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High-dimensional biomedical data contained many irrelevant or weakly correlated
features, which affected the efficiency of disease diagnosis. This manuscript presented a
feature selection method for high-dimensional biomedical data based on the chemotaxis
foraging-shuffled frog leaping algorithm (BF-SFLA). The performance of the BF-SFLA
based feature selection method was further improved by introducing chemokine
operation and balanced grouping strategies into the shuffled frog leaping algorithm,
which maintained the balance between global optimization and local optimization and
reduced the possibility of the algorithm falling into local optimization. To evaluate the
proposed method’s effectiveness, we employed the K-NN (k-nearest Neighbor) and
C4.5 decision tree classification algorithm with a comparative analysis. We compared
our proposed approach with improved genetic algorithms, particle swarm optimization,
and the basic shuffled frog leaping algorithm. Experimental results showed that the
feature selection method based on BF-SFLA obtained a better feature subset, improved
classification accuracy, and shortened classification time.

Keywords: feature selection, shuffled frog leaping algorithm, classification accuracy, bacterial foraging
algorithm, biomedical data

INTRODUCTION

Biomedical datasets provide the basis for medical diagnostics and scientific research, and feature
subset selection was an important data mining method in many application areas (Lu and
Han, 2003). Such datasets were generally characterized by high-dimensionality, multiple classes,
useless data, and a very lot of features, many of which had weak correlation or independence
to corresponding diagnostic or research problems (Misra et al., 2002). Moreover, there may be
features (in biomedical datasets) that exhibit a weak correlation with specific diagnostic or research
problems. The recognition of the optimal feature subsets can eliminate redundant information
and reduce the computational cost required for data mining while improving classification
accuracy (Vergara and Estévez, 2014). Feature selection can enhance classification accuracy and
decrease the computational complexity in classification. The feature subset should be indispensable
and sufficient to describe the target concept while maintaining suitably high precision in the
representing the original features.

Effective identification and selection of candidate subsets require an effective and efficient search
method and learning algorithm. However, developing such approaches and learning algorithms to
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identify optimal subsets remains an open research issue. This
manuscript proposed a method for enabling feature selection
from high-dimensional biomedical data based on the Bacterial
Foraging–Shuffled Frog Leaping Algorithm (BF-SFLA).

The BF-SFLA was developed by introducing the convergence
factor of the Bacterial Foraging Algorithm (BFA) into the Shuffled
Frog Algorithm (SLFA), which was discussed in detail in later
sections of this manuscript.

We have used K-NN and C4.5 Decision Tree Classification
Method combined with high-dimensional biomedical data to
evaluate the BF-SFLA, including performing a comparative
analysis of improvement Genetic Algorithm (IGA), improvement
Particle Swarm Optimization (IPSO), and the SFLA. The
experimental results showed that the feature selection based
on BF-SFLA demonstrates better performance in identifying
relevant subsets with higher classification accuracy than the
alternative methods.

The structure of this manuscript was as follows: the related
research was considered in Section II. The BF-SFLA was
presented in Section III with the analysis of improvement strategy
in Section IV. In Section V, we discussed the application of feature
selection. This manuscript ended with Section VI, in which we
provide concluding comments.

RELATED RESEARCH

There were many feature selection algorithms documented in
the literature (Wang et al., 2007). A memetic feature selection
algorithm was proposed in Lee and Kim (2015) for multi-label
classification, preventing premature convergence and improving
efficiency. The proposed method employs a memetic procedure
to refine the feature subsets found obtained by a genetic
search, which improves multi-label classification performance.
Empirical studies using a variety of tests indicate the proposed
method was superior to the conventional multi-label feature
selection methods.

A novel algorithm was proposed in Wang et al. (2017)
based on information theory called the Semi-supervised
Representatives Feature Selection (SRFS) algorithm. The SRFS
was independent of any algorithm learning classification. It
can quickly and effectively identify and remove unnecessary
information with irrelevant and redundant features. More
critical, the unlabeled data were used as the labeled data in the
Markov blanket through the correlation gain. The results on
several benchmark datasets show that SRFS can significantly
improve existing supervised and semi-supervised algorithms.

Li et al. (2015) aim to introduce a new method to stable
feature selection algorithms. The experiments used open source
“actual microarray data,” challenging for high-dimensional minor
sample problems. The reported results indicate that the proposed
integrated FREE was stable and has better (or at least comparable)
accuracy than was the case for some other commonly stable
feature weighting methods.

Tabakhi et al. (2014) proposed an unsupervised feature
selection method based on ant colony optimization, which
was called UFSACO. In this method, the optimal feature

subset was found through multiple iterations without using
any learning algorithm(s). UFSAC can be classified as a filter-
based multivariate approach. The proposed method has low
computational complexity. Therefore, it can be applied to
high-dimensional data sets. By comparing the performance of
UFSACO with 11 famous univariate and multivariate feature
selection methods using different classifiers (support vector
machine, decision tree, and Bayes), the experimental results
of several commonly used data sets show the efficiency
and effectiveness of the UFSACO method and the relevant
improvements in the past.

AbdEl-Fattah Sayed et al. (2016) proposed a new hybrid
algorithm, which combines the Clonal Selection Algorithm
(CSA) with the Flower Pollination Algorithm (FPA) to form
Binary Clonal Flower Pollination Algorithm (BCFA), aiming
at solving the problem of feature selection. The Optimum-
Path Forest (OPF) classification accuracy was taken as the
objective function. Experimental testing has been carried out on
three public datasets. The reported results demonstrate that the
proposed hybrid algorithm achieved striking results compared
with other famous algorithms, such as the Binary Cuckoo Search
Algorithm (BCSA), the Binary Bat Algorithm (BBA), the Binary
Differential Evolution Algorithm (BDEA), and the Binary Flower
Pollination Algorithm (BFPA).

Shrivastava et al. (2017) compared and analyzed various
nature-inspired algorithms to select the optimal features required
to help in the classification of affected patients from the
population. The reported experimental results show that the
BBA outperformed traditional techniques such as Particle
Swarm Optimization (PSO), Genetic Algorithms (GA), and the
Modified Cuckoo Search Algorithm (MCSA) with a competitive
recognition rate for the selected features dataset.

Zhang et al. (2015) suggested a new method using the Bones
Particle Swarm Optimization (BPSO) to find the optimal feature
subset, which was termed the binary BPSO. In this algorithm,
a reinforcement memory strategy was designed to update the
local “leaders” of particles to avoid the degradation of excellent
genes in particles. A uniform combination was proposed to
balance the local exploitation and the global mining of the
algorithm. In addition, the 1-nearest neighbor method was used
as a classifier to evaluate the classification accuracy of particles.
The proposed algorithm was evaluated by several international
standard datasets. Experimental testing shows that the proposed
algorithm has strong competitiveness in classification accuracy
and computational performance.

Based on the concept of decomposition and fusion, a practical
feature selection method for large-scale hybrid datasets was
proposed by Wang and Liang (2016) to identify an effective
feature subset in a short time. By using two common classifiers
as evaluation functions, experiments have been performed on
12 UCI data sets. The result of the experiment showed that the
proposed method was effective and efficient.

Cai et al. (2020, 2021) aimed to construct a novel multimodal
model by fusing different electroencephalogram (EEG) data
sources, which were under neutral, negative and positive audio
stimulation, to discriminate between depressed patients and
normal controls. Then, from the EEG signals of each modality,
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linear and nonlinear features were extracted and selected to
obtain features of each modality.that the fusion modality could
achieve higher depression recognition accuracy rate compared
with the individual modality schemes. This study may provide
an similarity between features, which leads to minimizing the
redundancy. As a result, it could be classified as a filter-
based multivariate approach. The proposed approach has low
computational complexity. Therefore, it was suitable for high-
dimensional data sets.

The relevant research shows that nature incentive systems
represent a practical basis for feature selection. In this
manuscript, we have applied nature-inspired method using
our new extended SFLA (the BF-SFLA) for high-dimensional
biomedical data feature selection.

THE PROPOSED Based on the
Chemotaxis Foraging-Shuffled Frog
Leaping Algorithm

The Shuffled Frog Leaping Algorithm
The biological characteristics of the SFLA are shown in Figure 1.
It could be seen from the figure that a large number of
individual frogs were distributed in the search space, and there
were several food-dense areas (extremal points of the function).
The individuals were assigned to several groups based on the
fitness (from big/small to small/big). The algorithm update
strategy is shown in Equations (1) and (2), in which the worst
individual (Pw) learned from the best individual (Pb) of the
subgroup. Without progress, (Pw) would learn from the global
best individual (Pg). If there was still no progress, (Pw) would
be replaced by random individuals. The number of iterations in
the algorithm was given by (t). Where: 1) Pw(t+1) was a new
individual generated by the updating strategy, 2) D(t+1) was the
length of each moving step, and 3) R was a random number with
a change range of [0, 1].

D (t + 1) = R × (Pb − Pw) (1)

Pw (t + 1) = Pw (t)+ D (t + 1) (2)

FIGURE 1 | The simulation diagram of biological characteristics of SFLA.

Following updating, if the newly generated Pw(t+1) was
better than the old Pw(t), Pw(t) would be replaced by Pw(t+1).
Otherwise, (Pb) would be replaced by (Pg). If (Pw) was still
not improving, it would be randomly replaced by a new
individual. This iterative process with the number of iterations
was equal to the number of subgroup individuals. When the
subgroup processing was completed, all subgroups would be
randomly sorted and reclassified into new subgroups. The
process was repeated until the pre-determined termination
conditions were satisfied.

The SFLA was one of many nature-inspired algorithms
based on swarm intelligence (Eusuff and Lansey, 2003). It
has the following characteristics: (1) a simple concept, (2)
reduced parameters, (3) strong performance optimization, (4)
fast calculation speed, and (5) easy implementation. It has
been widely used in many fields such as model recognition
problems (Shahriari-kahkeshi and Askari, 2011; Hasanien,
2015), scheduling problems (Pan et al., 2011; Alghazi et al.,
2012), parameter optimization problems (Perez et al., 2013),
traveling salesman problem (Shrivastava et al., 2017), unit
commitment problem (Ebrahimi et al., 2012), distribution
problem (Gomez Gonzalez et al., 2013), and the controller
problem (Huynh and Nguyen, 2009).

The Bacterial Foraging Algorithm
Through simulation, E. coli ate food in the human intestinal
tract. The Bacterial Foraging Algorithm (referred to as BFA)
(Passino, 2002) was proposed in 2002 by Passino et al., and
because the BFA has shown improved optimization performance,
it has attracted significant research by scholars in the field. The
BFA included three steps, Chemokines Operation (referred to as
CO), Propagation Operation (referred to as PO), and Dissipation
Operation (Referred to as DO), and the (CO) was the core step.

The (CO) corresponds to the direction selection strategy
adopted by bacteria in searching for food, which played a
significant role in the algorithm’s convergence. In the process of
(CO), the motion mode of bacteria could be divided into two
states: Rotation and Forward. The Rotating motion mode refers
to the operation of the moving unit step after the bacteria changes
the direction. In contrast, the Forward motion mode refers to that

FIGURE 2 | The curve of function a.
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TABLE 1 | Parameters of the benchmark function.

Function Dimensions(n) Scope Optimal
value

Accuracy

f1 (x) =
∑n

i = 1 x2
i 30/60/90 [–

5.12,5.12]
0 | Actual Value –0|

< 1 × 10−16

f2 (x) =
∑n−1

i = 1 (100
(
x2

i+1−xi

)2
+ (1−xi)

2) 30/60/90 [–30,30] 0 | Actual Value –0|
< 1 × 101

f3 (x) =
∑n

i = 1 (x
2
i −10cos(2πxi)+ 10) 30/60/90 [–

5.12,5.12]
0 | Actual Value –0|

< 1 × 101

f4
(
x
)
=

1
4000

∑n
i = 1 x2

i −
∏n

i = 1 cos
( xi√

i

)
+ 1 30/60/90 [–600,600] 0 | Actual Value –0|

< 1 × 10−2

f5
(
x
)
= −20exp

(
−0.2

√
1
n
∑n

i = 1 x2
i

)
−exp

( 1
n
∑n

i = 1 cos2πxi
)
+ 20+ e 30/60/90 [–32,32] 0 | Actual Value –0|

< 1 × 10−7

f6 (x) =
∑n−1

i = 1

(
x2

i + x2
i+1

)0.25 [
sin2

(
50(x2

i + x2
i+1)

0.1
)
+ 1

]
30/60/90 [–100,100] 0 | Actual Value –0|

< 1 × 100

f7 (x) =
∑n

i = 1 |xi| +
∏n

i = 1 |xi| 30/60/90 [–10,10] 0 | Actual Value –0|
< 1 × 10−16

f8 (x) = Max
{
|xi|
}

30/60/90 [–100,100] 0 | Actual Value –0|
< 1 × 10−2

f9 (x) =
∑n

i = 1 int(xi + 0.5)2 30/60/90 [–100,100] 0 | Actual Value –0|
< 1 × 10−16

f10 (x) =
∑n

i = 1 ix4
i + random(0,1] 30/60/90 [–

1.28,1.28]
0 | Actual Value –0|

< 1 × 10−3

f11 (x) = −
∑n

i = 1 xisin(
√
|xi|) 30/60/90 [–500,500] –

418.9829n
| Actual Value

–(–418.9829n) |
< 1 × 102

f12
(
x
)
=

5
n

{
10sin2(5yi

)
+
∑n−1

i = 1 (yi−1)2[1+ 10sin2(5yi+1
)
]+ (yn−1)2

}
+
∑n

i = 1 u
(
xi,10,100,4

)
yi = 1+ xi+1

4 , u
(
xi, a, k,m

)
=


k(xi−a)m xi > a

0 − a ≤ xi ≤ a

k(−xi−a)m xi < −a

 30/60/90 [–50,50] 0 | Actual Value –0|
< 1 × 10−15

f13 (x) = 4x2
1−2.1x4

1 +
x6

1
3 + x1x2−4x2

2 + 4x4
2 2 [–5,5] –

1.0316285
| Actual Value
–1.0316285)|
< 1 × 10−3

f14 (x) =
(
x2−

5.1
4π2 x

2

1
+

5
π x1−6

)2
+ 10

(
1− 1

8

)
cosx1 + 10 2 [–15,15] 0.398 | Actual Value

–(0.398)|
< 1 × 10−2

f15 (x) =
sin2

√
x2

1+x2
2−0.5[

1+0.001
(
x2

1+x2
2

)]2 −0.5 2 [–100,100] –1 | Actual Value –(–1)|
< 1 × 10−4

after the bacteria complete the rotating motion; if the quality of
the solution was improved, the bacteria would continue to move
several steps in the same direction until the adaptive value of the
function did not change, or the predetermined number of moving
steps was reached.

The Shuffled Frog Leaping Algorithm
Based on Chemotactic Operation
Proposed Improvements
In the SFLA, the worst individual (Pw) from a subgroup
learned to form the optimal individual (Pb) in the same
subgroup or the optimal global individual (Pg) iteratively. IF
the fitness was not improved in this process, a randomly
generated new individual replaced the existing (Pw), while
maintaining population diversity may result in the failure to
identify potentially more optimal solutions. This result was
because following the (Pw) learned from (Pb) or (Pg), while partial
improvement (in the fitness) may have been achieved, there may
be better solutions in the neighborhood if the new randomly

generated individual was used in place of the existing (Pw). The
possibility of finding a better solution was lost by the SFLA.
Inspired by the (CO) of the BFA, this manuscript introduced
the (CO) into SFLA and guided (Pw) to refine the search in the
neighborhood and find better solutions.

Proposed Updating Strategy
Section (III B), considered Rotation and Progression. Our
updating strategy proposed that (Pw) moved stepwise in random
directions (in the solution space) and completed the rotation
operation. IF the fitness was improved, (Pw) would move
forward in the same direction repeatedly until the fitness no
longer was improved, at which point (Pw) would be replaced
by a random individual in the solution space. The chemotaxis
operation strategy was used in a secondary process to increase
the granularity of the solution space exploration. This processed
secondary aims to search for the potential optimal solution(s)
in the (Pw) neighborhood, expand the individual search level,
improve the local search ability, and improve the search accuracy
of the algorithm while maintaining the population diversity.
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Of course, when (Pw) learned from (Pb) and (Pg) without
progress, the (CO) was not always performed on every iteration.
To strengthen space exploration ability at the early stage of the
iteration, the algorithm must keep specific diversity, so the (CO)
was used with less probability, and in the middle and later stages
of the iteration, to strengthen the optimal neighborhood mining
density, the algorithm must improve the local searchability.
To balance the relationship between algorithm exploration and
mining, the curve change formula was introduced to calculate the
(CO) perform probability.

a = exp(−30 × (
g
G
)

s
) (3)

C =
{

1 if (a < R)
0 if (a ≥ R)

(4)

The function (a) was calculated by Equation (3), where (g)
was current iteration number and (G) was total iteration number.
Figure 2 was the graph of the value of function a when (s) was
equal to 3, 5, and 8, respectively. To balance the relationship
between the algorithm exploration and mining, (s) was set as 5 in
subsequent experiments. (R) was the random number between [0,
1]. C was the decision factor in Equation (4), if C was 1 perform
the (CO), and if C was 0 do not perform the (CO).

The Improvement of Grouping Strategy
The grouping strategy of the SFLA was as follows: suppose
that P individuals were sorted into m groups according to the
quality of the solution (function evaluation value), and n groups
were divided into each group, where P = m∗n. Then the first
individual, the m+1 individual, . . ., the (n–1)∗m+1 individual,
was assigned to the 1st group. The second individual, the
m+2 individuals. . ., the (n–1)∗m+2 individuals were assigned
to the second group, and so on, the mth individual, the 2m
individual. . ., the nth∗m individuals were assigned to the group.
Until all the individuals were grouped, this grouping strategy was
called Classic Grouping Strategy (CGS).

To verify the contribution of CGS to the global optimal
solution Pg , 15 standard test functions were used for the
simulation experiment. The parameters of the test function
were shown in Table 1. Test function parameters and target
accuracy information were shown in Table 1. The average value
of the algorithm ran independently 30 times was used for the
experimental data. Algorithm parameters were set as follows:
total population, 200; number of groups, 10; individual in a
subgroup, 20; number of updates and evolution within subgroup,
20; number of iterations of the algorithm, 500. The operating
environment of the algorithm was Windows 10 operating system,
8-core 64-bit processor and 8G memory, and the running
software was MATLAB2012 a.

The experimental results were shown in Figure 3. In the figure,
the abscissa represented the group number, and the ordinate
represented the average contribution rate of each group updating
Pg . It could be seen from the figure that, compared with other
groups, group 1 to group 5 obtained a higher average update
contribution rate to Pg , among which group 1 obtained the

highest contribution rate (14.11%), and the total contribution
rate of the five groups was 43.00%.

According to the CGS grouping strategy, the individuals with
a higher quality of each equilateral solution were first assigned to
the groups with smaller numbers. The smaller the group number,
the higher the quality of the assigned solution would be. The
individual quality of groups with smaller group numbers was
better than groups with more significant group numbers. In the
process of algorithm operation, if these grouping individuals once
fell into the local optimal, because the update of Pg was highly
dependent on these groups, it would be difficult to rely on other
groups with low contribution rate to Pg to guide the algorithm to
jump out of the local optimal, thus increasing the probability of
the algorithm falling into the local optimal overall. To avoid this
situation, it was necessary to balance the contribution proportion
of each group to Pg , reduce the dependence of Pg update on
specific groups, and improve the ability to jump out after the
algorithm fell into the local optimal.

Improved Grouping Strategy
1 to m individuals were assigned to each group in sequence (1) in
each group, the m+1 to 2∗m individuals according to the reverse
was assigned to each group (1) in each group, then the 2∗m+1 to
3∗m individuals were assigned to each group by the order again
(1) in each group, the 3∗m+1 to 4∗m individuals according to the
reverse was assigned to each group (1) in each group, and so on,
until all the individual were grouped.

The improved grouping strategy could effectively avoid the
individuals with better quality of solutions into the same group
and guarantee the average solution quality of individuals in each
group. In this way, the proportion of each group’s contribution
to the optimal global solution could be effectively balanced,
thus reducing the possibility of the algorithm falling into
the local optimal. This grouping strategy was called Balance
Grouping Strategy (BGS).

THE ANALYSIS OF IMPROVEMENT
STRATEGY

After (CO) was introduced into the SFLA, the balance between
Exploratory Search in the early stage and Refined search in the
later stage of the algorithm iteration were well handled, the SFLA
with a single introduction of (CO) was named as SFLA1. The
contribution of (BGS) was to balance the update contribution rate
of groups for the global best individual (Pg) and avoid the SFLA
falling into the local optimization. The SFLA with a single (BGS)
was named SFLA2.

(CO) and (BGS) were two improved strategies of SFLA.
Among them, the former was the improvement of the updating
method for the worst individuals, and the latter was the
optimization of the algorithm grouping method. Although
one kind of single improvement strategy could improve the
optimization performance of the algorithm to a certain extent,
the improvement effect was limited. However, the performance
improvement of the algorithm would be more evident if the
two improvement strategies were combined. (CO) and (BGS)
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FIGURE 3 | The average contribution rate of each group updating Pg.

were all introduced into the SFLA simultaneously. The improved
algorithm was named Bacterial Foraging-Shuffled Frog Leaping
Algorithm, referred to as BF-SFLA.

To verify the actual optimization performance of SFLA1,
SFLA2, and BF-SFLA, 15 standard test functions were selected for
verification experiments. The Parameter Settings of test functions
were shown in Table 1. The algorithms parameters were set as
follows: the total population was 400. The subgroups number
was 40. The number of individuals in each subgroup was 10. The
number of updating evolution within every subgroup was 10. The
number of algorithm evolution was 500. The experimental results
were shown in Table 2. The operating environment was Windows
10, 8-core 64-bit operating system with 8G of memory, and the
running software was MATLAB 2012a.

Two modes, (1) the algorithm optimization accuracy analysis
under fixed iterations number and (2) the algorithm iterations
number analysis under the fixed optimization accuracy, were
used to evaluate the optimization performance of the algorithm.

(1) The algorithm optimization accuracy analysis under fixed
iterations number

The experimental results were analyzed with the algorithm
optimization accuracy under fixed iterations number, as shown
in Table 2. Where (Ave) represented the average optimal value of
the algorithm running 30 times, (Std) represented the standard
deviation, and (AvgT(s)) represented the average running time
each time, in seconds (s). The following results could be obtained
from Table 2:

(1) For all test functions (F1 to F15), SFLA1 and SFLA2
obtained better (Ave) and (Std) than SFLA to varying degrees,
indicating that the two improvement strategies all played a
specific role in improving the performance of the algorithm.
Compared with the SFLA, the (Ave) of SFLA1 and SFLA2 had
been improved by E0 to E10, and the (Std) had been reduced
by E0 to E20, indicating that the improved strategies of SFLA1
and SFLA2 played more pronounced effects on improving the
optimization accuracy and stability of the algorithm.

(2) For all test functions, BF-SFLA obtained more minor
(Ave) and (Std) compared with SFLA1 and SFLA2 to varying
degrees, indicating that the optimization accuracy and stability

of the algorithm after the introduction of the combined
improvement strategies were better than single improvement
strategy. SFLA1 and SFLA2 were two algorithms obtained by
SFLA after introducing (CO) and (BGS), respectively. (CO)
was the improvement of updating method for (Pw), while
(BGS) was the optimization for algorithm grouping method.
Although a single improvement strategy could improve the
optimization performance of the algorithm to a certain extent,
the room for improvement was limited. However, by combining
multiple improvement strategies and improving the algorithm
from different perspectives, the performance improvement of the
algorithm would be more obvious. Compared with the improved
algorithms in literature (Sun et al., 2008) and (Dai and Wang,
2012), BF-SFLA had obtained better (Ave) for almost all test
functions (except f10). On the whole, it showed that BF-SFLA had
better optimization accuracy and performance.

(2) The algorithm iterations number analysis under the fixed
optimization accuracy

The SFLA, SFLA1, SFLA2, Improved SFLA in literature (Sun
et al., 2008; Dai and Wang, 2012), and BF-SFLA were used
to optimize and verify the test function, verify the iteration
conditions of six algorithms independently executing 30 times
(the maximum number of iterations being 500) to meet the
accuracy requirements in Table 1. The relevant information was
shown in Table 3. In the table, (Avg(%)) represented the success
rate (the percentage of the number of experiments where the
algorithm achieved the required accuracy in the total number
of experiments). (AveN) represented the average number of
iterations with the required accuracy. The following results can
could be obtained from Table 3.

(1) SFLA had a success rate of 0% for test functions f1, f2, f4, f5,
f7, f8, and f12, and could not achieve the required optimization
accuracy within a fixed number of iterations (500), indicating
that SFLA had a slow convergence speed and low convergence
accuracy. Compared with SFLA, SFLA1 and SFLA2 achieved a
specific success rate for all test functions, indicating that the
algorithm improved by introducing a single strategy improved
the convergence accuracy of the algorithm to a certain extent.

(2) The BF-SFLA achieved a success rate of 93–100% for
all test functions. The result was significantly higher than the
other five algorithms. It showed that BF-SFLA had better-
searching precision and stability. From the AveN indexes with
fixed optimization accuracy, BF-SFLA was smaller than the other
five algorithms on the whole. The results showed that BF-SFLA
converges faster and obtains the same optimization precision
with fewer iteration times.

Table 4 was the index mean information table under
fixed iteration times. Where AVE(Avg) and AVE(Std) were,
respectively the means of (Ave) and (Std) for all test functions
in Table 2. Compared with SFLA, SFLA1, SFLA2, and literature
(Sun et al., 2008; Dai and Wang, 2012), the smaller AVE(Ave)
and AVE(Std) were achieved by BF-SFLA, so the better
optimization performance was achieved by BF-SFLA. Table 5
was the index mean value under fixed optimization accuracy.
Where AVE(ave%) and AVE(AveN) were, respectively the means
of (Ave(%)) and (AveN) for all test functions in Table 3.
Compared with SFLA, SFLA1, SFLA2, and literature (Sun
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TABLE 2 | The experimental results under fixed iteration number.

Function SFLA SFLA1 SFLA2 SFLA[25] SFLA[26] BF-SFLA

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

f1 9.36E–01 8.66E–02 1.47E–33 4.92E–20 9.05E–01 6.68E–02 6.45E–03 3.12E–03 5.22E–03 7.32E–33 3.21E–18 5.02E–33

f2 1.46E+02 6.59E+01 2.54E+01 1.71E+01 1.01E+02 6.08E+01 2.67E+02 5.28E+01 1.29E+02 3.05E–01 2.57E+01 4.63E–01

f3 1.59E+01 4.39E+00 1.03E+00 3.19E+00 1.30E+01 4.11E+00 1.95E+01 7.07E+00 1.16E+01 1.56E+00 8.73E+00 2.03E+00

f4 1.09E+00 4.57E–02 1.00E+00 1.60E–16 1.04E+00 3.11E–02 1.00E+00 2.14E–04 1.00E+00 1.93E–16 1.00E+00 2.14E–16

f5 1.41E+00 5.68E–01 1.06E–14 2.62E–12 1.07E+00 5.26E–01 1.09E+00 6.62E–01 7.50E–01 3.18E–15 1.12E–12 7.68E–15

f6 2.44E+01 7.33E+00 1.91E–01 3.37E+00 2.27E+01 8.54E+00 1.91E+01 4.46E+00 1.69E+01 2.88E–01 6.05E+00 3.88E–01

f7 1.01E+00 1.08E–01 1.14E–17 6.22E–35 9.68E–01 3.66E–02 5.99E–01 1.50E–01 3.11E–01 2.66E–17 1.14E–35 2.77E–18

f8 6.62E+00 9.98E–01 3.32E–04 3.53E–01 4.06E+00 9.44E–01 5.01E+00 7.40E–01 4.32E+00 2.54E–04 1.08E+00 4.47E–04

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f10 5.18E–01 1.57E–01 1.02E–03 8.29E–04 5.02E–01 9.63E–02 2.16E–03 8.03E–04 2.90E–03 3.30E–04 2.41E–03 3.99E–04

f11 –3.05E+03 4.01E+02 –4.61E+03 6.48E+02 –3.01E+03 4.20E+02 –5.09E+03 5.67E+02 –4.77E+03 3.55E+02 –4.94E+03 2.48E+02

f12 9.30E–01 6.60E–02 1.92E–32 7.25E–15 8.09E–01 8.40E–02 4.90E–02 7.51E–02 5.74E–02 2.06E–33 1.11E–17 1.40E–32

f13 –7.68E–01 2.01E–01 –1.03E+00 2.51E–04 –7.87E–01 2.53E–01 –1.03E+00 0.00E+00 –1.03E+00 1.05E–03 –1.03E+00 9.72E–04

f14 3.98E–01 1.70E–01 3.98E–01 0.00E+00 3.98E–01 1.78E–01 3.98E–01 3.98E–01 3.98E–01 0.00E+00 3.98E–01 0.00E+00

f15 –8.77E–01 6.40E–02 –1.00E+00 3.36E–03 –8.63E–01 7.23E–02 –1.00E+00 0.00E+00 –9.98E–01 2.69E–04 –1.00E+00 7.35E–04

et al., 2008; Dai and Wang, 2012), the smaller AVE(Ave(%))
and AVE(AveN) were achieved by BF-SFLA, so the better
optimization performance was also achieved by BF-SFLA.

THE APPLICATION OF FEATURE
SELECTION BASED ON BF-SLFA
ALGORITHM

Discretization of the Shuffled Frog
Leaping Algorithm
To represent the feature subset, SFLA should be converted to
binary SFLA. Assuming that one solution of the algorithm was
(0, 1, 0, 1, 0, 0, 1, 0, 0, 1), then the dimension of the solution
was 10, and the matching feature subset was one feature subset
composed of four in all ten features (the 2nd, 4th, 7th, and 10th).
The transformation formula discussed in Hu and Dai (2018) was
shown in formula (3, 4), and new Pw was converted into a vector
of binary range [0, 1] by Equation (5, 6):

sig (D) =
1

1+ e−A × D (5)

A =
g
G
(F1 − F2) + F2

Pi =

{
1 if (sig (D) > R
0 if (sig (D) ≤ R

(6)

(Pi) was the value of the i-dimension after the individual
was discrete, (D) was the step size of the individual, (R) was
the random number between [0, 1], and A was the adjustment
coefficient, reflecting the degree of certainty that the individual
linear solution was converted to the discrete solution. The value
of (A) changed from large to small, the determinacy of the

individual linear solution to discrete solution changed from
strong to weak, and the diversity of individuals changed from
weak to strong. Meanwhile, the global exploration ability of
individuals changed from strong to weak, and the local mining
ability changed from weak to strong. So the value of A was
neither bigger nor smaller. The value of A was determined by
four parameters, namely (g) (current iteration number), (G)
(total iteration number), (F1) (start control parameter), and (F2)
(end control parameter). It was expected that at the beginning
of the iteration, (A) should be a large value to enhance the
exploration ability of the algorithm to traverse the solution space
globally in the early stage of the iteration. In contrast, at the
later iteration stage, (A) should be a small value to enhance the
algorithm’s local refinement searchability. Therefore, the value
range of (F1) was set as [0.90, 0.95], and the value range of (F2)
was set as [1.05, 1.1].

The addition and subtraction operation of the discrete binary
solution was basically the same as the binary addition and
subtraction operation method. The difference was that the
highest bit could be borrowed or carried without recording to
ensure that the number of elements of the solution vector was
consistent with the original number of features. The specific
operation was shown in Table 6.

Algorithm Flow
The algorithm flow of the feature selection application based on
BF-SFLA was as follows.

Step 1: Set the relevant parameters: (i) randomly generate
(L) frogs within the scope of the domain, (ii) the number of
subgroups was (A), (iii) the number for each subgroup frog was
(B), (iv) the number of global information exchange was C1, and
(v) the number of local searches was C2.

Step 2: Calculate the fitness [value] for each frog. Rank and
group all frogs according to the target function value.
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TABLE 3 | The experimental results under fixed optimization accuracy.

Function SFLA SFLA1 SFLA2 SFLA[25] SFLA[26] BF-SFLA

Ave(%) AveN Ave(%) AveN Ave(%) AveN Ave(%) AveN Ave(%) AveN Ave(%) AveN

f1 0% – 23% 407 0% – 100% 261 100% 283 100% 248
f2 0% – 93% 298 0% – 100% 121 97% 260 100% 94
f3 23% 385 100% 145 43% 306 100% 140 47% 295 100% 126
f4 0% – 90% 201 0% – 97% 149 80% 339 93% 138
f5 0% – 100% 267 0% – 100% 266 0% – 100% 249
f6 3% 482 100% 208 7% 437 100% 192 7% 424 100% 182
f7 0% – 100% 344 0% – 0% – 0% – 100% 342
f8 0% – 100% 120 0% – 0% – 0% – 100% 120
f9 100% 128 100% 23 100% 127 100% 65 100% 76 100% 20
f10 100% 93 100% 32 100% 72 100% 23 100% 119 100% 26
f11 63% 231 93% 66 73% 220 63% 220 70% 231 100% 170
f12 0% – 93% 232 0% – 0% – 0% – 97% 192
f13 70% 148 100% 31 40% 144 100% 72 100% 59 100% 77
f14 100% 20 100% 16 100% 20 100% 19 100% 16 100% 15
f15 77% 220 80% 133 87% 217 87% 182 100%v 117 100% 74

The symbol “–” indicates that the fixed optimization accuracy cannot be achieved within the 500 times.

TABLE 4 | The index mean of fixed iteration times.

Attribute SFLA SFLA1 SFLA2 SFLA[25] SFLA[26] BF-SFLA

AVE(Ave) 6.48E+02 5.32E+02 6.47E+02 5.20E+02 5.31E+02 5.11E+02

AVE(Std) 3.21E+01 4.48E+01 3.30E+01 4.22E+01 2.38E+01 1.67E+01

The best value is in bold.

TABLE 5 | The index mean value under fixed optimization accuracy.

Attribute SFLA SFLA1 SFLA2 SFLA[25] SFLA[26] BF-SFLA

AVE(Ave(%)) 35.73% 91.47% 36.67% 76.47% 57.21% 99.33%

AVE(AveN) 323.62 139.85 311.00 217.54 282.77 133.15

The best value is in bold.

Step 3: IF (Pw) had not been improved after learning from
(Pb) or (Pg), the (CO) would be implemented. IF there was
no improvement, (Pw) was replaced in the solution space by
randomly generated individuals.

Step 4: Reorder each subgroup and update (Pw), (Pb), and (Pg)
in each subgroup.

Step 5: Determine IF the number of local search iterations
reaches C2, IF not, return to step 3 and continue to execute.

Step 6: Determine IF global information exchange iterations
reach C1 or (Pg) and IF the requirements of convergence
precision were achieved. IF NOT, return to step 2 to continue.
IF the termination of the algorithm was reached, output (Pg).

The details of the process used for enabling Feature Selection
with BF-SFLA were shown in Figure 4; (L) was the number of
times the algorithm was executed in each experiment, (Dmax) was
the upper limit of feature subsets number, and (Lmax) was the
experiment number.

The classification accuracy and the number of feature
subsets were two critical indexes for designing the evaluation
function. The classification accuracy was usually obtained by the

TABLE 6 | Addition and subtraction of discrete binary solutions.

X1 X2 X1-X2 X1+X2

(1, 0, 1, 0) (0, 1, 0, 0) (0, 1, 1, 0) (1, 1, 1, 0)

classification algorithm. K-NN (k-nearest Neighbor) and C4.5
decision tree classification algorithms were used to classify and
evaluate the feature subsets without loss of generality.

K-nearest neighbor method was a non-parametric
classification technique based on analogy learning. It was
very effective in pattern recognition based on statistics, and
could achieve high classification accuracy for unknown and
non-normal distribution. It had the advantages of robustness
and clear concept. The main idea of the K-NN classification
algorithm was as follows: first calculate the distance or similarity
between the sample to be classified and the training sample of the
known category (usually used Euclidean distance to determine
the similarity of the sample), and find the nearest (K) neighbors
of the distance or similarity with the sample to be classified.
Then the category of the sample data to be classified was judged
according to the category of the neighbors. If the (K) neighbors
of the sample data to be classified all belonged to the same
category, then the sample to be classified also belonged to the
same category. Otherwise, each candidate category was graded to
determine the sample data category to be classified according to
some rule (Cai et al., 2020).

C4.5 decision tree classification algorithm was a greedy
algorithm, which adopted a top-down divide and conquer
construction. It deduced the classification rules in the form of
decision tree representation from a group of unordered and
irregular cases, and it was an inductive learning method based
on examples. The decision tree classification algorithm was one
of the widely used classification algorithms. The advantages of
this method were simple description, fast classification speed, and
easy-to-understand classification rules.
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FIGURE 4 | The feature selection flow chart.

In our proposed method, the classification accuracy and the
number of selected features were the two indicators used to
design the evaluation function as defined in Chuang et al. (2008):

fitness = W1 × accW2∗(1−
n
N
) (7)

The fitness function defined by equation (7) had two
predefined weights: (W1) (the classification accuracy) and (W2)
(the selected feature). If accuracy was the most critical factor,
the accuracy [of the weight] could be adjusted to a high value.
In this manuscript, the values for (W1) and (W2) were (Lu and
Han, 2003) and [0.1], respectively. Assuming that an individual
with a high fitness [value] had a high probability of including
the positions of other individuals in the next iteration, the
weights (W1) and (W2) must be adequately defined; (acc) was
the classification accuracy, where (n) was the number of unique
features and (N) was the total number of features.

The fitness definition (acc) represented the percentage of
correctly classified examples as assessed by Equation (8). The
number of correct and wrong classification examples was denoted
by (numc) and (numi), respectively.

acc =
numc

numc + numi
× 100% (8)

Results and Discussion
We introduced the evaluation function in formula (7). The
assessment used several well-known and recognized biomedical
datasets (Hu and Dai, 2018). The datasets include ColonTumor
and DLBCL-Outcome etc., and provide data related to gene
expression, protein profiling, and genomic sequence for disease
classification and diagnosis. All the datasets were high-
dimensional and contained fewer instances and irrelevant or
weak correlation features, the dimensional ranged from 2,000 to
12,600, and the format of the datasets was shown in Table 7.

To evaluate the performance of our proposed BF-SFLA
algorithm, the SFLA, the improved GA (IGA) (Yang et al., 2008),
and the improved PSO (IPSO) (Chuang et al., 2008) were selected
for comparison. In the experiments, consistent conditions and
parameters were used in the comparative analysis, where the
population size was 200 and the number of iterations was 500;
the classification accuracy of feature subsets was evaluated using
K-NN and C4.5 classification algorithms. In the BF-SFLA and the
SFLA, (m) and (n) values were set to 5 and 5, respectively.

The training and the test samples should be independent to
prove the generalization capability. In the experimentation, we
used 10-fold cross-validation to estimate the classification rate for
each dataset. These data were divided into 10 folds. For the 10
folds, 9 folds constitute the training set. The rest of the folds were
used as the test set.
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TABLE 7 | The format of datasets.

Data set Instances Attributes Classes K-NN (k = 5) C4.5

ColonTumor 62 2,000 2 73.87 (0.24) 73.87
(0.24)

DLBCL-Outcome 58 7,129 2 47.46 (0.51) 47.46
(0.51)

ALL-AML-
Leukemia

106 7,130 2 88.39 (0.13) 88.39
(0.13)

Lung
cancer-Ontario

39 2,880 2 56.38 (0.34) 56.38
(0.34)

DLBCL-Stanford 47 4,026 2 75.51 (0.26) 75.51
(0.26)

Lung
cancer-Harvard2

181 12,534 2 94.38 (0.04) 94.38
(0.04)

Nervous-System 60 7,129 2 54.63 (0.42) 54.63
(0.42)

Lung
cancer-Harvard1

203 12,600 5 87.56 (0.09) 87.56
(0.09)

DLBCL-NIH 160 7,400 2 47.23 (0.46) 47.23
(0.46)

To avoid deviation, all results were the average of 30
independent executions of the algorithm. The aims were to
reduce the number of feature subsets of datasets to less than
100 and improve the classification accuracy of the datasets.
Nine typical high-dimensional biomedical data sets were selected,
as shown in Table 7. The column titled K-NN and C4.5
represented the original data set’s classification accuracy, and
the parentheses’ data expressed the average absolute error. In
Table 8, nine datasets and four comparison algorithms were
listed. Each algorithm had six attributes, which were i) the average
fitness (Ave%), ii) the highest fitness (Max), iii) the lowest fitness
(Min%), iv) the standard deviation (std), v) the average number
of feature subsets (AveN), and vi) the number of algorithm
executions in each experiment (S).

As could be seen from Table 8, the BF-SFLA achieved the best
Avg result among the four algorithms for eight of the nine data
sets and the second best (Ave%) of the remaining dataset. The
(Ave%) results for ColonTumor, DLBCL-Outcome, ALL-AML-
Leukemia, Lung cancer-Ontario, DLBCL-Stanford, LungCancer-
Harvard2, Nervous-System, and DLBCL-NIH obtained by the
BF-SFLA were 93.12, 74.23, 98.42, 75.55, 82.44, 98.94, 81.75, and
55.36%, respectively. For the Lung cancer-Harvard1 dataset, the
(Ave%) of BF-SLA was 90.03% while the SFLA obtained the best
(Ave%) at 91.21%; however, the (AveN) for the SFLA dataset was
54.71, which was much larger than the BF-SFLA.

According to the (AvgN), the BF-SFLA obtained the minimum
(AvgN) for all datasets compared with the SFLA, IGA, and IPSO
algorithms. We could also observe that the standard deviation
(Std) metric for all four algorithms in five of the nine data sets
(as obtained by the BF-SFLA) was smaller than those of the
other three evaluation algorithms. The best attribute results were
shown in bold font in Table 8.

Table 9 showed the three average attribute values of AVE(Ave),
AVE(Std), and AVE(AveN) for the nine datasets using the
four algorithms for evaluation. Through comparative analysis
of BF-SFLA with SFLA, IGA, and IPSO, BF-SFLA showed
better performance improvement in classification accuracy and

TABLE 8 | The running result for four algorithms.

Data set Algorithm Ave(%) Max(%) Min(%) Std AveN S

ColonTumor BF-SFLA 93.12 95.66 90.23 2.67 33.12 6

SFLA 89.02 91.66 85.02 2.69 36.16 6

IGA 86.67 88.33 83.33 2.36 38.24 6

IPSO 87.67 91.67 85.01 3.65 49.40 6

DLBCL-
outcome

BF-SFLA 74.23 77.63 67.21 3.26 26.25 8

SFLA 69.21 75.20 65.33 3.84 51.43 8
IGA 64.33 70.06 60.00 5.21 27.62 8
IPSO 71.11 76.67 63.33 5.34 51.24 8

ALL-AML-
leukemia

BF-SFLA 98.42 100.00 98.02 0.86 29.23 8

SFLA 97.27 99.09 94.52 1.93 45.65 8

IGA 95.09 97.27 92.73 1.65 30.63 8

IPSO 99.01 100.00 98.18 1.04 113.5 8

LungCancer-
ontario

BF-SFLA 75.55 80.12 71.67 3.24 14.65 8

SFLA 70.22 85.12 62.54 4.84 18.46 8
IGA 65.51 75.21 57.52 4.18 10.22 8
IPSO 70.00 77.50 57.50 4.89 56.25 8

DLBCL-
stanford

BF-SFLA 82.44 83.26 78.13 2.24 15.87 8

SFLA 80.01 82.01 78.04 2.06 25.67 8

IGA 78.80 84.02 72.02 4.83 18.43 8
IPSO 78.10 80.02 74.11 3.19 49.50 8

LungCancer-
Harvard2

BF-SFLA 98.94 99.65 97.45 0.98 51.87 8

SFLA 98.02 98.81 96.66 1.06 75.25 8

IGA 96.67 98.33 95.56 1.11 52.80 8
IPSO 96.36 99.98 93.34 2.33 98.31 8

Nervous-
system

BF-SFLA 81.75 85.26 78.13 3.34 32.24 8

SFLA 76.08 80.05 71.67 3.64 57.86 8

IGA 71.67 81.67 61.67 7.16 30.25 8

IPSO 72.67 78.33 63.33 6.07 45.03 8
LungCancer-
harvard1

BF-SFLA 90.03 91.12 88.49 1.11 28.24 9

SFLA 91.21 92.24 89.22 1.23 54.71 9

IGA 85.90 87.50 84.09 1.29 31.81 9
IPSO 91.90 94.14 90.04 1.51 44.20 9

DLBCL-NIH BF-SFLA 55.36 56.84 52.52 2.09 28.31 8

SFLA 54.16 58.12 50.63 3.13 30.75 8

IGA 56.02 61.24 51.78 3.66 32.12 8
IPSO 55.11 65.02 47.51 9.01 35.11 8

The best value is in bold.

TABLE 9 | The average attributes value for nine datasets.

Attributes BF-SFLA SFLA IGA IPSO

AVE(Ave) 83.31 80.57 77.55 80.21

AVE(Std) 2.19 2.60 3.49 4.11

AVE(AveN) 28.86 43.99 30.23 60.28

The best value is in bold.

stability while using fewer relevant feature subsets. It could
also be observed that due to the introduction of the proposed
improvements and updating strategy, the BF-SFLA explored
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FIGURE 5 | The variation trend of classification accuracy and feature subset
of ColonTumor.

FIGURE 6 | The variation trend of classification accuracy and feature subset e
of DLBCL-Outcome.

FIGURE 7 | The variation trend of classification accuracy and feature subset
of ALL-AML-Leukemia.

possible subsets space to obtain a set of features that maximize
the predictive accuracy and minimize irrelevant features in high-
dimensional biomedical data.

The process of reducing the average value of feature subsets
were shown in Figures 5–13. In each graph, the abscissa

FIGURE 8 | The variation trend of classification accuracy and feature subset
of LungCancer-Ontario.

FIGURE 9 | The variation trend of classification accuracy and feature subset
of DLBCL-Stanford.

FIGURE 10 | The variation trend of classification accuracy and feature subset
of LungCancer-Harvard2.

represented the number of feature subsets, and the ordinate
represented the average classification accuracy of each algorithm
executed 30 times independently. Figures 5–13 presented a
performance comparison between the BF-SFLA and the SFLA,
IGA, and IPSO methods. Figures 5, 6, 9, 13 showed that although
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FIGURE 11 | The variation trend of classification accuracy and feature subset
of Nervous-System.

FIGURE 12 | The variation trend of classification accuracy and feature subset
of lungcancer-harvard1.

FIGURE 13 | The variation trend of classification accuracy and feature subset
of DLBCL-NIH.

there was no apparent advantage in the early-to-middle stages,
the BF-SFLA algorithm could identify fewer feature subsets
with higher classification effects and better performance later.
Considering Figures 5–13 and Tables 8, 9, we discovered that
the proposed improvements and updating strategy played a

vitally important role in the feature selection performance of
the BF-SFLA. It was worth noting that the purpose of feature
selection was to move non-productive features without reducing
the accuracy of prediction; otherwise, although the feature subset
was small, the performance might be degraded. For example, for
Figures 7, 10, 12, the average classification accuracy decreased
gradually with the reduction of the number of features; therefore,
we must balance the relationship between classification accuracy
and the number of feature subsets in “real-world” applications
so that the biological datasets set played a more critical role in
the diagnosis of disease and improve the effectiveness of disease
diagnosis (Vergara and Estévez, 2014).

CONCLUSION

Feature subset selection was an essential technique in many
application fields, and different evolutionary algorithms were
developed for different feature subset selection problems. In
this manuscript, the BF-SFLA algorithm was used to solve the
problem of feature selection. By introducing the chemotaxis
factor of the BF, a new ISFLA (termed the BF-SFLA) was adopted
to solve the problem of feature selection in high-dimensional
biomedical data, and the K-NN and C4.5 were used as the
evaluator index of the proposed algorithm.

The experimental results showed that this method could
effectively reduce the number of dataset features and
simultaneously achieve higher classification accuracy. The
proposed method could be used as an ideal pre-processing tool
to optimize the feature selection process of high-dimensional
biomedical data, better explore the function of biological
datasets in the medical field, and improve the efficiency of
medical diagnostics.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YD completed the overall experiment and wrote the first draft. LN
normalized the data. LW and JT made grammatical modifications
to the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by the Youth Mentor Fund of Gansu
Agricultural University (GAU-QDFC-2019-02), The Innovation
Capacity Improvement Project of Colleges and Universities
in Gansu Province (2019A-056), Graduate Education Research
Project of Gansu Agricultural University (2020-19), and Lanzhou
Talents Innovation and Entrepreneurship Project (2021-RC-47).

Frontiers in Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 854685

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-854685 April 12, 2022 Time: 19:6 # 13

Dai et al. Feature Selection in High Dimensional

REFERENCES
AbdEl-Fattah Sayed, S., Nabil, E., and Badr, A. (2016). A binary clonal flower

pollination algorithm for feature selection. Pattern Recognit. Lett. 77, 21–27.
doi: 10.1016/j.patrec.2016.03.014

Alghazi, A., Selim, S. Z., and Elazouni, A. (2012). Performance of shuffled
frog-leaping algorithm in finance-based scheduling. J. Comput. Civ. Eng. 26,
396–408. doi: 10.1061/(asce)cp.1943-5487.0000157

Cai, H. S., Qu, Z. D., Li, Z., Zhang, Y., Hu, X. P., and Hu, B. (2020). Feature-level
fusion approaches based on multimodal EEG data for depression recognition.
Inf. Fusion 59, 127–138. doi: 10.1016/j.inffus.2020.01.008

Cai, H. S., Zhang, Y., Xiao, H., Zhang, J., Hu, B., and Hu, X. P. (2021). An adaptive
neurofeedback method for attention regulation based on the internet of things.
IEEE Internet Things J. 21, 15829–15838. doi: 10.1109/jiot.2021.3083745

Chuang, L. Y., Chang, H. W., Tu, C. J., and Yang, C. H. (2008). Improved binary
PSO for feature selection using gene expression data. Comput. Biol. Chem. 32,
29–38. doi: 10.1016/j.compbiolchem.2007.09.005

Dai, Y. Q., and Wang, L. G. (2012). Performance analysis of improved SFLA and
the application in economic dispatch of power system. Power Syst. Prot. Control
40, 77–83.

Ebrahimi, J., Hosseinian, S. H., and Gharehpetian, G. B. (2012). Unit commitment
problem solution using shuffled frog leaping algorithm. IEEE Appl. Math.
Comput. 218, 9353–9371.

Eusuff, M., and Lansey, K. E. (2003). Optimization of water distribution network
design using the shuffled frog leaping algorithm. Water Resour. Plan. Manag. 3,
210–225. doi: 10.1061/(asce)0733-9496(2003)129:3(210)

Gomez Gonzalez, M., Ruiz Rodriguez, F. J., and Jurado, F. (2013). A binary SFLA
for probabilistic three-phase load flow in unbalanced distribution systems with
technical constraints. Electr. Power Energy Syst. 48, 48–57. doi: 10.1016/j.ijepes.
2012.11.030

Hasanien, H. M. (2015). Shuffled frog leaping algorithm for photovoltaic model
identification. IEEE Trans. Sustain. Energy 6, 509–515. doi: 10.1109/tste.2015.
2389858

Hu, B., and Dai, Y. Q. (2018). Feature selection for optimized high-dimensional
biomedical data using the improved shuffled frog leaping algorithm. IEEE/ACM
Trans. Comput. Biol. Bioinform. 15, 1765–1773. doi: 10.1109/TCBB.2016.
2602263

Huynh, T. H., and Nguyen, D. H. (2009). “Fuzzy controller design using a
new shuffled frog leaping algorithm,” in Proceedings of the IEEE International
Conference on Industrial Technology, Churchill, VIC, 1–6.

Lee, J., and Kim, D. W. (2015). Memetic feature selection algorithm for multi-label
classification. Inf. Sci. 293, 80–96. doi: 10.1016/j.ins.2014.09.020

Li, Y., Si, J. N., Zhou, G. J., Huang, S. S., and Chen, S. C. (2015). FREL: a Stable
Feature Selection Algorithm. Trans. Neural Netw. Learn. Syst. 26, 1388–1402.
doi: 10.1109/TNNLS.2014.2341627

Lu, Y., and Han, J. (2003). Cancer classification using gene expression data. Inf.
Syst. 28, 243–268. doi: 10.1016/s0306-4379(02)00072-8

Misra, J., Schmitt, W., Hwang, D., Hsiao, L., Gullans, S., and Stephanopoulos,
G. (2002). Interactive exploration of microarray gene expression patterns in a
reduced dimensional space. Genome Res. 2, 1112–1120. doi: 10.1101/gr.225302

Pan, Q. K., Wang, L., Gao, L., and Li, J. Q. (2011). An effective shuffled frog-leaping
algorithm for lot-streaming flow shop scheduling problem. Int. J. Adv. Manuf.
Technol. 52, 699–713. doi: 10.1007/s00170-010-2775-3

Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Control Syst. 22, 52–67. doi: 10.1016/j.
biosystems.2007.08.009

Perez, I., Gomez Gonzalez, M., and Jurado, F. (2013). Estimation of induction
motor parameters using shuffled frog-leaping algorithm. Electr. Eng. 95, 267–
275. doi: 10.1007/s00202-012-0261-7

Shahriari-kahkeshi, M., and Askari, J. (2011). “Nonlinear continuous stirred
tank reactor (cstr) identification and control using recurrent neural network
trained shuffled frog leaping algorithm,” in Proceedings of the 2nd International
Conference on Control, Instrumentation and Automation, Piscataway, NJ, 485–
489.

Shrivastava, P., Shukla, A., Vepakomma, P., Bhansali, N., and Verma, K. (2017).
A survey of nature-inspired algorithms for feature selection to identify
Parkinson’s disease. Comput. Methods Programs Biomed. 139, 171–179. doi:
10.1016/j.cmpb.2016.07.029

Sun, X., Wang, Z., and Zhang, D. (2008). “A web document classification
method based on shuffled frog leaping algorithm,” in Proceedings of the 2nd
International Conference on Genetic and Evolutionary Computing, Jinzhou,
205–208.

Tabakhi, S., Moradi, P., and Akhlaghian, F. (2014). An unsupervised
feature selection algorithm based on ant colony optimization. Eng.
Applic. Artificial Intell. 32, 112–123. doi: 10.1016/j.engappai.2014.
03.007

Vergara, J. R., and Estévez, P. A. (2014). A review of feature selection methods
based on mutual information. Neural Comput. Applic. 24, 175–186. doi: 10.
1007/s00521-013-1368-0

Wang, F., and Liang, J. Y. (2016). An efficient feature selection algorithm for hybrid
data. Neurocomputing 193, 33–41. doi: 10.1016/j.neucom.2016.01.056

Wang, X. Y., Yang, J., Teng, X. L., and Xia, W. J. (2007). Richard jensen,
feature selection based on rough sets and particle swarm optimization. Pattern
Recognit. Lett. 28, 459–471. doi: 10.1016/j.patrec.2006.09.003

Wang, Y. T., Wang, J. D., Liao, H., and Chen, H. Y. (2017).
An efficient semi-supervised representatives feature selection
algorithmbasedoninformationtheory. Pattern Recognit. 61, 511–523.
doi: 10.1016/j.patcog.2016.08.011

Yang, C. S., Chuang, L. Y., Chen, Y. J., and Yang, C. H. (2008). “Feature selection
using memetic algorithms,” in Proceedings of the Third International Conference
on Convergence and Hybrid Information Technology, Busan, 416–423.

Zhang, Y., Gong, D. W., Hu, Y., and Zhang, W. Q. (2015). Feature
selection algorithm based on bare bones particle swarm optimization.
Neurocomputing 148, 150–157. doi: 10.1109/TCYB.2017.271
4145

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Dai, Niu, Wei and Tang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 854685

https://doi.org/10.1016/j.patrec.2016.03.014
https://doi.org/10.1061/(asce)cp.1943-5487.0000157
https://doi.org/10.1016/j.inffus.2020.01.008
https://doi.org/10.1109/jiot.2021.3083745
https://doi.org/10.1016/j.compbiolchem.2007.09.005
https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210)
https://doi.org/10.1016/j.ijepes.2012.11.030
https://doi.org/10.1016/j.ijepes.2012.11.030
https://doi.org/10.1109/tste.2015.2389858
https://doi.org/10.1109/tste.2015.2389858
https://doi.org/10.1109/TCBB.2016.2602263
https://doi.org/10.1109/TCBB.2016.2602263
https://doi.org/10.1016/j.ins.2014.09.020
https://doi.org/10.1109/TNNLS.2014.2341627
https://doi.org/10.1016/s0306-4379(02)00072-8
https://doi.org/10.1101/gr.225302
https://doi.org/10.1007/s00170-010-2775-3
https://doi.org/10.1016/j.biosystems.2007.08.009
https://doi.org/10.1016/j.biosystems.2007.08.009
https://doi.org/10.1007/s00202-012-0261-7
https://doi.org/10.1016/j.cmpb.2016.07.029
https://doi.org/10.1016/j.cmpb.2016.07.029
https://doi.org/10.1016/j.engappai.2014.03.007
https://doi.org/10.1016/j.engappai.2014.03.007
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1016/j.neucom.2016.01.056
https://doi.org/10.1016/j.patrec.2006.09.003
https://doi.org/10.1016/j.patcog.2016.08.011
https://doi.org/10.1109/TCYB.2017.2714145
https://doi.org/10.1109/TCYB.2017.2714145
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA
	Introduction
	Related Research
	The Proposed Based on the Chemotaxis Foraging-Shuffled Frog Leaping Algorithm
	The Shuffled Frog Leaping Algorithm
	The Bacterial Foraging Algorithm
	The Shuffled Frog Leaping Algorithm Based on Chemotactic Operation
	Proposed Improvements
	Proposed Updating Strategy

	The Improvement of Grouping Strategy
	Improved Grouping Strategy


	The Analysis of Improvement Strategy
	The Application of Feature Selection Based on Bf-Slfa Algorithm
	Discretization of the Shuffled Frog Leaping Algorithm
	Algorithm Flow
	Results and Discussion

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


