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Clustered event related spectral
perturbation (ERSP) feature in
right hand motor imagery
classification

Zhongjie Zhang* and Yasuharu Koike

Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan

A technology that allows humans to interact with machines more directly

and e�ciently would be desirable. Research on brain-computer interfaces

(BCIs) provides the possibility for computers to understand human thoughts

in a straightforward manner thereby facilitating communication. As a

branch of BCI research, motor imagery (MI) techniques analyze the

brain signals and help people in many aspects such as rehabilitation,

clinical applications, entertainment, and system controlling. In this study,

an imagery experiment consisting of four kinds of right-hand movements

(gripping, opening, pronation, and supination) was designed. Then a novel

feature, namely, clustered feature was proposed based on the event-related

spectral perturbation (ERSP) calculated from the EEG signal. Based on the

selected features, two classical classifiers (support vector machine and linear

discriminant classifier) were trained, achieving an acceptable accurate result

(80%, on average).
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1. Introduction

In recent decades, the development of the brain-computer interface (BCI) has

provided novel and intuitive interactions that make our lives more convenient. In

medicine, BCI helps stroke patients with rehabilitation, the disabled to control prosthetic

limbs, and amyotrophic lateral sclerosis (ALS) patients to communicate with others. In

addition, various BCI studies have been conducted on remote robot control, emotion

analysis, and entertainment equipment.

The implementation of these applications is inseparable from the brain

activities signal measurement. There are different measurement techniques, such

as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),

electrocorticography (ECoG), and electroencephalogram (EEG) for recording the signals

representing brain activity. ECOG is an invasive method that records high-quality signals

reflecting delicate brain activities, such as finger movement (Yoshimura et al., 2017).

However, there is a risk associated with ECoG because the electrodes or probes are set

on the exposed surface of the cortex. Therefore, research on signals from non-invasive
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methods, such as fMRI, MEG, and EEG signals has become

more popular. MEG and fMRI provide detailed brain activity

analysis with high spatial resolution (Ramadan and Vasilakos,

2017) although the temporal resolution is low because of the

measurement technique. Meanwhile, the devices used to acquire

fMRI and MEG are bulky, making it inconvenient to move

or carry. In contrast, EEG applications have characteristics

opposite to those of fMRI and MEG. The advantages of

high temporal resolution, portability, and safety make EEG

applicable to various scenarios, regardless of indoor or

outdoor environment.

EEG signal-based research, such as sentiment analysis,

motor control, attention detection, and motor imagery have

been applied in many different fields to help unravel the

complexity of brain activity. Analyzing the EEG signal provides

insight into the activities of the brain and control devices. Motor

imagery (MI) research plays a significant role in bridging this

gap for people and devices, such as prosthetic limbs, robotic

assistance systems, and rehabilitation equipment (Miladinović

et al., 2020). As a result, there are a number of EEG signal-based

motor imagery studies, such as the classification of the right vs.

left hand or hand vs. feet movement (Pfurtscheller et al., 2006).

However, the analysis of the same limb motor imagery is still

challenging because of the complexity of the brain activity and

low discrimination of the EEG signal (Srinivasan, 1999; Corley

and Huang, 2018). Thus, the main contributions of this study

are as follows:

1. Amotor imagery experiment was designed to record the EEG

signal of the right-hand imagery movement (grip, opening,

pronation, and supination). Through a visual stimulus, the

subjects could obtain a detailed hint on how to perform the

motor imagery task.

2. A novel feature calculation method was proposed to enhance

brain oscillatory activities in the frequency domain. To

improve the classifier performance, clustered event relative

spectral perturbation feature was proposed as input.

3. A comparative study on the feature performance of different

baseline. Comparing the baseline before observation period

and imagery period, we obtain an acceptable accuracy from

each subject on a small size dataset. This result provides a

possibility that the strategy can be changed as an online real-

time classification after the quick configuration of collecting

the subject’s signal.

2. Previous and relative research

In contrast to motor movement, in which the EEG

signal is recorded while the subject is performing the actual

action, motor imagery is a mental process that rehearses or

simulates a given action while the subject does not move

his/her body or limbs (Decety and Ingvar, 1990). Therefore,

motor imagery bridges the gap in communication between

people with disabilities, such as those wearing prostheses

and devices, and computers (Kappes and Morewedge, 2016).

Moreover, healthy people can also enjoy the benefits of

MI research.

Physiological arguments indicate that motor imagery

is strongly related to brain activity in the µ (8–12 Hz)

and β (16–24 Hz) bands (da Silva, 1991). By analyzing

the signals in these two bands, various MI applications

have been developed as novel interfaces between humans

and computers, such as prostheses (Elstob and Secco,

2016), exoskeletons (Rodríguez-Ugarte et al., 2018), drones

(Kos’ Myna et al., 2014), and robotic arms (Meng et al.,

2016).

Researchers have attempted to improve the analysis

accuracy of high sensitivity EEG signals in various aspects

through preprocessing, feature extraction, and classifier

design. Preprocessing methods consisting of spatial filters,

such as the common average reference (CAR; McFarland

et al., 1997), classical Laplacian method (Hjorth, 1975),

spherical spline Laplacian (Perrin et al., 1989), and adaptive

methods (Togha et al., 2019) have been used to improve the

signal-to-noise ratio (SNR) of the EEG signal and suppress

artifact interference.

In addition to the research on signal preprocessing, the

development of algorithms for feature extraction, based

on event-related desynchronization (ERD; Pfurtscheller

and Aranibar, 1977), event-related synchronization (ERS;

Pfurtscheller, 1992), event-related potential (ERP; Luck, 2014)

have also promoted MI research (Bashashati et al., 2007;

Ramadan and Vasilakos, 2017). Feature extraction methods,

such as wavelet transformation (WT; Adeli et al., 2003; Hsu

and Sun, 2009) and Fourier transformation (Akin, 2002;

Polat and Güneş, 2007) are effective in MI classification.

Besides, common spatial pattern (CSP; Wang et al., 2006)

method, which extremizes the variance of two-class signals,

is widely applied in MI research. Methods based on CSP,

such as filter bank common spatial pattern (FBCSP; Abbas

and Khan, 2018; Das et al., 2020) also perform very well in

MI classification.

Designing an efficient classifier is an important part of

MI research. Classic classifiers including linear discriminant

analysis (LDA; Tariq et al., 2019), support vector machine

(SVM; Suwannarat et al., 2018), Naïve Bayesian classifier

(NBC; Ang et al., 2012), classification and regression tree

(CART; Bentlemsan et al., 2014), and k-nearest neighbor

(kNN; Lotte et al., 2007), are widespread in various motor

imagery tasks. With the development of the computing power,

the neural network such as convolutional neural network

(Lawhern et al., 2018) and deep learning methods have

attracted increasing attention in recent years (Schirrmeister

et al., 2017; Ma et al., 2019). In this study, the performance

of SVM and LDA are compared in the right hand motor

imagery classification.
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3. Experiment and methodology

3.1. Experiment design

Nine healthy subjects (seven males and two females), aged

23–31 years (mean, 26.1; SD, 2.7) participated in the motor

imagery experiment. All of them were right-handed. None of

the subjects had any physical or psychological diseases. Studies

involving human participants were reviewed and approved by

the ethics committee of the Tokyo Institute of Technology

(ethics number: 2019001). The patients provided written

informed consent to participate in the study.

The EEG signal was recorded in a soundproof room. The

subjects placed their forearm on the armrest of an armchair in

a comfortable sitting posture. In front of the subjects, there was

a 27” monitor displaying pictures to guide the subject through

experimental instructions. One experimental trial was divided

into three parts, as shown in Figure 1A.

1. Preparation period: In this period lasting 3 s, the subjects

could adjust their sitting posture and feel relaxed to prepare

for the instructions.

2. Observation period: In this period lasting 3 s, the subjects

learned the right hand motor imagery from the figure. As

visual stimulus, the figure helps the subject imagine a more

detailed right hand movement (Neuper et al., 2005).

3. Imagination period: In this period lasting 4 s, the subjects

imagined the right hand movement (opening, gripping,

pronation, and supination) as shown on the monitor while

trying to avoid eye and body movement.

The experiment was repeated 80 times for each participant.

A 64-channel-scalp sensor (BIOSEMI Active Two, sampling at

2,048 Hz) was used to record the EEG signal, as shown in

Figure 1.

3.2. Preprocessing

The first stage in preprocessing is to improve the quality of

the EEG signal. A Hamming-windowed FIR filter is utilized to

acquire the 6–30 Hz EEG data, including the µ (8–12 Hz) and

β (16–24 Hz) bands. The common average reference, namely

CAR, is a popular and efficient method for enhancing SNR, and

is expressed as follows:

vCARi = vi −
1

N

N
∑

j=1

vj (1)

where vi is the value of the ith electrode and N is the number

of electrodes. By subtracting the average value from all electrode

values in large areas of the scalp, CAR emphasizes local activity

in the EEG data, such as motor imagery activity in the µ and

β bands. As shown in Figure 2A, CAR removes artifacts, such

as eye movement and electromyography (EMG), and decreases

the correlation between EEG channels (McFarland et al., 1997).

Based on the result from previous research and clinical report

(Pfurtscheller and Neuper, 1997), human motor movement and

motor imagery originate from the motor cortex of the brain.

Therefore, 21 channels which cover themotor cortex are selected

for the further analysis.

3.3. Feature extraction

3.3.1. Event related spectral perturbation (ERSP)

Event related desynchronization and synchronization

(ERD/S), which are brain oscillatory activities in specific

frequency bands extracted from the EEG signal, are widely

utilized in motor imagery research (Pfurtscheller and Aranibar,

1977; Pfurtscheller, 1992). To quantify and generalize ERD/S,

the concept of event-related spectral perturbation (ERSP)

(Grandchamp and Delorme, 2011) is introduced. ERSP

describes the relative changes in the EEG amplitude spectrum

of similar events in the experimental trials, and is computed

using a divisive baseline and discrete sliding window. The event

related spectrum for a single trial can be estimated as

Pi =

∣

∣Fi(f , t)
∣

∣

2

µB(f , i)
(2)

where Fi(f , t) is the spectral estimate at frequency f and time

point t of the ith trial. We apply Fast Fourier Transform

(FFT) by using a Hanning window of 512 sample length and

75% overlapping of the window length to assume the spectral

estimate. µB(f , i) is the mean baseline spectral estimate for trial

k at frequency f and defined as

µB(f , i) =
1

m

∑

t′∈B

∣

∣Fi(f , t
′)
∣

∣

2
(3)

where B is the ensemble of time points in the baseline period and

m is the total number of time points in the baseline period. The

ERSP estimate of one single trial can calculate as

ERSPsingle = 10log10(Pi) (4)

Considering the EEG signal is a non-stationary signal with a high

degree of variability, even if the signal is from the same subject, it

is necessary to reduce the signal’s randomness. By averaging the

values of ERSP in subjects, we can not only obtain a stationary

signal feature, but also can observe the activities of ERS and ERD

directly from the visualization as shown in Figure 3. The mean

event related spectrum can be estimated as

S(f , t) =
1
n

∑n
i=1

∣

∣Fi(f , t)
∣

∣

2

µ′
B(f )

(5)
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FIGURE 1

The experimental design of right hand motor imagery. (A) Illustrates the grip trial of right-hand motor imagery. (B) Shows that the subject

adjusted his position and relaxed during the rest period.

FIGURE 2

The preprocessing of EEG signal. (A) Illustrates the EEG imagery epochs extracted from preprocessed (band pass filter and common average

reference) EEG signal. (B) Shows the standard 10–20 electrode layout of the 64-channel EEG sensor. Twenty-one channels in the red

rectangular area are selected for further processing.

where µ′
B(f ) is the mean spectral estimate for all baseline points

at frequency f and defined as

µ′
B(f ) =

1

mn

n
∑

i=1

∑

t′∈B

∣

∣Fi(f , t
′)
∣

∣

2
(6)

where n is the number of trials to average the mean calculation.

The mean ERSP can be calculated as

ERSPmean = 10log10(S(f , t)) (7)

3.3.2. Clustered feature

In this study, we suppose that each single trial ERSP is

distributed in a high dimensional space. There must be a ground

truth value which represents a specific motor imagery existing

in this space. The assumption is that all the single trial ERSP

is distributed near the ground truth value within a threshold

distance. We apply the bootstrap method and randomly pick k

trials as the center cluster to estimate the ground truth value.

The Euclidean distance from single trial to estimated ERSP can

be calculated as

di =
∥

∥

∥

ERSPsingle − ˜ERSPi

∥

∥

∥

2
(8)
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FIGURE 3

The visualization of ERSP calculation in C3 channel. (A) Is the result calculated by one trial and (B) is calculated by 10 trials picked randomly from

all trials. Blue areas show the ERD while the red areas show the ERS.

where the ERSPsingle is acquired from Equation (4), ˜ERSPi

is the estimated ERSP of a specific motor imagery, i ∈

{Griping,Opening, Pronation, Supination}, di ∈ R
fb×1 and fb is

frequency band. For binary classification such like griping vs.

opening or pronation vs. supination, the ERSP distance feature

of a channel can be denoted as

Dj = [dgriping , dopening] or Dj = [dpronation, dsupination]

(9)

where Dj ∈ R
2fb×1 is the distance feature of jth channel.

Therefore, the multi-channel feature can be denoted as

F = [D1,D2, ...,Dj] (10)

where F ∈ R
2fb×nc and nc is the number of channels.

3.4. Classification

In this section, we introduce two classical machine learning

classifiers such as support vector machine (SVM) and linear

discriminate analysis (LDA).

3.4.1. Discriminant analysis models (LDA)

There are various discriminant analysis models such as

regularized linear, quadratic etc. Discriminant analysis attempts

to maximize the variance between the classes and minimize

the variance within the classes by mapping the data to a low

dimensional space and assuming the classes’ covariance. The

prediction function is described as (Malki et al., 2015):

ω̂ = argmin
ω=1,2,...K

K
∑

k=1

P̂(k|x)C(ω|k) (11)

where ω̂ is the predicted classification,K is the number of classes,

P̂(k|x) is the posterior probability of class k for observation x

and C(ω|x) is cost of classifying an observation as ω when its

true class is k. Regularized linear discriminant analysis (LDA) in

which all classes have the same covariance matrix is employed

for further classification. Meanwhile, we utilize MATLAB

2022 to optimize the hyperparameter automatically and apply

“expected-improvement-plus” as optimization options.

3.4.2. Support vector machine (SVM)

In binary classification problems, support vector

machine(SVM) shows an effective role. SVM algorithm is

to find a hyperplane which can separate two classes with

the largest margin by projecting the input vector into a high

dimensional space. The hyperplane we expected can separate

two classes with the largest margin where margin means the

maximum width of the parallel to the hyperplane that has no

interior data points. For training data d dimension xj with their

categories yi, the expected hyperplane can be denoted as:

f̂ (x) = x′β̂ + b̂ = 0 (12)

where xj ∈ R
d, yi = ±1, β̂ and b̂meet the inequality yi f̂ (xj) ≥ 1.

Therefore, the prediction function can be denoted as:

class(z) = sign(z′β̂ + b̂) = signf̂ (z) (13)
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where z is the predicted data. We employ a linear kernel to set

SVM and utilize the same hyperparameter optimization option

as LDA in MATLAB 2022.

4. Result

4.1. Accuracy based on single trial ERSP
estimate

The baseline time is set at when the visual stimulus emerges.

A 5,000 ms lasting motor imagery epoch which is from −1,000

ms before baseline to 4,000 ms after baseline is extracted in the

ERSP calculation. Ten-fold cross validation is applied on single

trial ERSP to train the SVM and LDA. The multi channels which

cover the motor cortex contain 21 channels (FC5, FC3, FC1,

FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1,

CPz, CP2, CP4, CP6) as Figure 2B. Table 1 shows the average

accuracy and corresponding standard deviation of 9 subjects in

griping vs. opening classification. Based on single channel ERSP,

the best accuracy of the SVM model is 55.0% from subject 9

and the average accuracy is 47.95%. The best accuracy of the

LDA model is 59.59% from subject 8, and the average accuracy

is 51.28%. The average loss is 0.51 of SVM and 0.48 of LDA.

Based on the multi-channel ERSP from motor cortex area, the

best accuracy of the SVMmodel is 55.94% from subject 9 and the

average accuracy is 51.15%. The best accuracy of the LDAmodel

is 59.06% from subject 8, and the average accuracy is 52.50%.

The average loss is 0.49 of the SVM and 0.48 of the LDA.

Similarly, Table 2 shows the performance of SVM and LDA

in the pronation vs. supination classification. Based on single

channel ERSP, subject 3 obtains the best accuracy in both SVM

(62.50%) and LDA (59.06%) models. The average accuracy is

52.19% of SVM and 52.32% of LDA. The average loss is 0.47

of the SVM and 0.48 of the LDA. Based on motor cortex area

channels, the best accuracy of the SVM model is 56.25% from

subject 6 and the best accuracy of the LDA model is 58.44%

from subject 1. The average accuracy is 50.66% of the SVM and

48.13% of the LDA. The average loss is 0.49 of the SVM and 0.52

of the LDA.

4.2. Accuracy based on clustered feature

In this section, 20 trials are utilized to estimate the

mean ERSP value as the center cluster reference. The binary

classification strategy is implemented as Figure 4 shown.

Table 3 shows the average accuracy and corresponding standard

deviation of 9 subjects in griping vs. opening classification.

Through applying clustered features on a single channel, the

best accuracy is 91.25% of SVM model and 90.94% of LDA

model from subject 6. The average accuracy is 76.15% of the

SVM and 71.81% of the LDA. The average loss is 0.28 and

0.24, respectively. Through applying multi-channel clustered

features, subject 1 obtains the best accuracy (95.94%) of SVM

and subject 7 obtains the best accuracy (95.63%) of LDA. The

average accuracy is 85.87% of the SVM and 84.03% of the LDA.

The average loss is 0.14 and 0.16, respectively.

Table 4 shows the average accuracy and corresponding

standard deviation of 9 subjects in pronation vs. supination

classification. Subject 7 obtains the best accuracy in both single

(94.06% of the SVM and 90.94% of the LDA) andmulti-channels

clustered features (98.75% of SVM and 97.50% of LDA). The

average accuracy based on single channel clustered features is

74.89% of the SVM and 72.88% of the LDA. The average loss

is 0.27 and 0.25, respectively. Besides, the average accuracy

based on multi-channel clustered features is 84.55% of the SVM

and 83.81% of the LDA. The average loss is 0.15 and 0.16,

respectively.

4.3. Parameter tuning

4.3.1. Trial number for clustered feature
calculation

In this part, the accuracy of calculating the multi-channel

clustered feature by different trial number is enumerated. Table 5

shows the accuracy of SVM model performance when applying

clustered feature on multi-channel in griping and opening

classification. All the subjects obtain the highest accuracy

when utilizing 10 trials to compute the multi-channel clustered

feature. The accuracy drops a lot from 90.77 to 84.03% when

comparing the result of applying 10 and 20 trials. The accuracy

of all subjects drops gradually and slightly when the trial number

of calculating multi-channel clustered features raises from 20 to

80. The mean average varies within 5% between adjacent two

groups.

4.3.2. Clustered ERSP estimation of di�erent
baseline

The key point of event related spectral perturbation is the

baseline setting. According to the previous experimental report

and the assumption we proposed, an observation period is

added to enhance themotor imagery activities in our experiment

design. As a result, we utilize a different baseline to calculate the

cluster mean ERSP estimation and compare the performance in

both classifiers based on the multi-channel clustered feature in

this part. Based on the SVM model, onlyăsubject 3 and 8 in the

observation period obtain a better accuracy than others in the

imagery period. Meanwhile, subject 2 and 8 in the observation

period obtained better accuracy than others in the imagery

period based on the LDAmodel. In general, the clustered feature

estimated by imagery period baseline yields a better result than

observation period baseline. (In SVM, observation vs. imagery,

p= 0.02, In LDA, observation vs. imagery, p= 0.08).
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TABLE 1 Griping vs. opening classification based on ERSP estimation.

Subject
SVM (%) LDA (%)

C3 channel (single) Motor cortex (multi) C3 channel (single) Motor cortex (multi)

S1 49.38± 5.67 53.75± 5.47 52.81± 7.13 56.25± 4.66

S2 35.94± 6.12 52.81± 4.53 51.88± 3.95 53.13± 5.31

S3 49.38± 3.55 35.94± 3.97 40.62± 2.08 35.31± 5.11

S4 48.75± 3.95 53.75± 5.47 54.69± 6.63 57.81± 5.36

S5 51.56± 5.16 54.38± 9.34 48.44± 5.75 56.25± 4.89

S6 44.69± 6.76 50.31± 4.02 51.25± 5.74 50.63± 2.87

S7 44.38± 1.32 50.94± 5.11 48.75± 2.63 49.38± 2.57

S8 52.50± 5.47 52.50± 4.37 59.69 ± 5.79 59.06 ± 4.84

S9 55.00 ± 5.35 55.94 ± 4.98 53.44±3.74 54.69± 3.97

Average 47.95± 7.21 51.15± 7.69 51.28± 6.95 52.50± 8.41

Accuracy (%) and standard deviation (±) for single channel and multi-channels in two classifiers. The best results are boldfaced.

TABLE 2 Pronation vs. supination classification based on ERSP estimation.

Subject
SVM (%) LDA (%)

C3 channel (single) Motor cortex (multi) C3 channel (single) Motor cortex (multi)

S1 45.63± 4.93 53.13± 4.17 45.63± 4.47 58.44 ± 3.31

S2 57.81± 5.36 46.88± 5.89 56.25± 3.61 47.50± 5.86

S3 62.50 ± 6.42 52.50± 3.84 59.06 ± 3.74 45.63± 7.25

S4 52.50± 8.18 41.88± 6.46 51.88± 5.15 41.88± 4.47

S5 52.81± 3.44 53.13± 4.42 51.56± 6.29 50.94± 5.71

S6 51.56± 3.68 56.25 ± 5.31 52.19± 3.62 56.88± 3.55

S7 46.88± 7.66 46.88± 2.95 46.25± 6.39 36.56± 5.11

S8 55.94± 6.82 53.13± 2.55 57.81± 6.63 42.81± 6.43

S9 43.12± 6.38 52.18± 2.57 50.31± 0.99 52.50± 3.54

Average 52.19± 8.19 50.66± 6.01 52.32± 6.43 48.13± 8.46

Accuracy (%) and standard deviation (±) for single channel and multi-channels in two classifiers. The best results are boldfaced.

FIGURE 4

The architecture of the binary right hand motor imagery classification.

4.3.3. Channel selection

It is necessary to take the channel selection into account. As

the description above, 21 channels are employed to calculate the

clustered features because these channels cover the brain motor

cortex area and record the EEG signals for motor imagery tasks.

Considering both contralateral motor cortex and the ipsilateral

motor cortex has its own physiological effect on brain activities,

we test the clustered features performance by applying different
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TABLE 3 Griping vs. opening classification based on clustered features.

Subject
SVM (%) LDA (%)

C3 channel (single) Motor cortex (multi) C3 channel (single) Motor cortex (multi)

S1 74.38± 2.47 95.94 ± 2.57 75.31± 2.31 92.50± 2.64

S2 79.38± 3.02 82.50± 3.01 79.69± 2.21 81.25± 4.42

S3 72.50± 4.11 90.63± 3.90 65.31± 6.66 84.69± 4.76

S4 78.75± 4.37 81.25± 4.42 74.69± 3.74 81.56± 2.31

S5 88.13± 3.84 83.13± 5.55 73.13± 7.68 79.38± 5.35

S6 91.25 ± 1.32 83.75± 3.23 90.94 ± 0.99 83.44± 3.62

S7 72.81± 2.57 94.69± 2.11 72.19± 3.44 95.63 ± 2.19

S8 62.81± 4.53 80.31± 3.91 51.25± 9.57 76.56± 6.12

S9 65.31± 3.10 80.63± 2.87 63.75± 3.36 81.25± 3.29

Average 76.15± 9.51 85.87± 6.81 71.81± 11.61 84.03± 7.03

Accuracy (%) and standard deviation (±) for single channel and multi-channels in two classifiers. The best results are boldfaced.

TABLE 4 Pronation vs. supination classification based on clustered features.

Subject
SVM (%) LDA (%)

C3 channel (single) Motor cortex (multi) C3 channel (single) Motor cortex (multi)

S1 74.06± 3.62 71.88± 3.61 71.25± 2.47 74.38± 4.61

S2 77.19± 2.57 97.19± 1.77 78.13± 3.90 95.31± 2.66

S3 73.44± 3.38 84.06± 1.77 69.38± 3.84 90.00± 2.87

S4 81.88± 3.84 82.81± 5.36 77.19± 5.71 77.81± 5.20

S5 78.44± 3.11 73.44± 5.56 74.06± 2.96 75.00± 5.71

S6 67.50± 4.93 94.06± 3.44 68.75± 4.17 86.25± 4.70

S7 94.06 ± 1.77 98.75 ± 1.61 90.94 ± 4.53 97.50 ± 1.32

S8 65.31± 2.31 76.88± 5.35 66.88± 6.46 78.13± 4.42

S9 62.19± 1.77 81.88± 4.11 59.38± 1.47 80.00± 7.39

Average 74.89± 9.64 84.55± 10.22 72.88± 9.28 83.81± 9.41

Accuracy (%) and standard deviation (±) for single channel and multi-channels in two classifiers. The best results are boldfaced.

TABLE 5 The accuracy (%) for applying di�erent trial numbers to calculate the multi-channels clustered feature in griping vs. opening classification.

Trial number S1 S2 S3 S4 S5 S6 S7 S8 S9 Average

10 93.44 92.50 91.56 85.63 90.63 94.06 97.19 88.44 83.44 90.77

20 92.50 81.25 84.69 81.56 79.38 83.44 95.63 76.56 81.25 84.03

30 89.69 74.38 82.19 76.25 70.63 80.94 97.50 65.31 89.06 80.66

40 83.44 69.06 65.94 72.81 65.94 76.88 93.44 61.88 90.31 75.52

50 90.31 77.19 71.56 72.81 70.94 75.00 94.38 66.25 76.56 77.22

60 75.31 72.50 62.81 70.31 64.38 69.69 85.00 62.81 79.06 71.31

70 83.44 73.13 66.56 70.00 66.56 63.75 90.31 64.69 75.94 72.70

80 81.88 79.06 64.06 69.69 65.63 72.50 78.44 68.75 80.63 73.41

The boldfaced accuracy is selected as default trial number.

channel selection combinations in this part. As Table 7 shown,

channel FC5, FC3, FC1, C5, C3, C1, CP5, CP3, CP1 represent

the left contralateral motor cortex while channel FC6, FC4, FC2,

C6, C4, C2, CP6, CP4, CP2 represent the right ipsilateral motor

cortex. In the LDA model, full motor cortex channel selection

obtains the best accuracy except for subject 6 by single C3

channel, subject 8 by single C4 channel and subject 7,9 by left

contralateral motor cortex. In addition, the average accuracy is
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FIGURE 5

Comparisons of classification performances using single channel ERSP, multi-channel ERSP, single channel clustered feature, and multi-channel

feature. *p < 0.05, **p < 0.001. Dashed line denotes the chance level and CF represents clustered feature. (A,B) Illustrate the ANOVA test result of

SVM and LDA in griping vs. opening classification. (C,D) illustrate the ANOVA test result of SVM and LDA in pronation vs. supination classification.

72.71% based on the C4 channel, 78.47% based on the left motor

cortex, and 77.99% based on the right motor cortex. In addition,

only the p-value (full motor cortex channels vs. single channel

C3 or C4) is <0.05.

4.3.4. Frequency band selection

As the most informative frequency band in motor imagery

tasks, µ band (8–12 Hz) and β band (16–24 Hz) play a vital

role in the EEG signal analysis. Considering their different

physiological meanings, the clustered feature performance of

LDAmodel in each frequency is illustrated as Table 8 shown. The

average accuracy of µ band is 75.31% while the average accuracy

of β band is 79.20%. In addition, the wide band (8–24 Hz) which

contains the µ band and β band obtains the average accuracy at

84.03%. The p-value of wide band vs. µ band is <0.05 while the

p-value of wide band vs. µ band and β band vs. µ band is>0.05.

5. Discussion

5.1. Performance of classification

The classification result and significance level is compared

as Figure 5 shown. In griping vs. opening classification

(Figures 5A,B), the average accuracy (47.95, 51.15, 51.28, and

52.50%) is around chance level (50%) through single channel

and multi-channel ERSP input. The result shows the low

performance of SVM and LDA which means the classifiers

cannot work properly to distinguish these two classes. Through
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TABLE 6 The multi-channel clustered feature calculation based on di�erent baseline time in griping vs. opening classification.

Subject
SVM (%) LDA (%)

Observation baseline Imagery baseline Observation baseline Imagery baseline

S1 76.88± 4.22 95.94 ± 2.57 78.44± 4.02 92.50 ± 2.64

S2 78.44± 3.44 82.50 ± 3.01 81.25 ± 2.94 81.25± 4.42

S3 75.63± 2.46 90.63 ± 3.90 76.56± 3.37 84.69 ± 4.76

S4 72.19± 2.73 81.25 ± 4.42 74.69± 5.19 81.56 ± 2.31

S5 72.50± 5.06 83.13 ± 5.55 72.50± 2.87 79.38 ± 5.35

S6 90.00 ± 3.23 83.75± 3.23 90.00 ± 2.47 83.44± 3.62

S7 87.81± 1.77 97.19 ± 0.99 94.69± 2.11 95.63 ± 2.19

S8 75.31± 3.74 80.31 ± 3.91 68.75± 4.66 76.56 ± 6.12

S9 80.00± 1.61 80.63 ± 2.87 75.94± 3.62 81.25 ± 3.29

Average 78.40± 6.96 85.87 ± 6.81 78.40± 7.34 84.03 ± 7.03

The better accuracy (%) and standard deviation (±) are boldfaced.

TABLE 7 The LDA model performance of clustered feature based on di�erent channel selection in griping vs. opening classification.

C3 channel C4 channel Left cortex Right cortex Motor cortex

S1 75.31± 2.31 80.00± 4.21 94.69± 1.51 84.06± 1.77 92.50 ± 2.64

S2 79.69± 2.21 70.94± 3.62 78.75± 5.06 74.06± 3.31 81.25 ± 4.42

S3 65.31± 6.66 67.19± 3.68 61.88± 4.11 78.13± 2.08 84.69 ± 4.76

S4 74.69± 3.74 72.50± 3.84 74.69± 5.19 73.75± 3.67 81.56 ± 2.31

S5 73.13± 7.68 67.19± 5.16 76.25± 4.47 71.88± 3.90 79.38 ± 5.35

S6 90.94 ± 0.99 85.63± 3.02 83.75± 2.87 85.94± 3.04 83.44± 3.62

S7 72.19± 3.44 75.94± 2.11 99.06 ± 1.51 95.94± 3.31 95.63± 2.19

S8 51.25± 9.57 76.88 ± 2.82 55.94± 4.53 74.69± 3.44 76.56± 6.12

S9 63.75± 3.36 58.13± 3.95 81.25 ± 2.09 63.44± 4.90 81.25± 3.29

Average 71.81± 11.61 72.71± 8.43 78.47± 13.57 77.99± 9.53 84.03 ± 7.03

The best accuracy (%) and standard deviation (±) are boldfaced.

TABLE 8 The LDA model performance of clustered feature based on di�erent frequency band in griping vs. opening classification.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average

µ band (8–12 Hz) 90.94 61.25 70.94 82.81 53.75 79.06 91.56 68.75 78.75 75.31

β band (16–24 Hz) 74.69 78.75 77.19 80.00 76.87 90.31 96.88 67.81 70.31 79.20

Wide band (8–24 Hz) 92.50 81.25 84.49 81.56 79.38 83.44 95.63 76.56 81.25 84.03

The best accuracy (%) are boldfaced.

applying clustered feature on single channel and multi-

channel, the accuracy raises from 47.95 to 76.15%, 51.15 to

85.87% in SVM model and 51.28 to 71.81%, 52.50 to 84.03%

in LDA.

Similarly, in pronation vs. supination classification

(Figures 5C,D), both classifiers, whose accuracy are 52.19,

50.66, 52.32, and 48.13%, cannot distinguish the motor

imagery through single and multi-channel ERSP input as

well. By applying clustered feature on single channel and

multi-channel, the accuracy raises from 52.19 to 74.89%, 50.66

to 85.87% in SVM model and 52.32 to 72.88%, 48.13 to 84.03%

in LDA.

From statistical analysis as Figure 5 shown, there is a

significant improvement by applying clustered feature (p <

0.001) in all classifiers and motor imagery classifications. In

addition, there also is a significant difference between single

channel and multi-channel clustered feature input in both

classifiers(SVM and LDA).
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5.2. Parameter setting

The feature extraction method we proposed in this paper

is utilizing a mean ERSP estimation as a cluster to calculate

the Euclidean distance. The main factor which highly affects

the performance is how many trials are suitable for the cluster

ERSP estimation. The result from Table 5 shows that the

average accuracy drops gradually with the increasement of trials.

However, from the statistical analysis, the p < 0.05 between

each group except trial number equaling to 10. The result shows

that there’s no significant difference between utilizing 20 or up

to 80 trials to calculate the clustered feature. In the cluster

methods, the centroid value may deviate from the true value

with the reduction of trial number for estimation. This causes

the overfitting during the classifier’s training and tends to obtain

a very high accuracy. Therefore, there’s a trade off in the cluster

ERSP estimation. In this paper, we employ 20 trials to estimate

the cluster ERSP considering the size of the dataset.

As for baseline setting, the observation period which is

supposed to enhance the motor imagery activities causes the

baseline changing of the ERSP estimation in our experiment

design. The result from Table 6 shows that imagery baseline

estimation yields a better accuracy than observation period

baseline. However, the p-value of two classifiers in both

conditions shows that there is no significant difference between

two baselines (p = 0.02 in the SVM and p = 0.08 in the LDA).

As a result, we set 1,000 ms before imagery epoch as baseline

considering better accuracy and signal continuity.

In addition, we select different channels and frequency

bands to explore the best combination in the motor imagery

task. The accuracy from Table 7 illustrates that the channels

covering the full motor cortex area obtains the best result.

Based on ANOVA test, single contralateral channel C3 shows

no significant difference with the single ipsilateral channel

C4. Similarly, there is no significant difference between multi

contralateral channels (i.e., left motor cortex), multi ipsilateral

channels (i.e., right motor cortex), and full motor cortex

channels (i.e., 21 channels). However, clustered features based

on the full motor cortex area have significant differences with

single channel C3 and C4. Therefore, we employ 21 channels to

compute the clustered feature considering its better accuracy.

The accuracy from Table 8 compares the LDA performance

based on multi- channel clustered feature different frequency

bands. The wide frequency band obtains the best average

accuracy though subject 8 obtains the best accuracy in µ

band and subject 6 obtains the best accuracy in β band. The

ANOVA test shows that the wide frequency band feature has

the significant difference with the µ band feature while no

significant difference with the β band feature. As a result, the

wide frequency band is extracted to compute the clustered

feature in our classification strategy.

TABLE 9 Comparative accuracy (%) with other features in linear

discriminant analysis.

Motor imagery classification CSP FBCSP TS TS-PLS CF

Griping vs. Opening 61.90 66.19 71.18 80.02 84.03

Pronation vs. Supination 66.38 71.69 66.58 78.55 83.81

The result of our method (clustered feature, CF) is boldfaced.

5.3. Comparative result

In motor imagery research based on EEG signals, feature

extraction algorithms such as common spatial pattern (CSP)

and filter bank common spatial pattern (FBCSP) are widely

employed. Suwannarat et al. (2018) utilized these methods

on same hand motor imagery classification. Meanwhile, Chu

et al. (2020) applied tangent space (TS) features and partial

least square (PLS) algorithms to improve the performance of

discriminant analysis classifiers. We compare our proposed

feature with their results of the same classifier(LDA) and show

the accuracy as Table 9 follows.

Clustered feature yields a better accuracy than applying CSP,

FBCSP and tangent feature while has the similar accuracy to TS-

PLS (80.02% in griping vs. opening and 78.55% in pronation vs.

supination). However, our proposed feature also has limitations

that it needs prior information to estimate the cluster.

6. Conclusion

In this paper, we estimate the mean ERSP from EEG signal.

Then we employ the mean ERSP as cluster reference to calculate

the feature by Euclidean distance and utilize the clustered feature

to train two classical machine learning classifiers. The accuracy

obtained by both classifiers in all motor imagery tasks is over

80%. After fast configuration on the subject to estimate the

clustered feature, we propose a possibility to apply on online

analysis.

In future work, we will consider the optimization method on

cluster estimation, develop an adaptive method on searching the

best channels and employ other feature extraction algorithms.

On the basis of this paper, we will develop a real-time brain

computer interface such as robotic grasping system, prosthesis

controlling, etc.
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