matter bundles in node AAL66
that connect to nodes AAL1 and AAL65, where the two
other lesions were located. By increasing λ, more weight
is given to structural connectivity information, which might
not be as relevant for isolated lesions. However, when local
and distant connectivity is balanced, such a method can still
provide accurate smoothing. Using different contrast levels
in the connected lesions, we assessed the robustness of the
proposed method. Figure 6 shows that the CONN-NLM filter can
handle various lesion contrasts consistently. While the optimal
parameters can vary across lesions, CNRs are only impacted
slightly. Choosing one set of optimal parameters does not
result in significant compromises on individual lesion CNR.
By introducing information in distant voxels when λ > 0, the
proposed method does not adversely affect the unconnected
lesions, making the filtering effects robust to the choice of
filter parameters.

Estimating Parameters
Connectome-based non-local means filtering uses two user-
defined parameters, filtering strength (h2) and connectivity ratio
(λ). We optimised these parameters for the simulated data to
understand the behaviour of the algorithm and compare them
with other filtering methods. Optimising parameters conclusively
is impossible with clinical data that lacks any ground truth.
Based on the variance of the noise on the PET data and the
quality of the TDI maps from dMRI, we provide guidelines for
choosing these parameters (Eqs. 8, 9). Similarly to the original
NLM formula, h2 defines the amount of Gaussian weighting used
in the similarity calculation (Buades et al., 2005). When images
are noisier, higher h2 values produce stronger filter effects. By
expressing the filtering parameters as a function of the noise
variance in the PET and TDI data (Eqs. 8, 9), it allows to reduce
the dependency of the filter on image quality, and represent
them in terms of the constants B and C, which should be less
sensitive to image noise. For example, while h2 was different for
the high-count and low-count cases, they led to an approximately
constant C value.

Potential Applications
Brain lesions not only result in local anatomical abnormalities,
but they can be also highly related to structural, functional, and
cognitive behaviour at the network level (Thiebaut de Schotten
et al., 2020). While the CONN-NLM method is a connectome-
based filtering method, it inherently contains anatomical
information when constructing the structural connectivity
matrix. Based on the premise that radiotracer uptake is relatively
more homogeneous within tissue boundaries, the nonlocal
means component can provide informative noise reduction while
preserving edge information. The brain parcellation can be also
tailored to meet specific needs, for example, by creating disease-
specific nodes.

Tau-PET data and dMRI data in Alzheimer’s disease were
used to demonstrate the effectiveness of this method since
there is a strong correlation between tau distribution and WM
pathways (McAleese et al., 2017; Jacobs et al., 2018; Mito
et al., 2018; Bischof et al., 2019; Wen et al., 2021). The white
matter bundles in the brain might connect lesions in distant
parts of the brain, thus introducing extra connectivity-informed
contributions to the non-local PET filtering. Other potential
applications include but are not limited to neurodegenerative
diseases (Aiello et al., 2019) and oncology (Sotoudeh et al.,
2016). For applications where established links exhibit, this
methodology can be applied exploit the synergy between PET
tracer distribution and structural connectivity network. However,
the benefits of this method will not be realised in applications
where changes in the PET signal and WM pathways do not
exhibit correlations.

Limitations
The CONN-NLM filtering resulted in a decreased CNR
compared to the noisy PET image at low filtering strengths
(h2 < 0.1 in Figure 6). Our method differs from most of the
other local smoothing and NLM smoothing methods since we
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include a larger window size. The weighting needs to be more
informative when weighting across a large number of voxels. An
extremely low number of h2 is equivalent to averaging all voxels
in an image. Therefore, we recommend not using a very weak
filtering strength when performing CONN-NLM filtering.

While the CONN-NLM filter was shown to improve PET
image quality in a number of simulated scenarios, it is not
possible to cover all cases of lesions and network characteristics in
one study. Especially in images where no distinct lesion is present,
the CONN-NLM filter might not have a distinct advantage in
comparison to other anatomically informed filtering methods.
It should be noted, however, that when the parameters are
properly chosen, the method does not penalise focal disconnected
lesions; in these lesions, local smoothing within the node
is still applied.

The accuracy of the smoothing will depend on the quality
of the structural connectivity information. Previous studies
have demonstrated that FODs and tractography can be
computed in the presence of abnormalities in clinical studies
(Dhollander et al., 2021). Errors during tractography will likely
propagate to subsequent analysis including connectomes and
the connectome-based filtering. To minimise this source of
error, in this study we used state of the art tractography
methods, which included (Calamante, 2019): dMRI model for
fibre orientations that are robust to crossing fibres (Tournier
et al., 2007), probabilistic tractography algorithm (Tournier
et al., 2012) with anatomical constrains (Smith et al., 2012)
and streamline filtering for tractography quantification (Smith
et al., 2015). Furthermore, we provided guidelines in the
parameter estimation section. The parameter C is determined
based on TDI contrast, which in turn depends on the quality
of tractography.

Besides the obvious lack of ground-truth information, there
were a number of other limitations regarding our in vivo example.
First, we had to co-register the MR and PET clinical images,
as the data were not acquired simultaneously on a hybrid
PET/MR system. Second, CONN-NLM should ideally be applied
to unfiltered PET data; the available ADNI data were, however,
heavily smoothed. Finally, the accuracy of smoothing can be
affected by the dMRI acquisition protocol; this may impact the
performance of CONN-NLM when applied to retrospective data
acquired with dMRI protocols optimised for Diffusion Tensor
Imaging.

Non-local means filters typically employ a 13 × 13 similarity
window (Chan et al., 2014). Our methods, however, expand the
similarity window to include the entire image, which can require
a lot of computational resources. As a reference, processing
a typical 126-slice 3D PET volume using a 32G memory,
3.2 GHz ∗12 Core CPU local system takes about 4–5 h. It
may be helpful to implement a faster version of the NLM
algorithm to increase the speed of the filter. For example, this
algorithm can be highly parallelised (e.g., processing individual
voxels in parallel), which has the capacity to speed up with
increasing number of threads. Furthermore, the current results
were obtained based on a simple Python code implementation,
which leaves great scope for improvements in code efficiency and
computational time.

CONCLUSION

Our simulated phantom and clinical data demonstrate that
the proposed CONN-NLM method effectively suppresses PET
noise while maintaining lesion contrast. By incorporating
structural connectivity information into the non-local smoothing
of the PET data, lesion CNRs can be improved. CONN-
NLM filtered PET images showed better edge preservation
and lower noise than the same images filtered with other
local and non-local filtering methods. In summary, we showed
that combining information from dMRI and PET during
image postprocessing provides a new avenue for multimodal
image synthesis.
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