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Attention deficit (hyperactivity) disorder (AD(H)D) is one of the most common
neurodevelopmental disorders in children with up to 60% probability of prevailing into
adulthood. AD(H)D has far-fetching negative impacts on various areas of life. Until today,
no observer-independent diagnostic biomarker is available for AD(H)D, however recent
research found evidence that AD(H)D is reflected in auditory dysfunctions. Furthermore,
the official diagnostic classification systems, being mainly the ICD-10 in Europe and
the DSM-5 in the United States, are not entirely consistent. The neuro-auditory profiles
of 82 adults (27 ADHD, 30 ADD, 25 controls) were measured via structural magnetic
resonance imaging (MRI) and magnetoencephalography (MEG) to determine gray matter
volumes and activity of auditory subareas [Heschl’s gyrus (HG) and planum temporale
(PT)]. All three groups (ADHD, ADD, and controls) revealed distinct neuro-auditory
profiles. In the left hemisphere, both ADHD and ADD showed reduced gray matter
volumes of the left HG, resulting in diminished left HG/PT ratios. In the right hemisphere,
subjects with ADHD were characterized by lower right HG/PT ratios and ADD by a
similar right HG/PT ratio compared to controls. Controls and ADD had well-balanced
hemispheric response patterns, ADHD a left-right asynchrony. With this study, we
present the structural and functional differences in the auditory cortex of adult patients
with AD(H)D.

Keywords: attention deficit (hyperactivity) disorder, AD(H)D, ADHD subtypes/presentations, magnetic resonance
imaging (MRI), magnetoencephalography (MEG), auditory cortex (AC), asynchrony, biomarker

INTRODUCTION

Attention deficit (hyperactivity) disorder (AD(H)D) is one of the most common
neurodevelopmental disorders in children and adolescents, with a worldwide prevalence of
about 5% (Polanczyk et al., 2007; American Psychiatric Association, 2013). AD(H)D is a chronic
and debilitating disorder, affecting all aspects of life and is accompanied by permanent social
and emotional overload and high psychological strain (Biederman, 1998; Birnbaum et al., 2005;
Biederman and Faraone, 2006; Loe and Feldman, 2007; Wilens et al., 2011). A substantial
percentage of up to 60% of children remain affected into adulthood (Weiss and Hechtman, 1993).
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While hyperactivity may decrease over time,
inattention and impulsivity often persist
(American Psychiatric Association, 2013).

A wide range of timing deficits have been linked to
AD(H)D (Barkley et al., 2001; Smith et al., 2002; McInerney
and Kerns, 2003; Falter and Noreika, 2011; Noreika et al.,
2013; Lesiuk, 2015), including several timeframes ranging from
milliseconds up to years and including auditory, visual, and
motor timing as well as temporal foresight problems (Falter
and Noreika, 2011; Noreika et al., 2013). Deficits were found in
sensorimotor synchronization, duration discrimination, duration
reproduction, delay discounting tasks (Noreika et al., 2013),
melodic and rhythm processing, and musical performance (Groß
et al., 2022). Research has suggested an association between
timing deficits and behavioral measures of impulsiveness and
inattention indicating that timing deficits may play a key role in
AD(H)D (Noreika et al., 2013).

Further AD(H)D-specific features, such as genetic risk
variants (Riglin et al., 2016; Demontis et al., 2019), biochemical
variations (Elia et al., 2011), neuromorphological (Castellanos
et al., 2002; Mostofsky et al., 2002; Nakao et al., 2011; Seither-
Preisler et al., 2014; Serrallach et al., 2016; Hoogman et al., 2017,
2019; Firouzabadi et al., 2021; Pereira-Sanchez and Castellanos,
2021) or neurofunctional differences (Kuperman et al., 1996;
Seither-Preisler et al., 2014; Serrallach et al., 2016; McVoy
et al., 2019; Müller et al., 2019) have been described. This
evidence adds to the validity of AD(H)D, which is characterized
by the key symptoms of hyperactivity, impulsivity, and/or
inattention (American Psychiatric Association, 2013; World
Health Organization, 2019), as a neurodevelopmental disorder.

The auditory cortex (AC) is broadly connected and provides
detailed information to and receives precise feedback from
multiple different brain structures, including attentional
networks, demonstrating the interdependence between auditory
and attentional functions (Scheich et al., 2011; Seither-Preisler
et al., 2014). There is evidence that AD(H)D frequently
overlaps with (Central) Auditory Processing Disorder [(C)APD]
(Riccio et al., 2005). (C)APD is characterized by difficulties in
identifying and discriminating among sounds despite having
normal peripheral hearing (Dawes and Bishop, 2009). In
addition, patients with (C)APD may show behavioral problems,
encompassing inattention and distractibility, features also
known from AD(H)D (American Speech-Language-Hearing
Association, 2005). Dawes and Bishop (2009) already questioned
the reason for this overlap and asked whether auditory processing
problems lead to inattention or whether attentional deficits affect
auditory perception.

The AC processes auditory information and can be divided
into three functional areas, being the core, belt and parabelt
regions. The AC follows a hierarchical processing order with the
primary information streaming out of the core area to reach the
belt region, which in turn connects broadly to the parabelt and
auditory-related cortex (Hackett and Kaas, 2004). The Heschl’s
gyrus (HG) includes both primary core and secondary belt areas
(Seither-Preisler et al., 2014). It is known, that there are large
inter-hemispheric and inter-individual morphological variants of
HG, including single HG, common stem duplication, complete

posterior duplication or multiple duplications (Schneider et al.,
2005; Seither-Preisler et al., 2014; Marie et al., 2015; Benner
et al., 2017; Turker et al., 2017; Dalboni da Rocha et al., 2020).
While the left-hemispheric AC is linked to rapid temporal
processing, which is optimal for speech discrimination, the right
AC is responsible for spectral processing, which is important for
frequency discrimination (Zatorre et al., 2002; Seither-Preisler
et al., 2014). The planum temporale (PT) can be found posteriorly
to the HG and is part of the auditory association cortex.
A decisive role in subserving auditory functions that underlie
music and speech processing is attributed to the PT (Meyer
et al., 2012). The left PT is seen to be primarily associated with
decoding sub-segmental, rapidly changing acoustic cues (about
40 Hz) important for phonemic perception, while the right PT is
preferentially responsible for processing supra-segmental, slowly
changing cues (about 4 Hz) substantial for prosodic and rhythmic
information (Meyer et al., 2012).

The Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition, DSM-5 (American Psychiatric Association,
2013), mainly applied in the United States, distinguishes
between ADHD combined presentation, ADHD predominantly
inattentive presentation and ADHD predominantly hyperactive-
impulsive presentation. In contrast, the International Statistical
Classification of Diseases, ICD-10 (World Health Organization,
2019), mainly used in Europe, emphasizes primarily one
(sub-)type of this disorder, which is defined by the existence
of symptoms of all three behavioral categories (hyperactivity,
impulsivity, and attention deficit, F 90.0). However, “attention
deficit disorder without hyperactivity” can be found in the
ICD-10 under the heading “other specified behavioral and
emotional disorders with onset in childhood and adolescence”
(F 98.80). This fact reflects the different cultural perception in
dealing with the heterogeneity of the disorder (Luo et al., 2019).
So far, all AD(H)D presentations/subtypes receive the same
therapies mainly consisting of stimulant medication, such as
methylphenidate and/or behavior modification therapy (MTA
Cooperative Group, 2004).

Emerging literature points out the fact that AD(H)D has
far-fetching, long term implications and impacts on various
areas of individual life, the society, the economy and the
health care system. Comorbid disorders, such as oppositional
defiant disorder, conduct disorder, learning disabilities, anxiety
disorder, and depression are frequent in individuals with
AD(H)D (Biederman et al., 1991). AD(H)D is seen as a
significant risk factor for developing cigarette-, alcohol- or drug-
use disorders (Wilens et al., 2011). Links between AD(H)D
and poor academic and educational outcomes as well as
lower socioeconomic status (Biederman and Faraone, 2006;
Loe and Feldman, 2007), substantial declines in full-time
employment and household income (Biederman and Faraone,
2006) have been reported. A remarkable body of literature
has demonstrated that several aspects of AD(H)D such as
treatment, increased rates of comorbid psychiatric disorders,
high accident rates, work loss, and criminality lead to significant
higher direct and indirect medical costs (Birnbaum et al.,
2005). Particularly, overdiagnosis systematically leads to inflated
healthcare costs due to unnecessary labeling, unneeded tests and
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inappropriate therapies (Moynihan, 2012). At present, AD(H)D
is primarily diagnosed on the basis of patterns of observable
behavior, clinical symptoms and diagnostic schemes according
to established diagnostic systems (ICD-10 and DSM-5) that
not necessarily reflect the underlying neurobiological systems
and pathomechanisms (Thome et al., 2012). Hence, it can be
expected that a group of disorders with similar symptomatology
as AD(H)D but differing pathogenesis are subsumed under the
term AD(H)D (Thome et al., 2012). Moreover, with the current
diagnostic approach the inter-rater agreement of AD(H)D is low
to moderate, a finding that is found across a lot of procedures of
psychopathology (Willcutt et al., 2012).

In the light of the above, in 2012, the World Federation
of Societies of Biological Psychiatry (WFSBP) task force on
biological markers and the World Federation of ADHD called
for validated biomarkers of AD(H)D (Thome et al., 2012).
The Biomarker Definitions Working Group defines a biological
marker (biomarker) as “a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention” (Biomarkers Definitions Working,
2001). As of yet, however, no commonly accepted brain-
based method exists that could contribute to a more objective
diagnostic procedure for AD(H)D. In last decades, there have
been growing attempts in searching for brain-based correlates
in neurological and psychiatric diseases in general (Bremner
et al., 1995; Müller et al., 2019) and in AD(H)D in particular
(Castellanos et al., 2002; Thome et al., 2012; Firouzabadi
et al., 2021). There is a large body of literature on differences
in neurophysiology including attention, memory, executive
functions, language skills, spatial abilities and olfactory functions,
risk genes identification, biochemical alterations, proteomic
variations and neuroimaging, including structural (conventional,
volumetric, and diffusion tensor imaging) and functional (task-
based and resting state) magnetic resonance imaging (MRI)
(Thome et al., 2012; Firouzabadi et al., 2021; Pereira-Sanchez
and Castellanos, 2021). A recent large-scale study using the
ENIGMA- (Enhanced Neuroimaging Genetics Through Meta-
Analysis) ADHD sample compared the cortical thickness and
surface area between 2,246 subjects with ADHD and 1,932
control subjects and found subtle lower surface area in frontal,
temporal, and cingulate regions and thinner cortical thickness
in the temporal pole and fusiform gyrus in children. These
differences in surface area and cortical thickness were not evident
in the adolescent or adult group (Hoogman et al., 2019). Lately,
artificial intelligence modeling has been increasingly applied to
structural and functional imaging with promising results helping
to identify imaging features relevant to the diagnosis of AD(H)D
(Sun et al., 2018; Firouzabadi et al., 2021).

In previous investigations, we could show that children
with AD(H)D, compared with non-affected subjects, show
differing morphology of the HG and PT, with decreased
gray matter volume of HG and enlarged gray matter volume
of the PT resulting in a considerably lower HG/PT ratio.
In addition, the primary auditory-evoked responses in the
magnetoencephalography demonstrated a characteristic pattern
for children with AD(H)D. Compared with non-disorderd

peers, children with AD(H)D showed bilateral asynchrony
of the P1 evoked response (Seither-Preisler et al., 2014;
Serrallach et al., 2016).

Hence, the aim of the present study was to find further
evidence and evaluate if the neural correlates of ADHD and ADD
in the AC of children can also be found in the AC of adults.

MATERIALS AND METHODS

Subjects and Procedures
Following approval by the responsible ethical committee,
participants were recruited by psychiatrists of the Swiss Society
for ADHD and by advertisements in relevant ADHD self-
help groups in Germany and Switzerland. The inclusion
criteria for this study were (1) diagnosed AD(H)D, evaluated
by a psychiatrist according to the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision, German Modification (ICD-10-GM) and (2) adults
≥ 18 years. Exclusion criteria included: (1) adults with a known
neurological disorder, such as epilepsy; (2) pregnant women;
(3) metal or metallic implants (e.g., pacemaker) in or around
the body; (4) inability to perform a magnetoencephalography
(MEG) measurement due to ferromagnetic materials such as not
removable retainers or braces, (5) heavy motion artifacts in the
MEG or MRI data or (6) claustrophobia.

In 18 cases, in which the written psychiatric diagnosis yielded
either no differentiation in subtypes or was unclear regarding
subtype classification, the psychiatrist was asked for further
specification. In 17 of 18 cases, further specification was obtained
according to ICD-10-GM-subtyps [F 90.0 (ADHD) or F 98.80
(ADD)]. In one case the psychiatrist could not provide an
unequivocal diagnosis. This patient was excluded from the study.

A comprehensive questionnaire comprising the medical
history, medication, therapies, education, profession, drug and
addictive drug history assessed the medical and socioeconomic
background. The questionnaire was based on our previous
study with children/adolescents (Serrallach et al., 2016) and was
adapted for adults.

All experimental procedures were in accordance to the
Helsinki declaration and were approved by the local ethics
committee (EKOS 2018-00002). All participants provided
informed consent.

Magnetic Resonance Imaging
A T1-weighted structural MRI [Siemens, Magnetom Skyra
and TrioTim, 3 Tesla, MPRAGE, 176 DICOM slices, sagittal
orientation; slice thickness 1 mm, field of view: 256 × 256;
matrix size 128 K (16 Bit), repetition time (TR) = 1930 ms,
echo time (TE) = 3.47 ms, flip angle 15◦] was performed
to study the anatomy of the AC. The gray matter surface
reconstruction of auditory subareas (HG and PT) was performed
using a standardized approach to detect the morphology pattern
(Schneider et al., 2002, 2005, 2009; Seither-Preisler et al., 2014;
Serrallach et al., 2016). For segmentation, the semi-automatic
Brain Voyager software 21.2 (Brain Innovation, B.V, Maastricht,
Netherlands) was used. The segmentation procedure and gray
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matter volume calculation was identical to our previous study
(Serrallach et al., 2016). The following steps were conducted:
adjustment in contrast and in brightness, accurate correction
for inhomogeneity and rotation according to the antero-
posterior commissural line. In order to compute group averaged
AC surfaces, normalization in Talairach space (Talairach and
Tournoux, 1988) was carried out. The superior temporal gyrus
(STG), including HG, the anterior superior temporal cortex and
the PT were segmented in the sagittal MRI slices along the
Sylvian fissure using the standard definition of the landmarks
of the auditory cortices and in accordance with established
criteria (Schneider et al., 2005, 2009; Seither-Preisler et al.,
2014; Wengenroth et al., 2014; Serrallach et al., 2016; Benner
et al., 2017). The first complete Heschl’s sulcus (cHS) [large
mediolateral extent (> 97%) and pronounced depth] was used
as the posterior boundary of HG, and the crescent-shaped first
transverse sulcus (FTS) was used as the anterior boundary of
HG, thereby dividing the AC into two parts: an anterior auditory
area including HG, possibly consisting of several connected
HG duplications, e.g., common stem duplication, and aSTG
and a posterior area including the PT. Here, we considered
the complete HG including potential duplications. HG was
separated from aSTG by an anterior plane at y = 0. The
boundary demarcations for HG and PT of each subject were
decided by consensus (BLS and PS). The range of the image
gray matter values to be included was calculated individually.
A box was placed around left and right AC to generate intensity
histograms of these areas. The gray value inclusion range, which
was used for surface reconstruction and morphometry, was
defined individually. One end of the range was obtained by
multiplying the value of the gray matter peak by the factor 0.28, to
approximate the change from cerebrospinal fluid to gray matter.
The other end was the saddle point between the gray and white
matter peaks. The gray and white matter voxels embedded in
this inclusion range were marked and used for 3D reconstruction
and gray matter voxels for morphometric analysis. In addition to
the original parameters gray matter volumes of auditory subareas
(right and left HG, right and left PT), and the HG/PT ratios
were considered.

Magnetoencephalography
The response of AC to acoustic stimuli was measured with
a Neuromag-122 whole-head MEG system. Before seating the
subjects under the dewar helmet of the MEG system, the locations
of four head position coils together with a set of 35 surface points
including nasion and two pre-auricular points were digitized in
a preparation room. Before starting the MEG recordings, the
head position inside the dewar helmet was identified. Stimuli
were presented binaurally through foam ear pieces (Etymotic
ER3). These were connected via 90 cm plastic tubes (diameter
3 mm) to small shielded transducers that were fixed in boxes next
to the subject’s chair. Eleven representative harmonic complex
tones were presented in pseudo-randomized order. Stimuli had
a duration of 500 ms and a pseudo-randomized interstimulus
interval between 400 and 500 ms. While recording [bandpass
filter of 0.00 (DC)–330 Hz; sampling rate of 1,000 Hz], the
sounds were presented with a high repetition rate (each sound

about 100 times), in order to obtain a sufficient signal-to-noise-
ratio. During the measurement (about 25 min) participants were
instructed to listen passively to the presented sounds. In order to
reduce potential motion artifacts, they were allowed to watch a
silent movie. With the variation of the mentioned interstimulus
intervals, we aimed to rule out the possibility of crossmodal
attention in the AC to visual stimuli, as observed in different
frequency bands of brain activity (Luo and Poeppel, 2012), and to
avoid the interaction with potential oscillations of brain activity
in the computed source waveforms. MEG analysis followed the
same procedure as in the previous study of the authors (Serrallach
et al., 2016). For data analysis, the Brain Electromagnetic Source
Analysis software (BESA Research Software GmbH, Version 7.0;
Gräfelfing) was used. The BESA Research Event-Related Fields
(ERF) module was used to exclude external artifacts. By applying
the automatic Artifact Scan tool, on average about 3–7 noisy/bad
channels, and about 10% of all epochs exceeding a gradient of
600 fT/cm × s and amplitudes either exceeding 3,000 fT/cm or
falling below 100 fT/cm were rejected from further analysis. Thus,
eye blinks, eye movements, cardiac activity, face movements,
and muscle tensions as the major part of endogenous artifacts
could be accounted for. In addition, a baseline-amplitude, which
was calculated over the 100 ms-interval before the onset of
the tones, was subtracted from the data. The responses of each
subject were combined into a grand average (1,100 artifact-free
epochs) with a 100 ms pre-stimulus interval defining the baseline
and a time window of 400 ms after stimulus onset. Using a
spherical head model (Hämäläinen and Sarvas, 1987; Sarvas,
1987), spatio-temporal source modeling was performed for the
P1 response complex (peaking around 60–100 ms after tone
onset and existing in both children and adults) by applying one
regional source in each hemisphere. Individual adjustment of the
fitting interval took place by using the lower and upper half-
side lobe around the P1 peak complex and setting the dipole
orientation to its maximum. The linear source showing the
maximal amplitude was orientated toward the vertex and used
for further analyses of P1 latency. Independent of the exact source
location in the AC, P1 peak latency show high temporal accuracy
(Wengenroth et al., 2014). In addition to the original parameters
(right and left P1 latency), an indirect measure of functional
lateralization, the absolute P1 latency asynchrony [P1(Peak) (|
right – left|)], was considered.

Statistical Analyses
The statistical analysis is divided into two main sections. First, we
provide the descriptive statistics followed by a MANOVA, with
which we wanted to reveal whether the variables right HG, left
HG, right PT, left PT, right HG/PT, left HG/PT, right P1 latency,
left P1 latency and absolute P1 latency asynchrony differ in their
mean values in the disorder and control groups. As a follow-
up analysis, we performed separate ANOVAs and a discriminant
analysis to illustrate how well our variables predict the group
membership of our participants. As there were slightly unequal
group sizes, we ran Welch-ANOVAs followed by Games-Howell
post hoc analyses for pairwise group comparisons. Statistical
analyses were performed using the software package IBM SPSS
Statistics Version 27.0.
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RESULTS

Subjects
Eighty-two adult subjects fulfilled the inclusion criteria. Twenty-
seven subjects were diagnosed with ADHD (17 females; 10 males;
mean ± SD age: 42.59 ± 10.03), thirty with ADD (17 females;
13 males; mean ± SD age: 42.33 ± 12.06), and twenty-five
were unaffected controls (14 females; 11 males; mean ± SD age:
35.6 ± 6.86).

Compared to controls, the ADHD, and ADD group featured
more subjects with (comorbid) mental disease (ADHD: 77.8%;
ADD: 73.3%; controls: 4.0%) and more part-time working
individuals (ADHD: 80.0%; ADD: 52.6%, and controls: 40.0%),
which is consistent with the literature (Biederman et al., 1991,
2006; Biederman and Faraone, 2006). Smoking and illegal drug
consumption was more often found in the ADHD group as
compared with the ADD, and the control groups, respectively
(ADHD: smoking: 40.7%, drug consumption: 11.1%; ADD:
smoking: 13.3%, drug consumption: 6.7%, and controls: smoking:
12.0%, drug consumption: 4.0%). The detailed description of
the subjects can be found in Table 1. Though, in the general

population the male-to-female ratio of AD(H)D is approximately
3:1 (American Psychiatric Association, 2013), more females than
males with AD(H)D were willing to participate in this study.
Mean values over all groups for the MRI and MEG variables are
provided in Table 2.

Sex and Groups (ADD, ADHD, and Controls)
Chi-square analysis revealed that there was no association
between sex and groups (disorder and control groups)
χ2(2) = 0.37, p = 0.88.

Medication and Groups (ADD, ADHD, and Controls)
Chi-square analysis revealed that there was no association
between medication and groups (disorder and control groups)
χ2(2) = 0.88, p = 0.70.

MANOVA
We performed a MANOVA to understand whether the variables
right HG, left HG, right PT, left PT, right HG/PT, left HG/PT,
right P1 latency, left P1 latency and absolute P1 latency
asynchrony differ in their mean values in the disorder and control

TABLE 1 | Description of participants.

Parameters Categories ADHD ADD Control

N (total/MRI/MEG) 27/27/27 30/30/30 25/25/25

Age Mean ± SD 42.59 ± 10.03 42.33 ± 12.06 35.6 ± 6.86

Sex Female 17 (63.0%) 17 (56.7%) 14 (56.0%)

Male 10 (37.0%) 13 (43.3%) 11 (44.0%)

Handedness Right 24 (88.9%) 24 (80.0%) 24 (96.0%)

Left 3 (11.1%) 6 (20.0%) 1 (4.0%)

Mental disease (comorbid) Yes 21 (77.8%) 22 (73.3%) 1 (4.0%)

No 6 (22.2%) 7 (23.3%) 24 (96.0%)

N/a – 1 (3.4%) –

Smoking Yes 11 (40.7%) 4 (13.3%) 3 (12.0%)

No 16 (59.3%) 26 (86.7%) 22 (88.0%)

Alcohol Daily/weekly 8 (29.6%) 8 (26.7%) 8 (32.0%)

Rarely/never 19 (70.4%) 22 (73.3%) 17 (68.0%)

Drug consumption Yes 3 (11.1%) 2 (6.7%) 1 (4.0%)

No 23 (85.2%) 28 (93.3%) 24 (96.0%)

N/a 1 (3.7%) – –

Educational level None/school 1 (3.7%) 2 (6.6%) 1 (4.0%)

Vocational 18 (66.7%) 17 (56.7%) 9 (36.0%)

Academic 8 (29.6%) 11 (36.7%) 15 (60.0%)

Employment (if working) Full-time 3 (20.0%) 9 (47.4%) 15 (60.0%)

Part-time 12 (80.0%) 10 (52.6%) 10 (40.0%)

Other family members affected as well (ADHD F90.0; ADD F98.80) Yes 21 (77.8%) 26 (86.7%) –

No 6 (22.2%) 4 (13.3%)

AD(H)D treatment so far Medication 6 (22.2%) 8 (26.7%) –

Psychotherapy 2 (7.4%) 2 (6.7%)

Both 19 (70.4%) 19 (63.3%)

None – 1 (3.3%)

Current AD(H)D medication Yes 17 (63.0%) 18 (60.0%) –

Not currently 10 (37.0%) 12 (40.0%)

Group-specific means ± standard deviation (SD) for age and distribution for sex, handedness, comorbid mental diseases, smoking, alcohol, drug consumption,
educational level, employment, other affected family members, treatment and current medication.
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groups. Using Pillai’s trace there was a significant effect for group
membership (control and disorder group) for the right HG, left
HG, right PT, left PT, right HG/PT ratio, left HG/PT ratio, right
P1 latency, left P1 latency and absolute P1 latency asynchrony
V = 0.64, F(18,144) = 3.78, p < 0.001. Since the MANOVA
was significant, we ran separate ANOVAs for all nine dependent
variables, followed by a discriminant analysis.

ANOVA
We performed a series of one-way ANOVAs. As there were
slightly unequal group sizes, we ran Welch-ANOVAs followed by
Games-Howell post hoc analyses for pairwise group comparisons
in order to illustrate the mean differences of the control and
disorder groups. Table 3 illustrates the Welch’s F-test and Table 4
represents the Games-Howell post hoc analysis.

ADD vs. Controls
When comparing the MRI-based morphometry, subjects with
ADD showed reduced gray matter volumes of the left HG,
and enlarged volumes of left PT, consequently resulting in

TABLE 2 | Descriptives of the MRT and MEG variables.

Variables Mean (M) Standard
deviation (SD)

HG (mm3) right 4139.77 1118.08

HG (mm3) left 3905.26 1037.09

PT (mm3) right 2719.57 1086.75

PT (mm3) left 3957.91 1166.21

HG/PT ratio right 1.83 1.14

HG/PT ratio left 1.11 0.61

P1 latency (ms) right 58.92 9.7

P1 latency (ms) left 60.66 7.1

Absolute P1 latency asynchrony | R-L| (ms) 5.65 5.24

Results (mean and standard deviation) for MRI-based gray matter volumes of
Heschl’s gyrus (HG), planum temporale (PT), HG/PT ratios in the right and
left hemisphere. Results (mean and standard deviation) for MEG-based auditory
evoked P1 responses (P1 latency) in the right and left hemisphere and absolute P1
latency asynchrony.

TABLE 3 | Welch’s F-test ANOVA MRT and MEG variables.

Variables Welch’s F p ω

HG (mm3) right (2, 79) = 6.14 0.003* 0.33

HG (mm3) left (2,79) = 4.54 0.014* 0.29

PT (mm3) right (2, 79) = 4.33 0.016* 0.27

PT (mm3) left (2, 79) = 2.01 0.141 –

HG/PT ratio right (2, 79) = 5.78 0.005* 0.32

HG/PT ratio left (2, 79) = 5.58 0.005* 0.32

P1 latency (ms) right (2, 79) = 8.59 < 0.001* 0.4

P1 latency (ms) left (2, 79) = 1.50 0.23 –

Absolute P1 latency asynchrony | R-L| (ms) (2, 79) = 9.38 < 0.001* 0.41

Results for MRI-based gray matter volumes of Heschl’s gyrus (HG), planum
temporale (PT), HG/PT ratios in the right and left hemisphere. Results for
MEG-based auditory evoked P1 responses (P1 latency) and in the right and
left hemisphere and absolute P1 latency asynchrony. *Remains significant after
Benjamini–Hochberg correction for multiple comparisons (p < 0.05).

a diminished left HG/PT. The MEG-based auditory evoked
magnetic fields of subjects with ADD and controls showed similar
time courses. Detailed results are provided in Figure 1 and
Table 4.

ADD vs. ADHD
Compared to subjects with ADD, subjects with ADHD were
characterized by reduced gray matter volumes of the right HG
and enlarged volumes of the right PT, resulting in a diminished
right HG/PT ratio. Comparing the MEG-based auditory evoked
magnetic fields yielded accelerated right P1 latencies in subjects
with ADHD compared to subjects with ADD. Further, the
absolute P1 latency asynchrony was more pronounced in ADHD
group. Detailed results are provided in Figure 1 and Table 4.

ADHD vs. Controls
The comparison of the MRI-based morphometry revealed that
subjects with ADHD were characterized by a reduced gray matter
volume of the right and left HG, and enlarged volumes of right
PT, consequently resulting in a diminished right and left HG/PT
ratio. The MEG-based auditory evoked magnetic fields showed
accelerated right P1 latencies in patients with ADHD leading to a
significant absolute P1 latency asynchrony compared to controls.
Detailed results are provided in Figure 1 and Table 4.

Discriminant Analysis
The MANOVA was followed by a discriminant analysis, which
revealed two discriminant functions. The first explained 65.1%
of the variance, canonical R2 = 0.39, whereas the second
explained 34.9%, canonical R2 = 0.25. In combination, these
discriminant functions significantly discriminated the groups,
3 = 0.46, χ2(18) = 587, p < 0.001, and when removing the
first function indicated that the second function also significantly
differentiated the three groups 3 = 0.75, χ2(8) = 21.9, p = 0.005.
The correlations between the outcomes and the first discriminant
functions revealed that the loads onto the first function are high
for the right P1 latency (r = 0.58), the right HG (r = 0.43), the right
HG/PT (r = 0.42), and the right PT (r = 0.41). The correlations
between the outcomes and the second discriminant functions
revealed that the loads onto the second function are high for the
left HG/PT (r = 0.65), the left HG (r = 0.58), and the absolute P1
latency asynchrony (r = 0.57), while lower loads for the left PT
(r = 0.37), and the left P1 latency (r = –0.21) were noted. Since
we use a recommended cutoff of 0.40 (Hair et al., 2010) to decide
which of the standardized discriminant coefficients are large, the
left PT and left P1 latency failed to reach the upper limit. The
discriminant plot revealed that the first function separated the
control and ADD groups best from the ADHD group, while the
second function separated the ADD and ADHD groups from the
control group (Figure 2).

DISCUSSION

In this study, we measured the neuro-auditory profile of 82
adults (27 ADHD, 30 ADD, 25 controls) via MRI and MEG.
All three groups (ADHD, ADD, and controls) revealed distinct
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TABLE 4 | Games-Howell post hoc analysis on MRT and MEG variables.

Variables Group Means (M) ± standard deviation (SD) Post-hoc comparisons t df p r

HG (mm3) right ADHD 3566.56 ± 860.54 ADD vs. controls 0.59 79 0.556 –

ADD 4344.47 ± 1135.02 ADD vs. ADHD 2.78 79 0.007 0.3

Controls 4513.20 ± 1137.07 ADHD vs. Controls –3.24 79 0.002 0.34

HG (mm3) left ADHD 3792.96 ± 1065.32 ADD vs. controls 2.93 79 0.004 0.31

ADD 3602.10 ± 968.63 ADD vs. ADHD –0.72 79 0.472 –

Controls 4390.32 ± 944.80 ADHD vs. controls –2.16 79 0.033 0.24

PT (mm3) right ADHD 3198.81 ± 1276.48 ADD vs. controls 0.42 79 0.672 –

ADD 2429.73 ± 848.27 ADD vs. ADHD –2.78 79 0.007 0.3

Controls 2549.80 ± 978.70 ADHD vs. controls 2.24 79 0.028 0.26

PT (mm3) left ADHD 3966.30 ± 1041.33 ADD vs. controls –2 79 0.048 0.22

ADD 4238.00 ± 1194.91 ADD vs. ADHD 0.89 79 0.377 –

Controls 3612.76 ± 1211.57 ADHD vs. controls 1.11 79 0.272 –

HG/PT ratio right ADHD 1.26 ± 0.47 ADD vs. controls 0.57 79 0.572 –

ADD 2.04 ± 1.02 ADD vs. ADHD 2.71 79 0.008 0.29

Controls 2.20 ± 1.54 ADHD vs. controls –3.14 79 0.002 0.33

HG/PT ratio left ADHD 1.01 ± 0.35 ADD vs. controls 3.16 79 0.002 0.33

ADD 0.93 ± 0.41 ADD vs. ADHD –0.5 79 0.622 –

Controls 1.43 ± 0.88 ADHD vs. controls –2.61 79 0.011 0.28

P1 latency (ms) right ADHD 53.78 ± 7.28 ADD vs. controls –1.94 79 0.055 0.21

ADD 63.57 ± 8.89 ADD vs. ADHD 4.15 79 < 0.001 0.42

Controls 58.88 ± 10.39 ADHD vs. controls –2.07 79 0.042 0.23

P1 latency (ms) left ADHD 59.67 ± 6.37 ADD vs. controls –1.48 79 0.142 –

ADD 62.43 ± 5.56 ADD vs. ADHD 1.48 79 0.143 –

Controls 59.60 ± 9.08 ADHD vs. controls 0.03 79 0.973 –

Absolute P1 latency asynchrony | R-L| (ms) ADHD 8.63 ± 6.05 ADD vs. controls –1.74 79 0.087 –

ADD 5.20 ± 4.84 ADD vs. ADHD –2.71 79 0.008 0.29

Controls 2.96 ± 2.62 ADHD vs. controls 4.28 79 < 0.001 0.44

Results for MRI-based gray matter volumes of Heschl’s gyrus (HG), planum temporale (PT), and HG/PT ratios in the right and left hemisphere. Results for MEG-based
auditory evoked P1 responses (P1 latency) in the right and left hemisphere and absolute P1 latency asynchrony.

neuro-auditory profiles (Figure 1). In the left hemisphere, both
ADHD and ADD showed reduced gray matter volumes of the
left HG, resulting in diminished left HG/PT ratios. In the right
hemisphere, subjects with ADHD were characterized by lower
right HG/PT ratios and ADD by a similar right HG/PT ratios
compared to controls. Controls and ADD had a well-balanced
hemispheric response pattern, ADHD a left-right asynchrony.

Discriminant analysis revealed that mainly the left HG/PT,
the left HG and the absolute P1 latency asynchrony separated
the ADD and ADHD groups from the control group, while
the right P1 latency, the right HG, the right HG/PT and
the right PT separated the control and ADD groups best
from the ADHD group (Figure 2). Thus, the structural
and functional asymmetry and the lateralization between the
right and left hemisphere seem to play an important role
in subtype/presentation differentiation. In this study, patients
were diagnosed according to the ICD-10-GM. The ICD-10-
GM mainly differentiates between two subtypes of AD(H)D
(attention deficit hyperactivity disorder and attention deficit
disorder without hyperactivity), while the DSM-5 distinguishes
between ADHD combined presentation, ADHD predominantly
inattentive presentation and ADHD predominantly hyperactive-
impulsive presentation. This reflects the still existing uncertainty
regarding the exact number of AD(H)D subtypes/presentations.

Further, to date, there is no consensus on how to deal with
the heterogeneity of AD(H)D. There are studies distinguishing
AD(H)D subtypes/presentations (Lee et al., 2008; Seither-Preisler
et al., 2014; Serrallach et al., 2016; Groß et al., 2022) and
studies considering AD(H)D as a single group (Mostofsky
et al., 2002; Nakao et al., 2011; Hoogman et al., 2017,
2019). Differentiating subtypes/presentations in future studies,
could help to shed more light on subtype/presentation specific
characteristics.

In our preceding study, using the same methodology and
similar group sizes, we focused exclusively on children and
adolescents, under the age of 17 years (Serrallach et al., 2016).
In that study, significant group differences in AC morphology
and function were found between the ADHD, the ADD and
the control groups, anticipating that auditory functions are
indicative for ADHD and ADD (Serrallach et al., 2016). The
distinct susceptibility of the AC for ADHD/ADD specific patterns
could be explained through the fact that various attentional
processes are an integral part within the auditory system. In our
current study with adults, all groups (ADHD, ADD, and controls)
exhibited a distinct reduction in P1-asynchrony compared
to children with ADHD and ADD and unaffected children
(Serrallach et al., 2016). It is noticeable, that the reduction is more
pronounced in the ADD than the ADHD group.
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FIGURE 1 | Morphological and functional brain-based correlates for AD(H)D. (A) 3D reconstruction of an individual auditory cortex (AC); Heschl’s gyrus (HG), and
anterior superior gyrus (aSTG) are colored in blue (left) and red (right), respectively. The planum temporale (PT) and planum polare (anterior to first transverse sulcus)
are displayed in gray. (B) Top view of group-averaged auditory cortices (L, left; R, right, ant, anterior; post, posterior). The mean ratios of HG/PT gray matter volumes
(marked by asterisks “*” indicates the HG/PT ratio) are indicated by numbers. All disorder subgroups (ADHD and ADD) showed downsized left HGs resulting in a
diminished left HG/PT. Further, ADHD patients had smaller right HGs and consequently a lower right HG/PT. In contrast, ADD subjects showed no right-hemispheric
differences. (C) Overview of the MEG dipole localization in the left (blue) and the right hemisphere (red). Group-averaged source waveforms of the P1-N1 complex in
response to various sounds for the right (red) and left (blue) hemisphere. (D) ADD subjects showed, similar to controls, a well-balanced hemispheric response
pattern, ADHD patients a left-right asynchrony with a preceding response in the right hemisphere.

Combining the results of our preceding study on only
children and adolescents (Serrallach et al., 2016) with the
current study with only adults, we conclude that characteristic
neuro-auditory profiles for ADHD, ADD, and controls can be
found in both, the children/adolescent and adult population.
We have previously shown that individual differences in the
gross morphology of the AC are extremely stable over time
and are likely to be mediated by genetic dispositions and/or
by prenatal and early environmental influences (Seither-Preisler
et al., 2014; Serrallach et al., 2016). The enlarged PTs seen
in the patient groups (ADHD and ADD) may originate
from diminished or delayed pruning (Iglesias et al., 2005),
which potentially leads to oversized anatomical structures
and functionally inefficient neural networks (Seither-Preisler
et al., 2014; Serrallach et al., 2016; Groß et al., 2022). These
morphological anomalies could hinder the build-up of reliable
interconnections between bilaterally homotopic regions via the
corpus callosum (Westerhausen et al., 2009). The development
of compensatory, alternative neural connections could result
in the observed atypical bilateral asynchronous P1 latencies in
ADHD and ADD in children/adolescents (Serrallach et al., 2016),
and ADHD in adults.

The currently used behavior-based methodology carries
the risk of misdiagnosis with possible negative side effects
for individuals, the society, the economy and the health
care system. It may have shortcomings in reproducibility
and subtype differentiation (Willcutt et al., 2012). As a
result of this current diagnostic pathway, AD(H)D tends
to be overdiagnosed in boys and underdiagnosed in girls
(Bruchmüller et al., 2012; Mowlem et al., 2019). This mentioned
overdiagnosis in boys/men and underdiagnosis in girls/women
may lead to unnecessary (medication-) treatment in males
and lower than necessary access to (medication-) treatment in
females (Mowlem et al., 2019). As females often present less
externalizing and consequently more internalizing symptoms,
they are often misdiagnosed with depression or anxiety
(Quinn and Madhoo, 2014). A lack of a clear or a delayed
AD(H)D diagnosis and accompanied denied or late treatment
such as medication, psychotherapy and psychoeducation may
lead to lower educational achievement, long term social
problems, higher substance abuse, financial and employment
difficulties, higher rates of criminality, imprisonment and
motor vehicle accidents (Hamed et al., 2015). This underlines
the need for an observer-independent and reliable biomarker
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FIGURE 2 | Discriminant plot. Function 1 discriminates the control group and
the ADD from the ADHD, while the function 2 discriminates the disorder
groups (ADD and ADHD) from the control group. The correlations between the
outcomes and the discriminant functions revealed that the loads onto the first
function are high for the right P1 latency (r = 0.58), the right HG (r = 0.43), the
right HG/PT (r = 0.42), and the right PT (r = 0.41). The correlations between
the outcomes and the second discriminant functions revealed that the loads
onto the second function are high for the left HG/PT (r = 0.65), the left HG
(r = 0.58), and the absolute P1 latency asynchrony (r = 0.57).

(Thome et al., 2012) in the diagnostic work-up of patients with
AD(H)D. As revealed by the discriminant analysis, mainly
the absolute P1 latency, the left HG/PT and the left HG
separated the disorder groups (ADD and ADHD groups) from
the control group, while primarily the right side with the
right P1 latency, the right HG, the right HG/PT and the
right PT separated the control and ADD groups best from the
ADHD group (Figure 2). In addition, this combined brain-
based morphological and functional approach may lead to
an advanced differentiation of AD(H)D subtypes. It has been
stated that the development of AD(H)D markers is challenged
by etiological and phenotypic complexity and heterogeneity,
AD(H)D subtypes, maturation across the age spectrum and
comorbidities (Thome et al., 2012; Firouzabadi et al., 2021).
Not only do patients with ADHD and ADD differ on a
behavioral level (Lahey and Carlson, 1991), but also in auditory
processing and music performance (Serrallach et al., 2016;
Groß et al., 2022). Compared to controls, children/adolescents
with ADHD scored lower in complex rhythmic and melodic
perception tasks while children/adolescents with ADD showed
no auditory impairments (Serrallach et al., 2016). In rhythmic
reproduction, adolescents with ADD performed worse compared
to controls, while adolescents with ADHD scored lower in pitch
improvisation than controls or adolescents with ADD (Groß
et al., 2022). Against this background, and as so far, all AD(H)D
presentations/subtypes receive the same therapies, the question
arises if more focus should be given in the diagnostic work-
up to identify subtypes/presentations in order to develop more
presentation/subtype tailored therapies.

We are aware of several limitations in our study. First,
our study had a cross-sectional design. Second, the number

of subjects in our cohort is rather small. Third, psychiatric
diagnoses, even though made by specialized psychiatrists,
were performed by different psychiatrists in Germany and
Switzerland. Subsequent, longitudinal studies with larger series
and homogenized psychiatric diagnoses are needed to confirm
these neuromorphological and neurofunctional correlates in
the AC. In addition to an independent replication/external
validation of the results, future studies should also focus on
the question whether the magnitude of the P1 asynchrony
is also correlated with the severity of the disorder in
adults. Further, as it is known that the morphology of the
HG is very variable (Schneider et al., 2005; Seither-Preisler
et al., 2014; Marie et al., 2015; Benner et al., 2017; Turker
et al., 2017; Dalboni da Rocha et al., 2020) and include
single HG, common stem duplication, complete posterior
duplication or multiple duplications, future studies should
include an assessment of morphotypes and their distribution in
specific groups.

In conclusion, until today, no observer-independent
diagnostic approach is available for AD(H)D and the official
diagnostic classification systems, being mainly the ICD-10 in
Europe and the DSM-5 in the United States, are not entirely
consistent. We measured the neuro-auditory profile of 82
adults (27 ADHD, 30 ADD, 25 controls) via MRI and MEG.
We found distinct neuro-auditory profiles for all groups
(ADHD, ADD, and controls). In the left hemisphere, both
ADHD and ADD showed reduced gray matter volumes of
the left HG, resulting in diminished left HG/PT ratios. In the
right hemisphere, subjects with ADHD were characterized
by lower right HG/PT ratios and ADD by a similar right
HG/PT ratio compared to controls. Controls and ADD
had well-balanced hemispheric response patterns, ADHD a
left-right asynchrony. In the future, observer-independent
neuromorphological and/or neurofunctional biomarkers could
support the diagnostic work-up of patients with AD(H)D in
order to become more definite in diagnosing AD(H)D and its
subtypes/presentations.
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