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Electrophysiological source imaging (ESI) refers to the process of reconstructing
underlying activated sources on the cortex given the brain signal measured by
Electroencephalography (EEG) or Magnetoencephalography (MEG). Due to the ill-
posed nature of ESI, solving ESI requires the design of neurophysiologically plausible
regularization or priors to guarantee a unique solution. Recovering focally extended
sources is more challenging, and traditionally uses a total variation regularization to
promote spatial continuity of the activated sources. In this paper, we propose to use
graph Fourier transform (GFT) based bidirectional long-short term memory (BiLSTM)
neural network to solve the ESI problem. The GFT delineates the 3D source space
into spatially high, medium and low frequency subspaces spanned by corresponding
eigenvectors. The low frequency components can naturally serve as a spatially low-band
pass filter to reconstruct extended areas of source activation. The BiLSTM is adopted
to learn the mapping relationship between the projection of low-frequency graph space
and the recorded EEG. Numerical results show the proposed GFT-BiLSTM outperforms
other benchmark algorithms in synthetic data under varied signal-to-noise ratios (SNRs).
Real data experiments also demonstrate its capability of localizing the epileptogenic
zone of epilepsy patients with good accuracy.

Keywords: electroencephalography, source localization, inverse problem, graph Fourier transform, BiLSTM

INTRODUCTION

EEG/MEG source imaging (ESI), also known as EEG/MEG source localization, is a non-invasive
neuroimaging technology that infers the location, direction, and distribution of the corresponding
brain sources from the EEG or MEG data (He et al., 2018). Compared with the invasive modalities,
the recording of EEG/MEG signals imposes minimum risks of blooding and inflammation of the
brain (Portillo-Lara et al., 2021). Compared to other non-invasive brain imaging modalities, like
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computed tomography (CT), positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), and
functional near-infrared spectroscopy (fNIRS), the temporal
resolution of EEG is up to a millisecond (He et al., 2018),
which allows it to track the electrical activity of neurons in
smaller temporal granularity (Numata et al., 2019). The study
of ESI is of great significance in both neuroscience and clinical
applications (Congedo and Sherlin, 2011). Accurate estimation
of brain sources can not only help neuroscientists to better
understand the brain mechanism (Liu et al., 2019) and the
pathological characteristics of brain injury or mental disorders
(da Silva, 2013), but also help doctors to identify the lesion
areas of brain diseases such as epilepsy focal regions, which can
contribute to the improvement of the accuracy of presurgical
evaluations (Sanei and Chambers, 2013).

However, the inverse problem of ESI is highly ill-posed (Qin
et al., 2017; He et al., 2018; Cui et al., 2019), and there can
be infinite numbers of source configurations that explain the
EEG recording since the number of EEG sensors on the scalp
is far less than the number of brain sources (Liu et al., 2017;
Hecker et al., 2021). Consequently, numerous methods have been
proposed to solve the ESI problem by incorporating different
regularizations or prior information to seek a unique solution, as
further discussed in see section “Related Work.” In recent years,
deep learning has achieved great success in the fields of computer
vision (Voulodimos et al., 2018), natural language processing
(Young et al., 2018), bioinformatics (Min et al., 2017), etc., by
employing its end-to-end feature extraction and representation
capability (Deng and Yu, 2014; LeCun et al., 2015). Solving
the inverse problems in the computer vision domain such as
image reconstruction (Schlemper et al., 2017), super resolution
(Dong et al., 2015), etc., has achieved great success by using a
variety of artificial neural network (ANN) architectures such as
the convolutional neural network (CNN) (LeCun and Bengio,
1995), the recurrent neural network (RNN) (Rodriguez et al.,
1999), and the RNN with long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997).

To solve the ESI problem, deep learning frameworks have also
been proposed in the past years, but with only a few existing
works available. For example, Bore et al. (2021) introduced an
RNN with LSTM units for spatiotemporal EEG source imaging
and the proposed approach achieved good performance against
the benchmark algorithms. Hecker et al. (2021) constructed a
novel CNN-based structure, named ConvDip, to detect multiple
sources, and this architecture is shown to outperform state-of-
the-art methods. Wei et al. (2021) proposed an edge sparse
basis network to learn the mapping between edge sparse source
activation and recorded EEG signal.

As the source signal is defined on an irregular source space,
where each source is defined as a vertex in a 3D source space (Liu
et al., 2018), there exists a spatially connected graph structure
among sources that have not been fully explored in the existing
literature, especially with the recent advance of graph signal
processing (Huang et al., 2016). In this work, we propose
to employ the spatial-temporal structure of EEG source signal
and come up with a new framework based on spatial graph
Fourier transform (GFT) (Sandryhaila and Moura, 2013), and

bidirectional LSTM (BiLSTM) neural network (Schuster and
Paliwal, 1997), termed as GFT-BiLSTM to solve the ESI inverse
problem. The main contributions of this paper are as follows:

(i) We propose to use the GFT on the 3D source space,
and delineate the source space into spatially high, medium
and low frequency subspaces spanned by corresponding
eigenvectors, and the low frequency components naturally
serve as a basis to estimate an extended areas of
source activation.
(ii) By projecting the original source signal into a reduced
dimensional subspace with low frequency eigenvectors,
the dimension of output layer of BiLSTM can be
greatly reduced.
(iii) The numerical experiments show that the proposed
GFT-BiLSTM outperforms the benchmark algorithms
based on area under the curve (AUC) and the
localization error (LE).

RELATED WORK

Given the ill-posedness nature of ESI, traditional methods
typically adopt parsimonious models to get a unique solution by
introducing priors or regularizations based on the assumptions
from neural physiology, brain anatomy, etc. (Scherg and Berg,
1991). The first category of ESI approaches is the equivalent
current dipole (ECD) source localization (Cover et al., 2007).
This method treats the neural electrical activity of the cerebral
cortex as one of several ECDs. With such a constraint, the spatial
location and orientation of each ECD can be optimized to best
interpret the measured EEG signals. The ECD model has played
a certain role in the localization of focal brain activity. However,
the real brain sources can have multiple source activations (Sanei
and Chambers, 2013), while the ECD method can only locate
a single source point which makes it unable to reconstruct the
distributed pattern of activated sources (Zumer et al., 2007).
Another category of ESI methods, namely distributed source
localization framework, has become more widely used in recent
years. The current density distribution (CDD) model-based
approach does not make any prior assumptions on the number of
dipoles but divides the cerebral cortex into numerous triangular
grids (Liao et al., 2012). The neural electrical activity on the brain
voxels is represented by brain sources defined on the 3D mesh
grid. Since the location of each source in the CDD model is fixed,
the distributed source imaging only needs to solve a linear inverse
problem (Astolfi et al., 2004). Over the past few decades, many
distributed source imaging algorithms have been developed. The
most popular ones are based on L2 norm constraints such as
the minimum norm estimate (MNE) (Koles, 1998), the dynamic
statistical parametric mapping (dSPM) (Tanaka et al., 2009), the
low-resolution electromagnetic tomography analysis (LORETA),
and the exact LORETA (eLORETA), (Jatoi et al., 2014), etc.
The computation of these methods is simple, but the resulting
solutions can be overdiffuse (Ou et al., 2009). Consequently, the
sparsity constraints-based source imaging algorithms have been
proposed by many researchers, such as the minimum current
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estimate (MCE) (Wen et al., 1998), the focal underdetermined
system solver (FOCUSS) (Murray and Kreutz-Delgado, 2001),
etc. Another class of methods for the ESI inverse problem is
the data-driven method, which mainly includes the subspace-
based classic Multiple Signal Classification (MUSIC) (Vergallo
and Lay-Ekuakille, 2013) and the beamforming approaches,
such as the linearly constrained minimum variance (LCMV)
beamformer (Lin et al., 2008). MUSIC is the version of the
Spatio-temporal approach. Multiple dipoles can be found in
this technique via scanning potential locations through one
dipole model (Mosher et al., 1992). The LCMV beamformer
is a type of adaptive spatial filter that localizes activity sources
by minimizing the contributions of other uncorrelated sources
(Wong and Gordon, 2009). Recent developments on ESI include
some interesting works such as utilizing more sophisticated edge-
sparse regularization (Sohrabpour et al., 2020), or multitask
framework for source localization among multiple subjects
(Janati et al., 2020), or employing manifold graph structure in
the EEG source space (Liu et al., 2021), source localization using
multimodality of fMRI and EEG (Nguyen et al., 2018). However,
the graph structure of the spatially connected sources is not
fully explored in the literature, as the graph signal processing
technique (Ortega et al., 2018) can have a principled way
to decompose the spatial graph signal into components with
different spatial frequencies. In this work, we come up with a
new framework based on spatial graph Fourier transform and
bidirectional LSTM (BiLSTM) neural network to efficiently solve
the brain source extents reconstruction problem.

MATERIALS AND METHODS

In this section, we first give a brief introduction of the forward
problem, then the spatial graph signal processing technique is
explained, followed by structure of the BiLSTM neural network
and finally, the GFT-BiLSTM model is introduced.

Forward Problem
The relationship between the scalp potential measured by the
electrodes and the brain source distribution can be expressed as
follows:

x (t) = Hs (t)+ ε(t) (1)

where t represents the time, vector x (t) ∈ Rn × 1 represents the
EEG or MEG signal measured by n electrodes, matrix H ∈ Rn × m

represents the lead field, vector s (t) ∈ Rm × 1 represents the
source signal generated by m brain sources, and vector ε(t) ∈
Rn × 1 represents the additive noise from observation.

The forward model models the linear mapping between scalp
potential measured by the electrodes and the brain source signal
(Birot et al., 2014). The solution to the forward problem relies
on the establishment of the head model, which is determined
by the geometry and corresponding electrical conductivity of
different head tissues such as brain, skull, scalp, etc. (Acar and
Makeig, 2010). In the early days, the mainly used head models
are the spherical model and the ellipsoid model (Gutiérrez et al.,
2005). With the development of brain imaging technology, real

head models, which can be calculated by the boundary element
method (BEM), the finite elements method (FEM), and the finite
difference method (FDM) are increasingly used (Akalin-Acar and
Gençer, 2004). Once the head model is established, the lead field
matrix can be determined.

Graph Signal Processing in the Brain
Source Space
The connectivity relationship between m sources can be
represented by an undirected graph, which can be defined as
follows:

G = (V,A) (2)

where V ∈ Rm × 1 is a set of m nodes, A ∈ Rm × m is the
corresponding adjacency matrix. If there is no edge connecting
nodes i and j, then aij = 0; otherwise, aij > 0, and its value
represents the weight of the edge between the two nodes. In
addition, since G is an undirected graph, then aij = aji, which
means the adjacency matrix A is symmetric. In the EEG source
space, all the potential source locations are represented by the
nodes defined on a 3D mesh as is illustrated in Figure 1. When
the source locations i and j are neighbors on the 3D mesh, then
we set aij > 0.

The graph signal is defined on the set of graph nodes V,
which is represented by a vector, and each element represents the
signal value at the corresponding node. The brain source signal
s = [s1, s2, . . . , sm]T , in which each element si represents the
signal value of the i-th source voxel, is defined on the nodes
of graph G. The traditional Fourier transform calculates the
projection of a function f (t) on the basis function e−iwt , and the
projected value of a time series signal using Fourier transform
F (w) represents its magnitude at the basis of a specific frequency.
Different from the traditional Fourier transform defined in the
temporal domain, for signals defined on a graph, the eigenvectors
of the Laplacian matrix L of the graph can be used as the
basis vectors of the GFT, where the Laplacian matrix L can be
calculated as follows:

L = D− A (3)

where L ∈ Rm × m, and D ∈ Rm × m is a diagonal matrix called
the degree matrix, in which the diagonal elements satisfy
dii =

∑m
j aij, that is, the sum of elements in the i-th row of

A. Since A and L is real and symmetric, therefore, L can be
decomposed as follows:

L = U3UT (4)

FIGURE 1 | Illustration of brain mesh and brain source extent activation.
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where3 ∈ Rm × m is a diagonal matrix and the diagonal elements
λi, ( i = 1, 2, . . . ,m) are the eigenvalues of L and satisfy
λ1 ≤ λ2 ≤ . . . ≤ λm, U ∈ Rm × m is the eigenvector matrix,
which is also an orthogonal matrix satisfying UUT

= I, each
column in U is an eigenvector of L and corresponds to the
eigenvalue in 3. With the eigenvectors of the Laplacian matrix
L as the Fourier basis vectors, each eigenvector can be regarded
as a graph basis with a certain frequency, and this frequency
corresponds to the eigenvalue. The smaller the eigenvalue, the
lower the frequency of the corresponding eigenvector, which is
manifested as a small difference between the signals of adjacent
nodes on the graph; on the contrary, a larger variation among
neighboring signals. The value of a graph Fourier coefficient
can measure the amplitude of the graph signal at different
frequencies. With the eigenvectors as the Fourier basis vectors,
the GFT of a given graph signal s can be defined as follows:

s̃ = UTs (5)

where vector s̃ ∈ Rm × 1 is the graph Fourier coefficient. Further,
the inverse graph Fourier transform (IGFT) of s can be defined
as:

s = Ũs (6)

The above two formulas show that a graph signal can be
decomposed into components with different frequencies through
the GFT, and can also be recovered through the IGFT.

To characterize the graph frequency, we introduce the
following definition:

Definition 1: Graph Frequency (GF): GF, denoted as fG, is a
function of ui which represents the total number of sign flips of
ui between any two connected nodes on G, it is defined as follows:

fG (ui) =
m∑

j = 1

∑
p∈�(j)

I(ui
(
j
)
ui
(
p
)

< 0)/2 (7)

where �
(
j
)

represents all neighbors of node j, and I (·) is an
indicator function to check whether the values of ui at nodes
j and p have a sign flip. The number of sign flips is analogous
to counting the number of zero crossings of the basis signal
within a given window for a time series data. We constructed the
Laplacian matrices within first-order neighbors and second-order
neighbors, and the associated GF spectrum is shown in Figure 2.
It can be seen that the GF value of the eigenvector increases as the
eigenvalue increases.

Similar to the counterpart in the time domain,
the spatial frequency basis matrix U can be similarly
decomposed into different spatial frequency bands, such as
U = [U low,Umedium,Uhigh]. The graph signal s can be projected
into a subspace of U . For example, s̃ = UT

lows is the projection
of s into a space spanned by low frequency eigenvectors. In our
work, we use the spatially low frequency components as a filter
to reconstruct the focally extended sources.

Bidirectional Long-Short Term Memory
Neural Network
Bidirectional long-short term memory neural network is an
extension of the traditional RNN (Schuster and Paliwal, 1997).

FIGURE 2 | Graph frequency of the eigenvectors.

For the time series, it is recognized that RNN can effectively
estimate the information at the future moment based on the
previous states. However, for the time series with a long sequence
of states, the estimation performance of RNN will be greatly
discounted, because the future information in a long time
series usually depends on the information from distant history
moments, which is the long-term dependence. However, the
superior structure of the LSTM unit equips the network with
the ability to solve long-term dependence. The RNN with LSTM
units can filter the information by a unique structure called
“gate” and store the valid information by the so-called “memory
cell.” The elements in a gate vector have values in the interval
[0,1]. When preceding time series information arrives at the gate,
it will be multiplied with the gate vector element-wise, if the
element value in the gate vector is 1, then the timing information
multiplied with it will be retained, and if the element value is 0,
the information will be discarded after a multiplication with 0.
In this way, the filtering of information propagated in the LSTM
unit is achieved. The valid information obtained after filtering is
then stored in the memory cell and passed on to the next moment
to prevent being lost over time, thus effectively addressing the
long-term dependence existing in traditional RNNs.

The structure of a standard LSTM unit is shown in Figure 3A,
where xt , ht−1, and ct−1, respectively, represent the input sample
at the current moment, the unit output and the memory state
at the previous moment. The information contained in xt and
ht−1 is first activated by σ(·) function and got the forget gate
f t , the input gate it , and the output gate ot . At the same
time, xt and ht−1 are also activated by tanh(·) function and
got a temporary state c̃t . On the one hand, the information
passed from the previous moment which contained in ct−1 is
filtered by the forget gate f t . On the other hand, the newly
input information contained in c̃t is filtered by the input gate
it . Then, the valid information retained by the above two
filtering processes is integrated together as a new memory state
ct . This newly updated memory state is passed along time to
the next moment, and simultaneously, it is also filtered by
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the output gate ot . Finally, the new output of the LSTM unit
ht is obtained.

This propagation process can be formulated as follows:

f t = σ
(
W f [ht−1, xt]+ bf

)
(8)

it = σ (W i [ht−1, xt]+ bi) (9)

ct = tanh (Wc [ht−1, xt]+ bc) (10)

ct = f t ∗ ct−1 + it ∗ c̃t (11)

ot = σ (Wo [ht−1, xt]+ bo) (12)

ht = ot ∗ tanh (ct) (13)

where W f , W i, Wc, Wo are weight matrices; bf , bi, bc, bo are bias
vectors; the symbol ∗ stands for the element-wise multiplication.

The hidden layer of the BiLSTM neural network is composed
of two layers of LSTM units that are reversely connected, and
its structure is shown in Figure 3B. In a BiLSTM layer, the
time series performs both forward propagation and backward

FIGURE 3 | (A) The LSTM unit, (B) The BiLSTM network.

FIGURE 4 | The flowchart for the proposed method.

TABLE 1 | The evaluation metrics corresponding to different ESI inverse solutions with a single activated area.

AUC LE

SNR = 20 SNR = 30 SNR = 40 SNR = 20 SNR = 30 SNR = 40

GFT-BiLSTM 0.9668 0.9821 0.9844 15.5683 13.2668 13.2067

dSPM 0.7733 0.8769 0.9237 58.1761 45.4715 40.3180

MNE 0.7020 0.8192 0.8954 94.8286 69.2218 48.5848

sLORETA 0.7637 0.8784 0.9339 83.3185 46.3218 25.1723
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propagation. Therefore, both the information at the previous
moments and that at the future moments can be fully utilized.

The output of the BiLSTM neural network can be calculated as
follows:

yt = σ
(
Ws

[
ht
⊕

h′t
]
+ bs

)
(14)

where yt is the final output, h′t is the unit output of the backward
propagation, Ws and bs are the weight matrix and the bias vector
of the output layer, respectively, and the symbol

⊕
stands for the

vector concatenation.

Graph Fourier Transform-Bidirectional
Long-Short Term Memory for
Electrophysiological Source Imaging
Graph Fourier Transform-Bidirectional Long-Short
Term Memory Training Procedure
Generally, the brain is divided into smaller voxels, and each voxel
can be activated and regarded as a source. Therefore, when a
BiLSTM network is adopted to solve the inverse problem of ESI
with the recorded EEG signal as the inputs and the source signal
as the outputs, the number of nodes in the output layer of the
network equals to the number of sources. This will lead to a
significant number of parameters in the network. In order to
improve the training speed of the BiLSTM network, in this paper,
we reduce its output nodes by using projected coefficients as the
output dimension based on low frequency eigenvectors, given the

extended source activation pattern mainly contains signal from
the low frequency subspace. With the training dataset {xi, si}, the
training setup procedure is as follows:

Step 1: Perform the GFT on the original brain source signal s according to (5),
then the Fourier coefficient s̃ is obtained.

Step 2: With the eigenvectors in U as the Fourier basis vectors, and the
corresponding eigenvalues in Λ. Then, set the eigenvalue threshold as Tf , and
the number of eigenvalues less than Tf is k.

Step 3: Take the first k columns of eigenvectors in U, denoted as Uk and the
first k elements in the Fourier coefficients s̃ as s̃′.

Step 4: Set the number of the input nodes in the BiLSTM network as n, the
number of the output nodes as k, and the number of the BiLSTM units in the
hidden layer as l. Then take the EEG signal x as the input, s̃′ as the output to
train the BiLSTM network.

The mean square error (MSE) is chosen as the loss function:

MSE =
1
N

N∑
i = 1

(̃s′i − ŝ′i)
2 (15)

where N is the number of data points, s̃′i is the true values, and ŝ′i
is the estimated values by the network. The Nadam optimizer is
adopted during the training process.

In general, we take the projections of the brain source signal on
the basis spanned by the low frequency eigenvectors instead of the

FIGURE 5 | The performance comparison of different ESI inverse solutions with a single activated area. (A) The comparison of AUC at different SNR levels. (B) The
comparison of LE at different SNR levels.

FIGURE 6 | Brain source activations estimated by different ESI algorithms with a single activated area.
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brain source signal itself as the output of the BiLSTM network.
By doing this, the number of output nodes in the network can
be reduced from m to k, which can make the parameters in the
network significantly decrease and the training speed increase. In
the meanwhile, the source extent pattern is recovered better after
removing the spatial high frequency noise.

Source Signal Recovery
When the network training is completed, perform the IGFT on
the estimated values ŝ as follows:

ŝ = U k̂s′ (16)

where ŝ is the estimated source signal. The whole process is
summarized in Figure 4.

EXPERIMENTS

In this section, the proposed GFT-BiLSTM is evaluated using
both the synthetic data and the real data. The benchmark
ESI algorithms, including dSPM, MNE, and sLORETA, are
used for comparison.

In the simulated data, the number of brain sources is 2,052 and
the number of electrodes is 128, then these source regions are
activated in turn with one level neighborhood sources (sources

TABLE 2 | The evaluation metrics corresponding to different ESI inverse solutions with multiple activated areas.

AUC LE

SNR = 20 SNR = 30 SNR = 40 SNR = 20 SNR = 30 SNR = 40

GFT-BiLSTM 0.9602 0.9796 0.9818 11.3105 6.1145 5.6589

dSPM 0.7130 0.8214 0.8743 67.4522 52.6055 47.9739

MNE 0.6523 0.7640 0.8415 103.3403 79.0106 58.2711

sLORETA 0.7045 0.8253 0.8892 93.6530 60.1024 39.0890

FIGURE 7 | The performance metrics comparison of different ESI inverse solutions with multiple activated areas. (A) The comparison of AUC at different SNR levels.
(B) The comparison of LE at different SNR levels.

FIGURE 8 | Brain source activation reconstructed by different ESI algorithms with multiple activated areas. The upper figures correspond to the activated area in the
left side of the brain, the bottom figures correspond to the activated area in the right side of the brain.
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FIGURE 9 | Average EEG time series plot around the inter-ictal spike.

that are directly connected to activated source in 3D mesh)
activated at the same time, and the source signal time series
is generated based on the 5th-order autoregressive (AR) model
(Haufe and Ewald, 2019), with 100 Hz sampling rate and 1 s of
length, and the simulated source signal s is obtained. Given the
lead field matrix H, by using the forward model, the EEG data x
can be calculated according to Eq. (1), in which the sensor noise ε

is generated based on different signal-to-noise ratio (SNR) levels
(20 dB, 30 dB, and 40 dB), where SNR is defined based on the
ratio of the power of signal Psignal to the power of noise Pnoise, as
prescribed below:

SNR = 10log(
Psignal
Pnoise

) (17)

The Laplacian matrix L of the brain source signal is calculated
according to Eq. 3, then decomposed according to Eq. 4 to obtain
the eigenvalue matrix 3 and the corresponding eigenvector
matrix U . Use the eigenvectors as the basis vectors of the GFT,
then the Fourier coefficient is obtained according to Eq. 5. We set
k = 615 as the number of eigenvectors, based on the frequency
spectrum illustrate in Figure 2. We use the first k values of s̃
as the model output s̃′, and the EEG data is taken as the model
input. The simulated data is divided into training, validation, and

testing datasets according to the proportion of 70%, 15%, and
15%, respectively. The number of input nodes in the BiLSTM
neural network is set to be 128, the hidden nodes is set to be 2,560,
and the number of output nodes is 615. Adopt the MSE as the
loss function and Nadam optimizer to train the BiLSTM neural
network on the training set. After training, the testing dataset is
used for model testing. The following two metrics are used as the
metrics for model evaluation:

• Localization error: LE can be quantified as the distance
between the true peak source point and estimated
peak source point.
• Area under the curve: AUC measures the area underneath

the receiver operating characteristic (ROC) curve.

Evaluation With Single Source
To render source extents activation, the adjacent sources along
with a central source are activated at the same time. The signal
strength of the adjacent sources is set to be lower than that of the
central region. All the 2,052 potential source locations are chosen
as the central source in turn to generate the scalp EEG data. In the
first experiment, we test the proposed algorithm on the simulated
EEG data and the true source activation pattern with one source
extents activated. Apply the training and validation dataset to
train and validate the proposed GFT-BiLSTM model, and then
test it on the testing dataset. The performance of the GFT-
BiLSTM is compared with that of dSPM, MNE, and sLORETA.
The evaluation metrics of each model are shown in Table 1 and
Figure 5. The comparison between the ground truth source and
the reconstructed sources by different algorithms is shown in
Figure 6.

From Table 1 and Figure 5, it can be seen that the proposed
GFT-BiLSTM shows the better performance when compared to
other methods. For different SNR levels, the AUC corresponding
to GFT-BiLSTM is the highest while the LE is the lowest.
The brain source distribution estimated by the proposed GFT-
BiLSTM is closer to the ground truth as illustrated in Figure 6.
The numerical result demonstrates the superiority of the GFT-
BiLSTM when applied to solve the ESI inverse problem.

Evaluation With Multiple Sources
In order to study the performance of the proposed GFT-BiLSTM
when there are multiple activated sources, we randomly select
2 out of 2,052 brain source locations to be activated and the

FIGURE 10 | Reconstructed sources by different ESI algorithms for epilepsy EEG data.
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first level neighboring sources of these two source locations
are also activated with a lower signal magnitude. Apply this
simulated dataset to train and validate the GFT-BiLSTM, and
then test it on the testing dataset. The performance of the GFT-
BiLSTM is compared with that of dSPM, MNE, and sLORETA.
The evaluation metrics of each model are shown in Table 2
and Figure 7. The comparison between the real source and the
estimated source is shown in Figure 8.

From Table 2 and Figure 7, the proposed GFT-BiLSTM
demonstrates better performance when compared with other
methods. In addition, with the increased number of activated
source, the estimation performance of all methods except the
GFT-BiLSTM deteriorates significantly. This is demonstrated
as an increase in LE and a decreased AUC value. There is
also a situation for other method in which the localization
of the central region is accurate while the localization of its
adjacent regions is slightly deviated. The reason is that as the
number of activated regions increases, the distribution of the
sources is no longer concentrated, and it is more challenging
to accurately estimate the locations of all active regions. The
reduction in performance for AUC is much more pronounced for
the benchmark algorithms. In contrast, the performance of the
GFT-BiLSTM is more stable and robust when it comes to multiple
activated sources.

Evaluation With Real Epilepsy Data
In order to further evaluate the performance of the proposed
GFT-BiLSTM, we applied it on the public epilepsy EEG dataset
from the Brainstorm tutorial datasets (Tadel et al., 2011). This
dataset was recorded from a patient who suffered from focal
epilepsy. The patient underwent invasive EEG to identify the
epileptogenic area then underwent a left frontal tailored resection
and was seizure-free during a 5-year follow-up period. We
followed the Brainstorm tutorial to obtain the head model, and
the lead field matrix. Then we calculated the average spikes (as
shown in Figure 9) of the provided EEG measurements with
29 channels. Apply the averaged EEG data for brain source
localization, and the estimated sources at peak (0 ms) from
different methods are shown in Figure 10, as compared to other
methods including dSPM, MNE, sLORETA.

It can be seen from Figure 10 that the proposed GFT-BiLSTM
provides a good reconstruction of the epileptogenic zone which
was validated by the follow-up survey after resection on the
left frontal region. The source area estimated by dSPM and
sLORETA spans a wide range cortical areas and includes part of
the right frontal lobe which is not related to the epilepsy lesion.
In contrast, the source location estimated by the MNE method

and the GFT-BiLSTM proposed in this paper is more accurate.
However, compared between the two methods, the range of
sources estimated by the GFT-BiLSTM is smaller, and the source
estimated by GFT-BiLSTM shows better continuity of the spatial
signal, due to the benefit of using GFT.

CONCLUSION

The inverse problem of source extents reconstruction is
challenging due to its highly ill-posed nature. In this paper, we
present a novel ESI framework, named GFT-BiLSTM, which is
based on the delineation of spatial graph frequency using graph
Fourier transform and BiLSTM, to solve the ESI problem in
a more efficient and robust way. Our numerical results based
on the synthetic data and real data show that the proposed
GFT-BiLSTM has a superior performance compared to other
benchmark methods. The future work can further explore more
clinical applications using the proposed framework. A more
rigorous selection of the low frequency set of eigenvectors can
also be investigated.
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