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Emotion recognition based on EEG (electroencephalogram) has become a

research hotspot in the field of brain-computer interfaces (BCI). Compared

with traditional machine learning, the convolutional neural network model has

substantial advantages in automatic feature extraction in EEG-based emotion

recognition. Motivated by the studies that multiple smaller scale kernels

could increase non-linear expression than a larger scale, we propose a 3D

convolutional neural network model with multiscale convolutional kernels to

recognize emotional states based on EEG signals. We select more suitable

time window data to carry out the emotion recognition of four classes (low

valence vs. low arousal, low valence vs. high arousal, high valence vs. low

arousal, and high valence vs. high arousal). The results using EEG signals in

the DEAP and SEED-IV datasets show accuracies for our proposed emotion

recognition network model (ERN) of 95.67 and 89.55%, respectively. The

experimental results demonstrate that the proposed approach is potentially

useful for enhancing emotional experience in BCI.
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Introduction

Automatic EEG-based emotion recognition has been a research hotspot in
the field of BCI and human–computer interaction over the past decade. Efficient
emotion recognition methods based on EEG can prompt BCI to build a harmonious
human-computer interaction environment, which can promote a natural, convenient,
and friendly experience as communication between people (Zhang et al., 2015;
Xie et al., 2019).

In general, there are two ways to recognize emotion, i.e., through non-
physiological and physiological signals. Non-physiological signals (such as facial
expressions, speech, gestures, etc.) can be artificially controlled (Yao, 2014). However,
physiological signals (such as electroencephalogram (EEG), electrocardiograph (ECG),
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electromyography (EMG), magnetoencephalography (MEG),
functional near-infrared spectroscopy (fNIRS) etc.) can show
reliable and natural emotions without subjective control (Cai
et al., 2018). EEG and MEG are the types of electrical signal
produced by the brain that provides very useful information
relating to emotional activity of the brain. Moreover, EEG and
MEG have good temporal resolution and both are non-invasive.
Some researchers (Xing et al., 2019; Sun et al., 2020) found
that the MEG signal and fNIRS signal can realize emotional
recognition, and could obtain the accuracy of high binary
classification. However, MEG mainly reflects the inner structure
of the brain. Nevertheless, EEG is used to check the function of
the brain and mainly through brain waves reflecting the mood of
the brain. As a result, EEG-based emotion recognition methods
have become popular in current research.

Currently, traditional machine learning methods (Yoon
and Chuang, 2013; Li et al., 2018) can effectively recognize
emotions but require manual feature extraction and only
consider the independence of a single feature in time or
space. The two-dimensional convolutional neural network (2D-
CNN) of deep learning can solve these problems. However,
emotion recognition requires taking into account not only
the time dependence between data points but also the spatial
relevance between different electrodes of EEG signals (Yea-
Hoon et al., 2018). In contrast to 2D-CNN (Mei and Xu, 2017),
the emotion recognition method based on three-dimensional
convolutional neural networks (3D-CNN) can meet these needs
(Salama et al., 2018; Zhao et al., 2020). The 3D-CNN models
can automatically extract spatiotemporal features. The existing
emotion recognition model has achieved high accuracy, while
most researchers believe that multiple smaller-scale kernels have
the ability to increase non-linear expression more than a larger
kernel. Therefore, how to define the convolutional kernel size in
the convolutional network is still an interesting topic in emotion
recognition research.

In this paper, we propose a four-class emotion recognition
method based on a multiscale convolutional kernel 3D
network, in which EEG-based emotional states can be efficiently
recognized. First, we located the spatial position of the EEG
signal electrode according to the 10–20 system diagram, the
positional relationship between the positioning electrodes, and
retained the spatial information of the EEG. The emotional
recognition model based on three-dimensional EEG is generally
used in the size of a consistent convolutional kernel. However,
this paper attempts to use different smaller sizes of convolutional
kernels, which are expected to increase the non-linear features
of the data and the amount of data available. In addition,
we join the double linear convolutional structure to the
emotion recognition network model (ERN), and the EEG
data are analyzed in parallel, thereby obtaining efficient
recognition results.

According to existing studies, most researchers have applied
two lengths of time windows, i.e., 1 s (1 s) and 2 s (2 s).

To find the most suitable time window length for the ERN
model, we compare the classification performance of 1 and 2
s time window lengths. The experimental results have shown
that multiscale convolutional kernels with suitable time window
lengths are more effective, which can improve the accuracy for
emotion recognition. In summary, the main contributions of
this paper are as follows. (1) We optimized the original dataset,
designed a repositioned electrode topology, and constructed
a 3D dataset for the model. (2) We enriched the emotion
recognition method based on EEG and constructed a multiscale
convolutional kernel 3D-CNN model to achieve more efficient
emotion recognition performance.

The paper is structured as follows: related research is
discussed, followed by consideration of the methodology
adopted in our work. Experimentation and evaluation are
addressed, and a discussion with results derived from the
experimentation is presented. The paper closes with concluding
observations and consideration of future work.

Related work

Currently, a variety of traditional machine learning-based
emotion recognition methods have been documented in the
literature, which also confirms the effectiveness and accuracy
of traditional machine learning on emotion classification.
However, machine learning-based emotion recognition
methods require the specifically detailed design of classification
models and manual extraction of temporal or spatial emotion
features of EEG signals. For example, the traditional classifiers
used in the literature include the support vector machine
(SVM), and k-nearest neighbors (KNN) (Jenke et al., 2014).
However, the use of traditional machine learning requires the
manual extraction of relevant emotion features, limited to
the temporal or frequency domains, with domain knowledge
barriers and timeliness problems.

Emotion recognition methods based on deep learning
can solve these problems. The deep network can extract
different types of features at the same time, with the
advantages of automatic detection features, and solve the
dependence of artificial feature extraction. For example, Lin
et al. (2017) proposed an emotion recognition method based
on CNN, converting EEG data from the signal format into
an image format containing time domain and frequency
domain information, combined with the characteristics of other
physiological signals, which were input into the pretrained
AlexNet (Krizhevsky et al., 2012) network model for emotion
recognition. Kwon et al. (2018) also proposed a sentiment
classification method for extracting features based on the 2D
CNN model, which were preprocessed before convoluting EEG
signals by wavelet transformation considering both the time and
frequency domains to improve the recognition performance.

In addition to CNN model, there are other methods
effectively identify emotions. Liu et al. (2018) proposed that
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the Residual Network-50 (ResNet-50) model can automatically
learn deep semantic EEG information and classify the new
features of the fusion of linear-frequency cepstral coefficients
(LFCC). Xing et al. (2019) used a stack auto-encoder (SAE) to
build and solve the linear EEG mixing model and the emotion
timing model based on the long short-term memory recurrent
neural network (LSTM-RNN). Liu et al. (2020) proposed a
capsule network based on the multi-level feature boot, which
can recognize multi-electrode EEG emotions. In the same year,
Tao (Tao et al., 2020) proposed a convolutional recursive neural
network (ACRNN) based on the attention mechanism, which
can extract more discriminant features from the EEG signal, and
improve the accuracy of emotional identification.

However, these models ignore the spatial structure of
the EEG and the variations and distortion of the electrodes
in each dimension. With the study of deep learning neural
networks, methods for extracting spatiotemporal features have
been proposed. Yang et al. (2018) implemented a hybrid neural
network integrating a CNN and a recurrent neural network
(RNN) so that network models could extract and integrate
spatiotemporal features. Wang et al. (2018) proposed a simple
and efficient preprocessing method that converts multiple
electrodes of EEG signals into electrode topological maps
containing topological location information. An et al. (2021)
proposed an EEG emotion recognition algorithm based on 3D
feature fusion and a convolutional auto-encoder (CAE). Zhao
et al. (2020) proposed a 3D-CNN model to automatically extract
the spatiotemporal features of EEG signals, introduced the
preprocessing method for baseline signal and electrode topology
relocation, compared the performance of the 2D convolutional
kernel and 3D convolutional kernel in detail, and showed that
the 3D-CNN model was more advantageous.

Different convolutional network recognition models set
different convolutional kernel sizes, while most researchers
(Szegedy et al., 2016) believe that multiple smaller scale
kernels have the ability to increase non-linear expression
more than a larger kernel. The different sizes of kernels in
the network can increase the number of features that can
be used and improve model performance. In this paper,
we propose a four-class emotion recognition method based
on a multiscale convolutional kernel 3D network, in which
EEG-based emotional states can be efficiently recognized. The
experimental results on the DEAP and SEED-IV datasets show
that the proposed model has preferable performance than the
other existing models in terms of recognition accuracy.

Materials and methods

The experimental process proposed in this paper is shown
in Figure 1. In Figure 1, first, the original EEG signals
are preprocessed. Then, the preprocessed data are converted
from the 2D form to the 3D format and divided into two

kinds of datasets: training data and testing data. Finally, we
input preprocessed data and evaluated our ERN model by the
recognition results of the four classes of labels.

Processing

To improve the recognition accuracy, it is necessary to
preprocess the raw EEG data. First, the brain electrode data
are selected and subsampled, and the noise artifacts are
removed using a bandpass frequency filter of 4.0–45.0 Hz.
A preprocessing method for the baseline EEG signal will affect
the recognition result (Yang et al., 2018). Therefore, the specific
practice of the data baseline signal processing is as follows. First,
the first 3 s of baseline signals are extracted from all electrodes c
of a single subject, and then cut into a fragment of the N-section
fixed length L, thereby obtaining the N × C × L matrix. Then,
calculate the average of this N × C × L matrix, obtain the Z
matrix, and the structure of the Z matrix is C× L. The last 60 s of
the signals are divided into M fragments to obtain the matrix of
M× C× L. Then the matrix of M× C× L subtracts the average
matrix Z. N and M are the number of data segments, C is the
number of electrodes, and L is the data length. This calculation
step can obtain all the data of a single subject and be repeated,
and we can obtain all the pretreatment data.

The 32 electrodes of the EEG signals in the dataset
are repositioned to a 2D electrode topology based on the
International 10–20 System Diagram to acquire the spatial
information of the EEG. During the recognition of emotional
type based on EEG, Zhong et al. (2020) confirmed that both
the position of signals acquisition and the interaction of EEG
electrode position are conducive to improving the accuracy
of emotion recognition based on EEG signals. Therefore, to
retain the spatial information of the EEG, we located the spatial
position of the EEG signal electrode according to the 10–
20 system diagram (the positional relationship between the
positioning electrodes), and retained the spatial information
of the EEG. Based on the topological location information
of the vulnerable electrodes during the original EEG emotion
analysis experiment, Zhong and An (Zhong et al., 2020; An
et al., 2021) proposed a solution by repositioning the 32
electrodes of the EEG signals in the dataset to the 2D electrode
topology based on the international 10–20 system diagram,
thereby preserving spatial information among electrodes. In this
paper, 1-dimensional (1D) electrodes of the obtained dataset are
repositioned into a 2D electrode topology.

As shown in Figure 2A, we choose the 32-electrode EEG
data of the dataset, which is located in the International 10–
20 system diagram (Sharbrough et al., 1991). According to the
farthest distance between the two electrodes in Figure 2A, we
set the size of the two-dimensional matrix and the size of the
two-dimensional matrix is 9 × 9. Then, the selected 32 EEG
signals are mapped to the 9 × 9 matrix. In Figure 2B, the
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FIGURE 1

Overview of the proposed approach.

FIGURE 2

Brain electrode distribution diagram. (A) Brain electrode distribution in 10–20 system diagram. (B) The corresponding matrix.

positioning of each electrode is located based on the positional
relationship between the various electrodes in Figure 2A. The
blank position is represented as a topological position of the
unselected physiological signal. Therefore, unused topologies
are set to zero in the 9× 9 matrix, and the matrix is normalized.

Model

We design the multiscale convolutional kernel 3D-CNN
model based on the final obtained 3D EEG dataset. The
reasons for the use of this network are as follows: First,
the advantage of the convolutional network (Zeiler and
Fergus, 2014b) is that it can calculate the eigenvalue rather
than the original value with no need for the accurate

mathematical expression between inputs and outputs. Second,
the convolutional network can avoid the problem of gradient
loss when reverse propagation occurs in the BP neural
network. The CNN can be trained in parallel, which reduces
the complexity of the network. In particular, the network
can directly input multi-dimensional data directly, which
avoids the complexity of data reconstruction during feature
extraction and classification. The flexibility of the three-
dimensional convolutional kernel is higher than that of the
two-dimensional convolutional kernel, which helps to learn
the advanced representation of learning information (Tran
et al., 2015). The controllable range of the three-dimensional
convolutional kernel is expanded to the spatial domain, which
can utilize the interaction between the electrodes and increase
the identification ability of the model.
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FIGURE 3

The framework of the ERN model.

FIGURE 4

The feature representation learned in ERN. (Overview of the proposed approach detailed convolutional operations).

The detailed architecture of the ERN model is shown in
Figure 3. The architecture of this 3D-CNN model consists of
three convolutional layers, with the first convolutional layer
implemented in parallel with the second convolutional layer in
the model. The kernel size is 3× 3× 4 in the first convolutional
and the third convolutional layers, where spatiotemporal
features are generated by the local spatial topology of 3 × 3 and
fragments of the temporally sampled point 4. The kernel size

is 3 × 3 × 5 in the second convolutional layer and combines
advanced spatial features via a local spatial topology of 3× 3 and
a temporal sampling point of 5. The first convolutional layer and
the second convolutional layer are used to calculate the feature
images, and the obtained feature images are superimposed to
obtain a new feature image. Multiple 3 × 3 kernels have more
non-linear functions than a larger convolutional kernel, which
increases the non-linear expression and makes the judgment
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function more efficient. Selecting more small convolutional
kernels favors more accurate emotion recognition. Under the
conditions of ensuring the same kernel, the depth of the network
is improved, the parameters of the model are reduced, and the
effect of the neural network is improved to some extent.

We provide a detailed description in Figure 4 to visualize
the feature representation learned by the hidden layers of
the ERN model. Taking 3 × 3 × 5 as an example, the step
size of the convolutional kernel is 1, the format of the input
data is 9 × 9 × 128, and the resulting feature format is
9 × 9 × 64. The figure demonstrates the detailed process of the
convolutional operation. Each convolutional kernel is used to
compute features and moves with a fixed step on the dataset. We
can calculate the size of the features according to the equation
(1). In(n = 1,2,3) is defined as the size of the input convolutional
layer data, On(n = 1,2,3) is the size of the output convolutional
feature, Kn(n = 1,2,3) is the convolutional kernel size, n is one
of the three dimensions, N is the number of convolutional
kernels, S is the moving step of the convolutional kernel, and
P is padding value; this article set P is 1. The size of the three
dimensions of the feature shown in Figure 4 can be calculated
separately by the equation (1). Equation (1) can calculate the size
of the 3D features map.

On =
In − Kn + 2P

S
+ 1 (1)

A 3D maximum pooling layer is set behind each
convolutional layer, and the kernel size is 1 × 1 × 2. The
maximum pooling layer (Scherer et al., 2010) is used to extract
the features more efficiently here; it can reduce the quantity
of data on the time dimension and improve the robustness of
the extracted features and provides a better generalization. The
first maximum pooling layer and the second maximum pooling
layer further squeeze the extracted spatiotemporal features to
generate advanced high-level spatiotemporal features. The last
pooling layer is followed by a fully connected layer, and the
Softmax layer is deployed as the output. In the experiment, the
input data size of the model is 9× 9× 128, where 9× 9 is the 2D
electrode topology and 128 is the number of continuous-time
sampling points for one treatment. The number of feature maps
for the last convolutional layer is 64, passing the 64 feature maps
to the fully connected layer, which maps the input as vectors.
The N in its output represented the number of labels in the
task. The empty is set to zero in each convolutional layer to
prevent the loss of information from the input data, and the
ReLU activation function is used after each convolutional layer.

Experiment

We test the model in the public databases DEAP (Koelstra
et al., 2012) and SEED-IV (BCMI, 1994). We use the PyTorch
framework (Chaudhary et al., 2020) to implement this model

and deploy it on the GeForce RTX 3060. The learning rate is set
to 0.001 with the Adam AdaDelta Optimizer, and the probability
of the dropout operation is set to 0.6. We use 10-fold cross-
validation to evaluate the performance of the ERN model. The
average accuracy of the 10-fold validation processes is taken as
the final result.

Processing

DEAP dataset
The multimodal DEAP dataset is an open multimodal

standardized dataset used to study the analysis of human
emotional states. The dataset includes the 32 electrodes of EEG
signals and the 8 electrodes of peripheral physiological signals
when subjects watch music videos. After watching a video,
subjects scored each video based on four psychological scales of
arousal, valence, liking, and dominance. We select 32 electrodes
of EEG signal data from the dataset for the analysis of the human
emotional state.

The preprocessing step is as follows: First, the data are
downsampled from 512 to 128 Hz, and then a bandpass
frequency filter of 4.0–45.0 Hz to remove noise artifacts. At this
time, the processed dataset data structure is 40 × 32 × 8,064
(video number × EEG electrode number × signal data), of
which 8,064 signal data contained 384 baseline signals. The
DEAP dataset is divided into two parts, as shown in Table 1. The
data matrix refers to the EEG of 40 electrodes observed when
each subject watched music videos. The label matrix refers to
the four types of labels after each subject watches videos: arousal,
valence, dominance, and liking.

In this dataset, each video of each stimulus is 60 s so that the
first 3 s is the baseline signals of the unstimulated, and the last 60
s is the signals of the stimulus in the 63 s signals of each stimulus
trial. Therefore, we need to carry out baseline signal processing
for each trial signal after preprocessing. The processing step is
as follows: For each trial signal (32 × 8,064), cut the baseline
signal (32 × 384) of the first 3 s to 3 segments (32 × 128)
and calculate the mean value of the baseline signals (32 × 128).
Then, the signal data of the last 60 s are cut into 60 segments
(32 × 128), and the mean of the baseline signal is substracted

TABLE 1 The DEAP dataset and SEED-IV dataset.

Matrix name Matrix structure
representation

DEAP Dataset

Data40 × 40 × 8,064 Datavideo × channel × fixed point in time

Label40 × 4 Labelvideo × value

SEED-IV Dataset

Data15 × 62 × ∗ Datavideo × channel × fixed point in time

Label15 × 1 Labelvideo × value
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and merged to obtain the processed signal (32 × 7,680). Next,
each electrode needs to be repositioned to the two-dimensional
topological location to learn the spatial properties of the data.
128, 384, 7,680, and 8,064 are the time points and 32 stands for
the number of electrodes. To extract the spatiotemporal features,
the EEG data are mapped into a 9 × 9 matrix based on the
International 10–20 system diagram. Finally, the matrix is cut
into fragments with a length of 1 s (9 × 9 × ∗), and the 3D
electrode topology was obtained (7,680 9 × 9 × ∗), of which
the symbol “∗” represents the size of the time window and 7,680
represents the number of matrixes.

Specifically, for the selected labels, the valence describes the
degree of pleasure associated with the stimulus, represented by
continuous values ranging from 1 (negative) to 5 (neutral) to
9 (positive). Arousal represents the degree of waking to the
stimulus with the same range, with 1 and 9 indicating negative
and positive, respectively. As shown in Table 2, we set the
distribution of 4 label values based on EEG arousal and valence
markers: low valence vs. low arousal (LVLA), low valence vs.
high arousal (LVHA), high valence vs. low arousal (HVLA), and
high valence vs. high arousal (HVHA). As shown in Table 2, we
set the values of the four types of labels based on arousal and
valence and set 5 as the threshold. After processing, the label
structure is 40× 1 (number of videos× label value).

SEED-IV dataset
We also use the SEED-IV dataset as a standardized dataset

to study the model recognition performance of this paper, which
is a well-formed multimodal dataset for emotion recognition.
In the SEED-IV dataset, a total of 15 subjects participated in
the experiment. For each subject, the test, respectively, was
performed on three different days and each test contained 24
trials. In each trial, his or her EEG signals are saved when the
subject watches each film clip.

The preprocessing step is as follows: First, the same 32-
electrode EEG data as DEAP in the SEED-IV dataset were
selected to analyze the human emotional state. Then, the data
are downsampled from 1,000 Hz to 128 Hz using a bandpass
frequency filter of 4.0–45.0 Hz to remove noise artifacts.
The SEED-IV dataset is divided into two parts, as shown in
Table 1. The data matrix refers to the physiological data of 62
electrodes observed that include the EEG signal and peripheral
physiological signal. In the data matrix, the length of the
movie clips resulted in the different lengths of the EEG data
in each trial. The label data matrix refers to the four types of

TABLE 2 Label values in the DEAP.

Label LVLA LVHA HVLA HVHA

Valence ≤ 5 ≤5 > 5 >5

Arousal ≤ 5 > 5 ≤ 5 > 5

Value 0 1 2 3

labels played when a subject watches the film clips: happy, sad,
neutral, and fear.

In the SEED-IV dataset, the length of the data varies in
each trial. Therefore, we need to select the data length suitable
for the model after preprocessing in each stage of each subject
and obtain 15 matrixes, each with 32 rows and 128 columns
(32 × 128), and 15 is the number of movie clips. In each
32 × 128, the 32 is the number of EEG electrodes and 128
is the data of 1 s. Then, 32 EEG electrodes are mapped into
the matrix with 9 rows and 9 columns, and 15 3D-matrixes
(9 × 9 × 128) are obtained. Finally, we combine the data from
three stages of 15 subjects and obtain 675 (15 × 3 × 15, subject
number× stage number× video number) segments of the total
dataset (9 × 9 × 128). After processing, the label structure is
15× 1 (number of videos× label value).

Optimal time window in model

We test and select the time window length more suitable for
the experiment to obtain the best recognition result of the model
and apply the 1 s time window. To improve the accuracy of the
data in the experimental input model, one of the solutions of
this paper is the application of the time window. The available
window size is not necessarily fixed, it can constantly expand
until certain conditions are met, it can be constantly reduced
until a minimum window to meet the conditions is found, and
it can be a fixed size.

In the literature, people (Zhao et al., 2020) confirmed
that the average classification accuracy of a 1 s period based
on EEG was superior to other periods, and selected the
1 s length as the most appropriate time window length.
However, someone (Candra et al., 2015) believed that a
length of 2 s was the most appropriate time window length.
To address this problem, we compare all EEG classification
performances at two different time window lengths: 1 and
2 s. In Figure 5, the left side of the figure shows the
recognition result trend of 1 s time window data, and the
right side of the figure shows the recognition result trend of
2 s time window data. The classification accuracy of the 1
s time window is better than that of the 2 s time window
with the same number of iterations, and no overfitting occurs
in the first 500 epochs. Therefore, we compare the results
of the different time windows, select the time window that
is more suitable for the model, and improve the accuracy
of the experiment.

Since we have chosen the more suitable size of the time
window for the ERN model, and the next step is the analysis of
whether the ERN model needs to set the overlapping window.
Taking the DEAP dataset as an example, we set 0.5 s overlapping
windows to process the dataset. Depending on the identification
result after using the overlapping window, there may be multiple
problems. First, the baseline processing method requires each
second of data to subtract the mean of the baseline data. This
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FIGURE 5

Accuracy comparison of different time window lengths. (A) Comparison of different time windows in the DEAP without overlapped time
window. (B) Comparison of different time windows in the SEED-IV without overlapped time window. (C) The recognition of overlapped window
in the DEAP.

method can disconnect the time continuity of data and eliminate
the advantage of high time resolution. Second, the amount of
data doubled after using the 0.5 s overlapping time window.
About another data set SEED-IV, the data length is 128 after
the process of downsampling. The pre-processed data in the
SEED-IV have high time continuity, so there are no setup 0.5
s overlapping windows to process this dataset. The overlapping
window processing generates a large amount of available data.
But in the same number of iteration, the recognition efficiency
by overlapping window processing is much lower as shown in

Figure 5C. To achieve out high-efficiency recognition accuracy,
we have not used overlapping windows.

Results and discussions

Accuracy

To estimate the accuracy of the emotion recognition for
the ERN model, we conducted a comparative analysis that
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compared the results obtained from our proposed approach
applied over the DEAP and SEED-IV datasets with other
methods. All of the classification procedures were conducted
under 10-fold cross-validation (Yu et al., 2015), and the average
value of 10 accuracies, F1 values and AUC (the area under the
ROC curve) values were calculated as the evaluation standard of
model accuracy. In the process of training, the optimal weight
parameters are obtained and set by random training data to
avoid the overfitting problem caused by optimization.

Table 3 shows the 10-fold cross-validation accuracy in the
DEAP and SEED-IV datasets. The 2D-CNN only utilizes high
features of EEG time resolution in EEG and neglects space
information. In contrast to 2D-CNN (Mei and Xu, 2017),
the emotion recognition method based on three-dimensional
convolutional neural networks (3D-CNN) can meet the need
(Salama et al., 2018; Zhao et al., 2020) for spatial information.
Not only does the 3D-CNN extract the time characteristics based
on the 1 s time window, but it can also obtain the spatial
feature between the electrodes. The previous literature report
and the ERN model experiments in this article show that our
model has the ability to improve the accuracy of EEG-based
emotion recognition.

In Table 4, the average accuracy of our model for four
emotion classes is up to 95.67% in DEAP and 89.55% in
SEED-IV datasets, which is higher than previously reported
models where 93.72 and 87.71% accuracies were achieved. It
is known that the model based on deep learning proposed
by Qiu et al. (2018) and Zhao et al. (2020) currently has the
best performance in the DEAP dataset and SEED-IV dataset.
However, the results of the ERN model are approximately
1.95 and 1.84% higher than those models. Compared with
the CNN model (Mei and Xu, 2017; Salama et al., 2018; Tao
et al., 2020; Zhao et al., 2020; Yin et al., 2021) and compared
with other methods (Zangeneh et al., 2019; Song et al., 2020;
An et al., 2021; Li S. et al., 2021) in the DEAP dataset, our
model adopts a simpler and more efficient structure and has
the best performance. Our model has higher speed efficiency

TABLE 3 Ten-fold cross-validation accuracy in the DEAP and
SEED-IV datasets.

Fold ID DEAP SEED-IV

Fold 1 94.78% 88.56%

Fold 2 95.83% 85.07%

Fold 3 95.42% 92.54%

Fold 4 97.08% 94.78%

Fold 5 93.87% 94.04%

Fold 6 96.67% 82.29%

Fold 7 96.78% 85.46%

Fold 8 93.75% 89.48%

Fold 9 95.85% 90.78%

Fold 10 96.67% 92.47%

Mean 95.67% 89.55%

and better identification performance than other models (Qiu
et al., 2018; Zheng et al., 2019; Acharya et al., 2020) in the
SEED-IV dataset.

For classification, cross-validation is not effective protection
against overfitting or overhyping. It would be better to use
techniques such as lockboxes, blind analyses, pre-registrations,
or nested cross-validation to limit overhyping. We use the
lockbox (Hosseini et al., 2020) approach to determine whether
overhyping has occurred in the CNN model. The lockbox
approach is a new technique that can be used to determine
whether overhyping has occurred. The lockbox is accessed
just one time to generate an unbiased estimate of the model’s
performance. In the DEAP and SEED-IV datasets, 90% of the
data are set aside in the hyperparameter optimization set and the
remaining 10% of the data are set aside in a lockbox. With the
10-fold cross-validation approach, the hyperparameters in the
ERN model can be iteratively modified on the hyperparameter
optimization set. When the average accuracy in the model is
good enough, the model is tested on the lockbox data.

As shown in Table 5, the training result on the
hyperparameter optimization set and the testing result on
the lockbox set are 98.59 and 95.67% in the DEAP, 93.05 and
89.55% in the SEED-IV. According to the identification result,
we can obtain the following conclusions. The theta band is
in the state of sleep and a less responsive emotional state, so
the recognition rate of emotion is lower than that of the other
three waveforms. The excitement state of alpha, beta, gamma
waveforms increased successively, so the recognition accuracy
of emotion is higher.

TABLE 4 Comparison of ERN model with previous studies.

Research Year Method Accuracy

DEAP dataset

Mei and Xu 2017 2D-CNN 73.10%

Salama et al. 2018 3D-CNN 88.49%

Zangeneh et al. 2019 HcF+KNN+MSVM 86.01%

Song et al. 2020 DGCNN 90.4%

Zhao et al. 2020 3D-CNN 93.53%

Tao et al. 2020 ACRNN 93.72%

Li S. et al. 2021 The binary gray wolf
optimization

algorithm+SVM

90.48%

Yin et al. 2021 GCNN+LSTM 90.53%

An et al. 2021 3D Feature Fusion+CAE 90.76%

Our model 2021 3D-CNN 95.67%

SEED-IV Dataset

Zheng et al. 2015 DBN 86.08%

Qiu et al. 2018 CAN 87.71%

Zheng et al. 2019 EmotionMeter 85.11%

Acharya et al. 2020 LSTM 87.22%

Our model 2021 3D-CNN 89.55%
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F1 and ROC

We also calculated the F1 value and ROC value to analyze
the performance of the ERN. In Formulas (2) and (3), F1 is
the unweighted average of multiple categories of F1m (m = 0,...,
C, C = 3), where m means four classes of emotion: LVLA,
LVHA, HVLA and HVHA. F1m is calculated from Precisionm

and Recallm, and Precisionm and Recallm are calculated from
FNm, TPm, TNm and FPm. In Formulas (4) and (5), FNm and
TPm, represent the number of (incorrectly) recognized samples
of a certain category, FPm and TNm, represent the number of
(incorrectly) recognized samples of other categories except the
m-th emotion category. According to Formula (6) and Formula
(7), the true positive rate (TPR) and false positive rate (FPR) are
calculated by FNm, TPm, TNm and FPm, and the ROC curves
of the model are calculated to obtain AUCm (the area under the
ROC curve) of each category.

F1 =
1
C

C∑
m=0

F1m (2)

F1m =
2× Precisionm × Recallm

Precisionm + Recallm
(3)

Precisionm =
TPm

TPm + FPm
(4)

Recallm =
TPm

TPm + FNm
(5)

TPR =
TPm

TPm + TNm
(6)

FPR =
FPm

TNm + FPm
(7)

After several iterations, the values of the four classes
are shown in Table 6. In the DEAP dataset, the LVLA,

TABLE 5 Comparison of ERN model with different bands.

Modality Train result (%) Test result (%)

EEG signals (DEAP)

Theta 87.81 84.40

Alpha 92.47 88.74

Beta 97.01 90.91

Gamma 94.39 88.31

EEG 98.59 95.67

EEG signals (SEED-IV)

Theta 83.08 82.09

Alpha 90.48 86.57

Beta 85.65 85.07

Gamma 92.45 88.06

EEG 93.05 89.55

LVHA, HVLA, and HVHA values are 97.51, 98.62, 98.03, and
98.76, respectively. In the SEED-IV dataset, the LVLA, LVHA,
HVLA, and HVHA values are 99.92, 98.97, 99.94, and 99.85,
respectively. As shown in Figure 6, the solid red line is the
average ROC curve of the four categories, and the average AUC
is 98.23 for DEAP and 99.33 for SEED-IV.

In the operation process, mass test data and the large
threshold distance between the two samples result in the ROC
curve not being smooth in Figure 6. The higher values of the
four categories indicate that the model constructed in this paper
has better performance, among which the data of the fourth
category (HVHA) have higher identifiability. Each column of
the confusion matrix represents the predictive category, and
the total number of each column indicates the number of data
predicted for this category. Each line represents the real category
of the data, and the total number of each line of data represents
the number of data instances of the category in Figure 7.
The matrix verifies that our model is stronger than others in
predicting complex labels.

From our experimental results shown in Tables 4–6,
Figures 6, 7, it can be seen that our results are superior to those
of previous studies reported in the literature over the same EEG
datasets from DEAP and SEED-IV. There are 3 possible reasons.
(1) We conduct a simple and efficient preprocessing method,
including data baseline signal processing, EEG electrode
topological mapping, and 1 s time window length selection. (2)
A 3D convolutional structure is a necessary technique to study
emotional recognition based on EEG signals, as this structure
can identify space information of the electrodes to quickly
extract spatiotemporal features. (3) The multiscale convolution
kernel not only reduces the computation of the model but also
improves the identification ability of the model because multiple
smaller scale kernels have the ability to increase non-linear
expression more than a larger kernel. These all enhance the
operating efficiency and improve the recognition performance
of the ERN model.

Fisher

The parietal lobe of the human brain and non-human
primate brain have been associated with attention based on the
evidence of clinical and physiological (Joseph, 1990). Studies
in literature show that the lateral Intraparietal area (LIP) plays

TABLE 6 F1 values and AUC values of the four-class.

Dataset m 0 1 2 3 Mean

DEAP F1m 94.82 95.06 94.52 96.742 95.29

AUCm 97.51 98.62 98.03 98.76 98.23

SEED-IV F1m 95.652 96.97 92.683 85.714 92.75

AUCm 99.92 98.97 99.94 99.85 99.67
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FIGURE 6

Average ROC of the four-classes. (The ROC of the DEAP in the left, the ROC of the SEED-IV in the right).

FIGURE 7

The confusion matrixes of datasets. (The confusion matrix of the DEAP in the left, the confusion matrix of the SEED-IV in the right).

an independent role in target selection and visual attention
generation (Simon et al., 2002). These findings can be validated
by the distribution of Fisher’s selected EEG electrodes. We score
the 32 electrodes of the applied dataset using the Fisher (Li R.
et al., 2021) scorer and rank the 32 electrodes from highest to
lowest to obtain the top 8, top 16 and top 24. In Formula (8),
µm,v is the average of each electrode of the m-th class, µv is the
average of each electrode, σm,v is the variance of each electrode
of the m-th class and nm is the number of samples of the m-th
class (m = 0,...,M, M = 3).

Fisher =
∑M

m=0 nm(µm,v − µv)
2∑M

m=0 nmσ2
m,v

(8)

We can sort the impact sequence of different electrodes
based on emotions by the recognition results. According to
the output results of the ERN model, we can study the
recognition performance of the model for many EEG electrodes.
Table 7 shows that the emotion recognition results of different
quantities of electrodes in the sort. Experimental results showed
that there is a 4.7% difference between the data of the first 8
electrodes and the whole dataset in DEAP and a 5.97% difference
between the data of the first 8 electrodes and the whole dataset
in SEED-IV. This indicates that the model can quickly obtain
high recognition performance with less EEG electrodes data. We
can use the ERN model for portable emotional identification
(Cai et al., 2018) based on EEG and the model meets simple
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TABLE 7 Evaluation of recognition results based on Fisher.

Dataset The number
of electrodes

The name of electrodes Accuracy

DEAP 8 O2\PO4\AF3\F3\F7\FC5\FC1\C3 90.31%

16 O2\PO4\AF3\F3\F7\FC5\FC1\C3\T7\CP5\CP1\P3\P7\PO3\O1\Oz 92.07%

24 O2\PO4\AF3\F3\F7\FC5\FC1\C3\T7\CP5\CP1\P3\P7\PO3\O1\Oz\
Pz\Fp2\AF4\Fz\F4\F8\FC6\FC2

93.03%

32 O2\PO4\AF3\F3\F7\FC5\FC1\C3\T7\CP5\CP1\P3\P7\PO3\O1\Oz\
Pz\Fp2\AF4\
Fz\F4\F8\FC6\FC2\Cz\C4\T8\CP6\CP2\P4\P8\Fp1

95.67%

SEED-IV 8 Oz\O2\FP2\AF3\AF4\F7\F3\Fz 83.58%

16 Oz\O2\FP2\AF3\AF4\F7\F3\Fz\F4\F8\FC5\FC1\FC2\FC6\T7\C3 85.07%

24 Oz\O2\FP2\AF3\AF4\F7\F3\Fz\F4\F8\FC5\FC1\FC2\FC6\T7\C3\Cz\C4\
T8\CP5\CP1\CP2\CP6\P7

86.57%

32 Fp1\FP2\AF3\AF4\F7\F3\Fz\F4\F8\FC5\FC1\FC2\FC6\T7\C3\Cz\C4\
T8\CP5\CP1\CP2\CP6\P7\P3\PZ\P4\P8\PO3\PO4\O1\Oz\O2

89.55%

and fast needs. According to the identification results of the
first 8, 16 and 24 electrodes in the table, most of the effective
EEG electrodes are distributed in the frontal and parietal
lobes (such as, O2, PO4, AF3, F3, F7, FC5, FC1, and so on).
Therefore, the frontal and parietal lobes have a large effect on
emotional identification.

Ablation experiments

The generic dimension and volume type of the kernel
have 3 × 3, 5 × 5, and 7 × 7, where a plurality of 3 × 3
stacked approximately a 5 × 5 or 7 × 7. Because the activation
function is set after the convolutional layer, Krizhevsky et al.
(2012) believes that the recognition capability of the model
can be controlled by the volume of kernel. Multiscale small
kernel subscriptions have diversely increased the network
capacity so that the decision function is more distinguished for
different categories.

We assume that the size of the 3D convolutional kernel is
M×N×K. When using a 3D kernel, it can be divided into three
steps: First, complete the convolution of the M× 1× 1 content;
second, complete the convolution of the 1 × N × 1 content;
finally, complete the convolution of the 1 × 1 × K content. The
total convolution process can increase the non-linear expression
of the model because the local convolution of each small step is
completed and pass through the non-linear function.

TABLE 8 Comparison of different kernels.

Kernel Size DEAP (%) SEED-IV (%)

Conv3× 3* 95.67 89.88

Conv3× 3 92.88 85.13

*represents the multiscale kernel.

We can clearly see that the entire process has three non-
linear transformations. Therefore, the non-linear characteristics
of the results eventually increase, making the decision function
more decisive and helping the model increase the accuracy
of emotion recognition. The size of conv3 × 3 (the size of
convolutional kernel is 3 × 3) compared to conv5 × 5 and
conv7 × 7 significantly reduces the number of parameters.
Simonyan and Zisserman (2014) replaces a conv7 × 7 with
three conv3 × 3, which is considered to further decompose the
characteristics mentioned by the 7 × 7 larger volume kernels.
The Regularization of the multiscale small kernel can improve
the model performance.

In addition to the small conv3 × 3, there is the small
conv2 × 2. However, Zeiler and Fergus (2014a) studies
conv2 × 2 and is unable to find the central point of the
convolution, which causes the characteristics of the padding
process to constantly offset. As the number of layers deepens,
conv2 × 2 makes the distance of feature offset increasingly
obvious. Thus, this paper expects to apply the multiscale
convolutional kernel to increase the feature amount of the
model calculation and improve the model recognition.

According to the above research results, this paper takes the
types of convolutional kernels of conv3 × 3. The same dataset
is carried out by different types of kernels and each classification
result is compared. Conv3× 3∗ represents the multiscale kernel,
and conv3 × 3 represents the same-scale kernel. Table 8 shows
that the multiscale small kernel subscriptions diversely increase
the network capacity so that the decision function is more
distinguished for different categories.

Conclusion

In this paper, we have presented the ERN model which
uses the multiscale 3D-CNN to recognize emotions based
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on EEG. We obtain the optimal parameters through
random training data and design experiments to compare
the promotion classification performance at different time
windows. Then, based on the 1 s time window dataset
with better classification performance, an effective multiscale
convolutional kernel 3D-CNN model based on EEG
signals is implemented to simultaneously extract spatial
and temporal features, and achieves higher accuracy of
emotion recognition.

In the comparative analysis using the EEG signals in
the DEAP and SEED-IV datasets, we have demonstrated the
superior accuracy, F1, and AUC values of emotion recognition
for the ERN model based on multiscale 3D-CNN. From the
experimental results, we show that this model can achieve higher
performance, which helps to efficiently recognize the emotional
state of the subjects so that BCI technology can quickly and
accurately convert the neural electrical signal into commands
that can be identified by the computer, greatly improving
human-machine interaction.

The limitations of the model include the exploratory
interpretability of the convolutional model. The calculation
process in the convolution network is similar to a black box,
and it is especially difficult to understand how the method works
on feature learning. If the feature representation learned by the
hidden layers can be visualized, it will be more conducive to the
optimization of the convolutional network.

While we have achieved superior accuracy when compared
to alternative methods as discussed in this paper using EEG
data, we consider that there are further potential improvements.
Our projected future directions for research include addressing
subject-independent emotion recognition (the model can be
trained using data acquired from a limited number of
participants and can be applied to a subject who has never
experienced the system prior to the experiment.) used our
model to conduct the fusion of multimodal signals such as EEG
and EMG studies and the investigation of other methods to
improve our model with respect to the recognition accuracy.
In addition, we can also use the model to challenge other tasks,
such as emotion recognition based on multimodal physiological
signal fusion, which could facilitate the performance of real-
time emotion recognition and enhance emotional experience in
the field of BCI.
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