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INTRODUCTION

Advances in translational neuroscience require experimental models recapitulating the complexity
of the human brain. In contrast to conventional 2D cell culture models and animal models,
3D cultures have emerged as auspicious models to recapitulate the human brain structure and
function in the laboratory setting (Jorfi et al., 2018). Human-derived 3D brain cultures are likely
to recapitulate important human brain features in health and disease better than rodent brains
(Humpel, 2015; Paşca, 2018), thus offering an optimal platform to examine pathophysiological
mechanisms of diseases and demonstrate proof-of-concept evidence of the efficacy of new
discoveries or treatments. As such, human-derived 3D cultures are perfectly positioned to play a
critical role in experimental medicine.

Human brain tissue can be obtained from biopsies or through reprogramming technologies,
including induced pluripotent stem cells. Recent advances in lab-made brain organoid technologies
offer exciting opportunities for learning about neurological and psychiatric disease mechanisms
(Quadrato et al., 2016). In addition, access to live brain tissue from patients, with minimal
ethical concern, expand prospects for pre-clinical validation of therapeutics using human brain
slice cultures (Martinez et al., 2011; Jones et al., 2016; Parker et al., 2017; Horowitz et al., 2020;
Almeida et al., 2021). Despite these exciting advances, important drawbacks still limit the use of
human-derived organoids and slice cultures. Brain organoids remain artificial and would benefit
from more rigorous comparison with human brain tissue directly obtained from biopsies. In this
article, we identify limitations and highlight opportunities for expanding the potential contribution
of cutting-edge brain organoid technologies and more classical organotypic slices of adult human
brain biopsies for translational neuroscience.

BRAIN ORGANOIDS: THE BEGINNING OF A NEW AGE

The so-called brain organoids have gained prominence to become one of the most utilized in vitro
nerve cells culture platforms in recent years. Brain organoids (Figure 1A, left) are 3D structures
derived either from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). Since
its first description (Eiraku et al., 2008), brain organoids have been used to elucidate molecular
alterations in human brain neurodevelopment associated with disorders such as autism (Mariani
et al., 2015) andmicrocephaly (Lancaster et al., 2013; Camp et al., 2015; Garcez et al., 2016). In those
investigations, brain organoids were thought to fill the gaps observed in typical rodent CNS-derived
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FIGURE 1 | Tridimensional human brain-derived models comparative. (A) Summarized schematics of human brain organoids (Created with BioRender.com) and slice

cultures preparation processes. (B) Number of research articles per year between 2000 and 2020. Blue bars correspond to the documents retrieved with “human;

brain; slice; culture; disease” as search terms. The total number of documents was 591 (first document retrieved published in 1987). Orange bars correspond to the

documents retrieved with “human; brain; model; organoid; disease” as search terms. Total number of documents equals 359 (one excluded due to retraction). The

Scopus database was used.

models. These shortcomings include significant differences
in gene expression, protein sequences, proliferative zone
composition, and others, in comparison to humans (Hodge et al.,
2019).

In the afore-mentioned studies, brain organoids were chosen
due to their capacity to reproduce early stages of brain
development, allowing the investigation of disease onset in
neurodevelopmental disorders (Tambalo and Lodato, 2020).
Conversely, the production and maintenance of organoids that
reproduce features of the mature human brain is still a major
challenge. A few recent studies have reported the use of human
brain organoids to investigate molecular mechanisms underlying
neurodegenerative diseases typical of the aged human brain, such
as Alzheimer’s and Parkinson’s diseases. Raja et al. (2016) applied
iPSCs derived from Alzheimer’s Disease (AD) patients to develop
brain organoids. Interestingly, these patient-derived organoids

recapitulated some of the key molecular hallmarks of AD, such as
amyloid aggregation and tau protein hyperphosphorylation. In
another study, Lin et al. (2018) investigated APOE4 expression
in different brain cell types using patient-derived iPSC with
APOE4 allele inserted by CRISPR/Cas9 technology. The use of
this model allowed the authors to dissect the contribution of
this gene variant, a well-known risk factor for AD, at cellular
and molecular levels. Increased secretion of Aβ42 by neurons
impaired lipid metabolism in astrocytes and pro-inflammatory
microglial morphology. Also of note is the work by Kim et al.
(2019), which used midbrain organoids generated from human
iPSCs to examine pathogenic mechanisms associated with a
gene mutation suspected to be linked to the onset of sporadic
Parkinson’s Disease (PD). Collectively, these studies position the
use of patient-derived iPSCs as a promising approach to unravel
mechanisms of neurodegenerative diseases such as AD and PD.
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However, the actual degree of similarity between human iPSC-
derived brain organoids and the adult human brain have not yet
been carefully assessed and require further investigation.

Despite the advances that have been made with respect to
brain organoids development and their applications, several
issues still hamper the acceptance of this approach as a model
of the mature human brain. Examples include incomplete
cortical lamination, lack of extracellular matrix cues (e.g.
reelin andmicroglia-secreted metalloproteinases), mitochondrial
dysfunction, and the reversal of genomic/mitochondrial DNA
age-associated damage by the re-programming process (Franco
and Müller, 2011; Mahmoudi and Brunet, 2012; Gerakis and
Hetz, 2019; Crapser et al., 2021; Yadav et al., 2021). In this
regard, adult human brain-derived slice cultures, which may
be prepared from either tissue collected from brain surgeries
or post-mortem tissue (reviewed in Qi et al., 2019) still appear
as an optimal model from this perspective. Surprisingly, the
number of articles reporting the use of slice cultures from human
brains has been essentially constant over the past decade, with a
tendency to decrease since the beginning of the brain organoids
age (Figure 1B). Although this may be in part explained by
regulatory and ethical constraints, and by the need to create an
efficient workflow connecting hospital surgical rooms to tissue
culture facilities in basic science laboratories, we advocate that
these bottlenecks must be overcome to fuel an advance in our
capacity to model diseases of the adult human brain.

BRAIN SLICE CULTURES: A POWERFUL
BUT NEGLECTED MODEL

Brain slice cultures (Figure 1A, right) are particularly useful in
the evaluation of mature brain features in health and disease.
After its first description using rat brain tissue (Gähwiler, 1981),
and the development of postmortem human brain culturing
protocols (Verwer et al., 2002), different brain slice cultures
protocols have been reported allowing either short (up to 10
days in vitro) or long-term (30 days or more) viability of live
human brain tissue. This ex vivo model significantly preserves
the cytoarchitecture, cellular diversity and extracellular matrix
composition, spatial distribution, and connections between
nearby cells and short distance circuits - although global
network remodeling and cells activation in response to slicing
have been reported (Fernandes et al., 2019; Qi et al., 2019;
Schwarz et al., 2019). The presence of microglial and other
non-neuronal cells (astrocytes and oligodendrocytes) allows a
life-stage sensitive evaluation of brain responses, including the
aged brain (Barth et al., 2021). Brain slice cultures also provide
superior preservation of anatomical and connectivity differences
between brain regions, in comparison to spherical organoids
(Croft et al., 2019).

Brain slice cultures have been used as a platform to study
morphological, biochemical, and functional responses of human
CNS to toxic stimuli. For instance, human brain slices have
been used to study injury response, and results pointed to
microglia and astrocyte morphological alterations following
in vitro severe injury (Verwer et al., 2015). Furthermore,

glioblastoma progression in human brain slice cultures was
successfully followed using electrophysiological recordings and
changes in gene expression profiles through RNA-seq analysis
(Ravi et al., 2019). In an attempt to study AD-associated amyloid-
β oligomers toxicity in a relevant human brain model, brain slice
cultures from adults were employed to map the effects of Aβ

oligomers on global gene expression (Sebollela et al., 2012) and
Tau phosphorylation (Mendes et al., 2018). The use of brain slice
cultures has also been utilized in the epilepsy research (Eugène
et al., 2014; Jones et al., 2016). Also of note, the feasibility
of genetic manipulation in human brain slice cultures using
HSV-1 viral vectors has been demonstrated (Ting et al., 2018);
and human brain slice cultures have been useful in providing
timescales that permit transduction of transgenes aimed to allow
advanced imaging (GCaMP&FRET based probes; Le Duigou
et al., 2018) or optogenetic manipulation (Andersson et al., 2016).

Interestingly, attempts have been made to produce slices from
brain organoids. Giandomenico et al. (2019) and Qian et al.
(2020) proposed the slicing methodology as an alternative to
whole organoid cultures to improve survival in vitro by reducing
hypoxia and allowing better nutrient delivery to cells. This
strategy facilitates the use of brain organoids for a longer period
in culture, providing a potential new method to model more
mature brain stages. However, additional studies are required
before such an approach can be validated as an adequate model
for adult human acute brain slice studies.

DISCUSSION

Although human brain organoids and ex vivo slices efficiently
recapitulate features of the human brain in health and disease,
including some not observed in rodent brains or 2D cultures,
there are still important limitations that need to be addressed
before these human-derived 3D cultures become widespread
employed models at their full potential. While brain organoids
are not yet capable of resembling mature brains, and still a high-
cost method; brain biopsies rely on a close collaboration between
basic researchers and clinicians (Jones et al., 2016), making it
difficult to be readily adopted in many research centers. Other
important aspects to be considered when using human brain slice
cultures is the molecular and cellular status of the tissue sample
used to prepare each culture, since these are surrounding tissue
from epileptic foci or brain tumors, and therefore may present
alterations compared to a non-diseased brain (Johnson et al.,
2015; Miller-Delaney et al., 2015), in addition to acute injury
stress driven by the slicing process. In contrast, the organoid
approach is advantageous in that the iPSCs can readily be
obtained from both diseased and control donors, thus allowing
a side-by-side comparison between healthy and diseased brain
tissue, as in studies that mapped genetic predispositions in AD
and PD (Israel et al., 2012; Tran et al., 2020). We believe those
limitations can be overcome by exploring the potential of both
models in a complimentary fashion.

Human brain slice cultures present an important limitation of
tissue availability. However, they can be seen as a gold standard
in terms of cell diversity, neuronal and cell-cell connectivity,
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and response to neuroactive compounds (Schwarz et al., 2019;
Barth et al., 2021), allowing its establishment as a reference
to optimize protocols to produce organoids that efficiently
model the mature human brain. In this sense, adult human
brain slices constitute a preferential tool to validate brain
organoids molecular and functional responses to a range of
stimuli (drug treatments, neurotoxins, infection, gene expression
manipulations), in addition to enable the identification of aging
markers to be used as references for in vitro aging protocols
of brain organoids. As an interesting initiative in this regard,
differential protein expression between fetal human brain and
brain organoids has been determined using shotgun proteomics
(Nascimento et al., 2019). By advancing in approaches like this,
adult human brain cultures could be explored as a steppingstone
for more accurate disease modeling using brain organoids, with
the bonus of providing new insights into human central nervous
system functioning.

The increasing development of 3D models based on stem
cells reprogramming clearly defines the pathway taken by the
research community towards the development of organoids as
the main tool to reproduce complex biological systems in the
laboratory. Importantly, this pathway is aligned with a global
effort to reduce the number of animals in research along with the
need to overcome the gap left by animal research in translational
science through the replacement of animal models by human-
derived experimental platforms (Prescott and Lidster, 2017).
Choosing the most adequate experimental model depends on its
proximity to the target system, and on how established are the
methods to prepare it. Despite the limitations and drawbacks of
brain organoids, their impact and importance are clearly bigger,
and with improved protocols, it seems to be the future of human
cellular neuroscience research.

Nevertheless, while the number of studies using brain
organoids increases rapidly, the number of articles using human
brain slice culture trends towards a reduction (Figure 1B). This
in part could be explained by the novelty of brain organoids,

resulting in a preference by scientists to adopt a cutting-edge
technology. In the case of human brain slices, only ten research
groups seem to be responsible for the majority of published
articles using this model (when using as threshold publication of
at least three articles as corresponding author, and the keywords
“human; brain; slice; culture; disease”). Since the preparation of
human brain slices and organotypic culture techniques are well
described, opening spaces in top-tier journals dedicated to the
communication of studies reporting this model could stimulate
scientists and surgeons to work together and consequently
increase the publication rate of translational studies. This action
could fuel the conversion of brain slice cultures from amarginally
explored tool to a leading approach in translational neuroscience.
Brain organoids are still far from reproducing in exquisite detail
several anatomical, physiological, and molecular aspects of the
human brain across every life stage. Thus, human brain slice
cultures could serve as a critical reference technique along the
process of developing and validating brain organoids directed to
different life stages.
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