
ORIGINAL RESEARCH
published: 02 June 2022

doi: 10.3389/fnins.2022.873935

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 873935

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Lyes Khacef,

University of Groningen, Netherlands

Johannes Partzsch,

Technical University Dresden,

Germany

*Correspondence:

Christoph Ostrau

costrau@techfak.uni-bielefeld.de

Specialty section:

This article was submitted to

Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 11 February 2022

Accepted: 27 April 2022

Published: 02 June 2022

Citation:

Ostrau C, Klarhorst C, Thies M and

Rückert U (2022) Benchmarking

Neuromorphic Hardware and Its

Energy Expenditure.

Front. Neurosci. 16:873935.

doi: 10.3389/fnins.2022.873935

Benchmarking Neuromorphic
Hardware and Its Energy Expenditure
Christoph Ostrau*, Christian Klarhorst, Michael Thies and Ulrich Rückert

Technical Faculty, Bielefeld University, Bielefeld, Germany

We propose and discuss a platform overarching benchmark suite for neuromorphic

hardware. This suite covers benchmarks from low-level characterization to high-level

application evaluation using benchmark specific metrics. With this rather broad approach

we are able to compare various hardware systems including mixed-signal and fully

digital neuromorphic architectures. Selected benchmarks are discussed and results for

several target platforms are presented revealing characteristic differences between the

various systems. Furthermore, a proposed energy model allows to combine benchmark

performance metrics with energy efficiency. This model enables the prediction of the

energy expenditure of a network on a target system without actually having access to

it. To quantify the efficiency gap between neuromorphics and the biological paragon

of the human brain, the energy model is used to estimate the energy required

for a full brain simulation. This reveals that current neuromorphic systems are at

least four orders of magnitude less efficient. It is argued, that even with a modern

fabrication process, two to three orders of magnitude are remaining. Finally, for selected

benchmarks the performance and efficiency of the neuromorphic solution is compared

to standard approaches.

Keywords: neuromorphic hardware, spiking neural network (SNN), benchmark, deep neural network (DNN), energy

model

1. INTRODUCTION

With the increasing maturity of spiking neural network (SNN) simulation tools and neuromorphic
hardware systems for acceleration, there is an increasing demand of potential end-users for
platform comparison and performance estimation (Davies, 2019). Typical questions include the
demand for speed-up of large-scale networks, potentially including plasticity rules for learning,
and efficient implementations for so-called edge computing use-cases. For large-scale high-
performance computing, a typical workload for comparing implementations is the full-scale
cortical microcircuit model, which has been demonstrated on various platforms and forms the
de-facto standard (van Albada et al., 2018; Rhodes et al., 2020; Golosio et al., 2021; Knight and
Nowotny, 2021). Around the Intel Loihi chip (Davies et al., 2018) there has been a lot of work
comparing SNNs to classical algorithmic approaches on standard of-the-shelf hardware systems
(Davies et al., 2021). The current work is situated in between these two approaches of benchmarking
individual implementations on (large scale) systems and comparing a single neuromorphic
system to classical computation. It fills the gap with small to medium-scale neuromorphic
benchmarks. We present our benchmark framework SNABSuite (Spiking Neural Architecture
Benchmark Suite), which is publicly available. The suite currently supports simulations using
NEST (Jordan et al., 2019) (CPU—single and multithreaded), GeNN (Yavuz et al., 2016)

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.873935
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.873935&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:costrau@techfak.uni-bielefeld.de
https://doi.org/10.3389/fnins.2022.873935
https://www.frontiersin.org/articles/10.3389/fnins.2022.873935/full

Ostrau et al. Benchmarking Neuromorphic Hardware

(single threaded CPU, GPU), digital (SpiNNaker; Furber et al.,
2013), and analogue [Spikey; (Pfeil et al., 2013), BrainScaleS
(Schmitt et al., 2017)] neuromorphic hardware. SNABSuite
focuses on cross-platform benchmarking using a backend
agnostic implementation of SNNs coupled to backend specific
configurations (e.g., setting neuron model and parameters or
network size), allowing direct cross-platform comparisons of
benchmark specific performance metrics. We present results
from low-level benchmarks to application related tasks like
solving constraint-satisfaction problems (CSP). As an example,
solving Sudoku puzzles is a representative for this class of
problems and can be realized using a winner-takes-all (WTA) like
implementation (Maass, 2014). This implementation is scalable,
and thus it can be adapted to size constraints of neuromorphic
hardware. Furthermore, different implementations of the WTA
structure allow emulating the network on substrates with
limited and restricted connectivity demonstrating not only
how fast a system can find a solution, but also which kind
of network is mappable to the system at all. Consequently,
from this application a benchmark candidate for the category
of computational kernel benchmarks naturally emerges: the
evaluation of the various implementations of WTA networks
as a building block for a broader range of applications (in
addition to the CSP class of problems there is for example the
spiking SLAM algorithm; Kreiser et al., 2018b). Even closer to
the hardware system is the first category of benchmarks targeting
lower-level features of the system and characterizing its basic
properties. These properties, an example is the spike-bandwidth
between neurons, are effectively limiting all networks and as such
are relevant when designing a network for a specific system.
They are not solely given by pure theoretical considerations
but depend on several factors: runtime optimizations in the
internal event routing, the chosen connectivity and combined
spike rates impact these characteristics. For example, a given
connectivity might fit onto the neuromorphic system, however,
when operating at its limits, spike loss might still occur.

Another very common approach of using SNNs, which is
applicable to all target platforms, is the conversion of pre-trained
artificial networks (ANN) into SNNs (Rueckauer et al., 2017).
Here, we support rate-based as well as time-to-first-spike-based
encodings, and through different network layouts and sizes we
are able to fully utilize the small-scale Spikey chip as well as
the larger SpiNNaker system, allowing a fair comparison of key
characteristics like time and energy per inference. A related sub-
task is measuring the resemblance of the neuron activation curve
to the ReLU function used in the ANN.

Due to a mixture of qualitative and quantitative benchmarks,
the suite does not provide an oversimplifying benchmark score
as known from suites in classical computation. Furthermore, a
recent addition to the framework is an energymodel which allows
to estimate the energy expenditure of neuromorphic systems
by running simulations in, e.g., GeNN or NEST on standard
hardware. The estimated results closely resemble previously
published values and are confirmed by newer measurements. All
in all, this results in a benchmark suite which is reflecting, up to a
certain extent, the current state of the art of SNN algorithms that
are applicable to the aforementioned neuromorphic platforms

and simulators. Hence, the suite fulfils the major requirement of
being representative and relevant to our key audience of potential
end-users (from neuroscience).

The remainder of this paper is structured as follows: the
methods section introduces the neuromorphic systems and SNN
simulators used in this work. The benchmark suite and its
design are discussed as well as selected benchmark networks.
Before elaborating the energy model and contributions to the
energy expenditure of the human brain, selected benchmarks
of the proposed suite are discussed. Results of the latter
are detailed in the respective chapter. The energy model
is validated using several of these benchmarks and a naive
upscaling of related energy costs allows to compare the hardware
systems to the human brain. Finally, the performance and
efficiency is compared to classical approaches (algorithms or
ANN accelerators) where applicable. The last section provides a
summary and an outlook.

2. METHODS

This section provides an overview of the employed SNN
simulators and neuromorphic hardware systems before
discussing the benchmark suite, selected benchmarks, and the
energy model.

2.1. Neuromorphic Systems and Simulators
In the following, all neuromorphic systems and simulators used
in this work are reviewed. A summarizing table is provided
in Supplementary Table 1. When it comes to standard of-
the-shelf hardware, like CPUs and GPUs, our benchmarks
utilize two simulators. The NEST simulator (Gewaltig and
Diesmann, 2007) is suited for large scale simulations of SNNs on
multiple computation nodes (in HPC systems) or multithreaded
simulations on a single node. The simulation code as well as the
neuron models are written in C++ code and pre-compiled at
installation time. Through a Python interface [PyNEST (Eppler,
2008) or PyNN (Davison, 2008)] the user can build networks of
neuron populations and spike or current sources to provide input
to the simulation.GeNN (Yavuz et al., 2016) supports both single
threaded CPU simulations and GPU simulations using CUDA
or OpenCL. In this work we test only an NVIDIA RTX 20701,
thus we stick with the CUDA backend. Similar to NEST, GeNN
allows building networks within Python, but the direct interface
is written in C++. Neuron and synapse models are programmed
in an imperative way and are compiled at runtime. In contrast
to NEST, which was created to reproduce exact spike trains with
accurate simulations and hence using a fourth order Runge-
Kutta-Fehlberg integrator for the LIF neuronmodels, GeNN uses
a closed-form representation assuming a fixed input current over
the integration step, which is usually set to 0.1ms. Especially
with larger time steps, this can lead to numerical artifacts in
the membrane voltage as well as in spike times (see Hopkins
and Furber, 2015 for a discussion of the precision of various
numerical solvers).

1Details of the NVIDIA RTX 2070 can be found at https://www.nvidia.com/en-

me/geforce/graphics-cards/rtx-2070/.

Frontiers in Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 873935

https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2070/
https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2070/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

Closest specialized hardware system to CPU/GPU simulators
is the SpiNNaker platform (Furber et al., 2013). Fabricated in
a 130nm CMOS process, the SpiNNaker chip consists of 18
general purpose ARM968 cores with 16 cores being used for
the simulation of spiking neurons. Each core features 64KB
memory for data and 32KB for instructions, each chip has
access to additional 128MB of off-die SDRAM. Several chips
are connected in a toroidal way and combined to form a small
scale four chip board (SpiNN3) or a 48 chip system (SpiNN5).
Between cores and chips, the spike communication is using
address event representation, where a single packet contains the
address of the sending neuron and the spike time is modeled
by the time of appearance (Furber et al., 2014). For accessing
the hardware, a PyNN interface is provided which is coupled
to the various components of the SpiNNaker software stack
SpiNNTools (Rowley et al., 2018) and sPyNNaker (Rhodes et al.,
2018). The software stack maps the individual networks at
runtime to the attached system, placing at most 255 neurons on a
single core. Similar to GeNN, the numerical integration is using
a closed form solution for the LIF model and assumes constant
currents during the full time step. When using an algorithmic
timestep of 1ms, the full simulation is running in realtime, which
means that 1s of model time is simulated in 1s of wall-clock time.
When reducing the algorithmic timestep to 0.1ms to increase
the accuracy of the simulation and to potentially reduce the
amount of spikes per machine timestep, the system slows down
the simulation by a factor of 10.

Finally, two mixed-signal systems from Heidelberg are used
within this work. The Spikey system (Pfeil et al., 2013) employs
above threshold analogue circuitry implemented in a 180 nm
CMOS process. Spikey consists of single chip featuring two
blocks of 192 neurons each supporting up to 256 independent
synaptic inputs. Because of the digital communication of spikes,
these neurons can be connected quite flexibly with some
constraints regarding cross-chip connectivity and enforcing
the separation of excitatory and inhibitory neurons. The chip
emulates neurons with a fixed acceleration factor of 10, 000,
which means that 1s of model time is emulated in 0.1ms. To
counter the analogue mismatch between the neuron circuitry,
the software interface has a built-in calibration and maps high-
level parameters of LIF neurons in the PyNN interface to adapted
low-level hardware parameters. Spikey emulates conductance-
based LIF neurons with some restrictions on neuron parameters,
and weights are encoded with 4 bit precision and a fixed range
of values. As the neuron model is implemented as circuitry,
there is no flexibility in changing the neuron model itself. The
successor system, BrainScaleS, is implemented using updated
HICANN chips and supports much larger networks using
wafer-scale integration (Schemmel et al., 2010; Petrovici et al.,
2014). The implemented neuron model is a conductance-based
LIF model with an optional adaptive exponential extension.
A single HICANN chip consists of 512 neuron circuits each
supporting 220 synapses. Up to 64 neuron circuits (multiples
of two) can be combined to form a single virtual neuron,
increasing the connectivity per neuron and the robustness against
noise. Wafer-scale integration is used to combine 384 accessible
chips into a single addressable system, allowing to emulate

networks with up to nearly 100,000 neurons. The system comes
with neuron calibration to compensate for device mismatch
which also provides blacklisting capabilities to exclude circuits
and neurons that are not working at all or are misbehaving
in some way. Other properties, like acceleration factor or
fabrication technology, are similar to those of the Spikey
system.

2.2. Benchmark Framework
The first issue encountered when developing a black-box
benchmark for neuromorphic hardware is related to the various
interfaces to the hardware systems. First introduced in Stöckel
et al. (2017), the Cypress2 library is a C++ framework allowing to
access all systems in a backend agnostic manner. The structure
and input of an SNN is defined in an abstract interface that
is quite similar to the PyNN interface. After compilation, the
target backend can be chosen at runtime as long as the respective
software packages (and neuromorphic systems) are installed
on the working machine. Hence, network definition and data
analysis can be decoupled from the actual target backend.
However, it is still possible to change some low level properties at
runtime, like, e.g., the number of neurons per core on SpiNNaker
or the simulation time step on all digital simulators. This platform
configuration is appended to the simulator string, which is
provided as a command line argument, using the JSON format.
At the time of writing, Cypress supports all systems reviewed
in Section 2.1, and an overview of the framework is given in
Figure 1. The simulation flow is the following:

• The network with its neurons and populations is set up in
Cypress specific data structures.

• When run is called in the C++ source, some compatibility
checks are done, e.g., regarding supported neuron models on
a specific backend.

• Next, the Cypress network is mapped to the backend specific
API, e.g., by creating a mirrored network in the target
framework.

• Connection tables and input spikes are generated wherever a
target does not natively support it.

• The backend executes the simulation and recorded data, like
spikes or voltage traces, is written into the Cypress network
instance.

After the simulation, spike data or voltage traces are provided in
the same format and can be interpreted by the end-user.

While this abstracts away the individual backends from
the main implementation of the benchmark suite, the suite
itself needs to provide more flexibility regarding platform
specific configuration of the benchmarks. There are two main
reasons why the SNNs need to be configurable depending
on the target backend: first, the different simulators/emulators
support different network sizes and connectivity. Thus, to
fully utilize every platform (in case of a scalable benchmark)
the suite needs to include mechanisms to incorporate these
properties into the configuration of the network. This is
comparable to implementations of classical benchmarks as the

2https://github.com/hbp-unibi/Cypress

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 873935

https://github.com/hbp-unibi/Cypress
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 1 | Structure of the Cypress library. Network generations and data analysis is done in C++ code. The library takes care of mapping the created network to

the target platforms listed on the right side using the individual platform APIs.

High Performance Linpack benchmark (Dongarra et al., 2003),
where problem sizes can be adapted to the target system. For
neuromorphic systems, further limitations might be related
to supported neuron models, restricted parameter space or
bandwidth limitations. Second, the work in Stöckel et al.
(2017) demonstrated that using the same neural parameters
for all target platforms might give an unfair advantage to
the platform for which these parameters have been tuned
to. All in all, this requires us to factor out the benchmark
configuration, too. Changing network sizes would usually require
to recompile the whole network, which is why we included
a mechanism to parse all these parameters from JSON files.
Each of these benchmark specific files contain a section for
every platform and the suite allows to define a default set of
parameters. Configuration options depend on the individual
benchmark and may include network size, neuron model
and parameters or maximal spike rates. On the one hand,
this allows fair comparison between different platforms. On
the other hand, the actual executed workload might differ
between platforms and has to be kept in mind. We see this
as a compromise between real “black-box” benchmarking and
individual implementations for every platform. This has been
accounted for in the Spiking Neural Architecture Benchmark
Suite (SNABSuite) and its architecture was already proposed
in Ostrau et al. (2020b) combined with a coarse overview
of the benchmark approach. Its modular structure factored
out all backend specific configuration and the benchmark
implementation. Furthermore, through a common API to all
benchmarks, these can be interfaced by other applications e.g. for
parameter sweeps optimizing the configuration, besides the mere
consecutive execution of all benchmarks. To address different
sizes of the systems, SNABSuite supports defining several sizes
of benchmarks using the benchmark index. Thus, sizes fall into
four categories: single core, single chip, small scale, and large
scale system. For systems like Spikey, the first index refers to
the first available category, which in this case is the single
chip.

The next section will introduce selected benchmarks of
the SNABSuite, called SNAB (Spiking Neural Architecture
Benchmark).

2.3. Neuromorphic Benchmarks
When choosing benchmarks for integration into SNABSuite
we are limited by the main criterion: a potential benchmark
has to be portable to as many of our target platforms as
possible. Otherwise, the benchmark metric cannot be compared
between platforms. Ideally, the potential candidate has been
already successfully demonstrated. Here, it becomes clear that
the implemented benchmarks can only lag behind state-of-
the-art SNNs, as there is either missing support for newly
introduced neuron models or learning rules (thus, these are not
implemented yet or not integrated into the analogue circuitry),
or there is some adaptation required for mapping the networks
to the hardware. To overcome this issue at least partially,
SNABSuite integrates several levels of benchmarks, categorized
from low-level characterization benchmark, which measures
basic hardware properties as, e.g., maximal spike rate of neurons,
up to high-level application benchmarks, that measure the
performance of a selected workload with reduced extrapolatory
meaning to new benchmarks. These categories are described in
Figure 2.

2.3.1. Low-Level Characterization Benchmark

Low-level benchmarks target some basic characteristics of a
target platform. The resulting performance metrics are quite
universal and applicable for a wide range of applications. The
first examplemeasures themaximal output frequency of neurons.
The metric of average output rate per neuron is a limiting factor
in many applications, especially when using a rate encoding of
data. This can have an influence onWTA networks as well, as the
current winner population might spike at high rates during its
winning period. For measuring the maximal output rate, neurons
are put in a state where they fire by themselves by setting the
resting potential above threshold. Not all simulators/emulators
allow to set the reset potential above the threshold, which is
why in those cases a small membrane time constant will lead
to high firing rates. In addition, the output rate is limited by
the configurable refractory state, providing an upper limit of
the maximal measurable rate. This specific benchmark comes
in several implementations, either using a single neuron, or
a partially/fully recorded population of neurons. Here, the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 2 | Different categories of benchmarks implemented in SNABSuite.

benchmark reveals whether the output rate decreases with an
increased number of neurons, and whether partially recording
selected neurons will have a positive influence on the measurable
rate.

Other examples of this category of benchmarks include
the maximal spike insertion benchmark, wherewith varying
connectivity the maximal number of spikes inserted into the
network can be measured, or a benchmark for spike transmission
between populations.

When comparing the measured (output) rates between the
platforms one has to keep in mind that these rates are evaluated
in the biological time domain and do not account for the
acceleration factor of, e.g., the analogue systems. Thus, a
comparably small (output) rate does not immediately hint at low
bandwidth between neurons on hardware.

2.3.2. Application Inspired Sub-task

Here, we introduce the class of application inspired sub-tasks.
These networks do not yet perform a real world application,
however, they are building blocks of the latter. The aim of
this kind of benchmark is to provide measures related to these
applications, but having broader applicability at the same time:
quite often measurements of full application benchmarks can not
be extrapolated to other neural algorithms or related fields. This
is where the proposed class of benchmarks steps in.

The first example is the class of WTA networks. WTA
architectures play a major role in several tasks most notably
solving constraint satisfaction problems (Maass, 2014), to
implement competing behavior in self-organizing networks (e.g.,
Diehl and Cook, 2015) or in approaches to neuromorphic
simultaneous localization and mapping (SLAM) (Kreiser et al.,
2018b). Here, we test three different architectures to account
for the different constraints of our target systems (compare
Figure 3). The simplest instantiation of a two population WTA
network uses direct cross-inhibition and self-excitation. Every
population gets individual random noise via Poisson spikes
source using a one-to-one connectivity scheme. However, this
simplest style infringes the constraint of separating excitation
and inhibition, which is mandatory for the Spikey platform. The
two alternative implementations use external inhibition by either
having a global inhibitory population or by usingmirror neurons.

Benchmark metrics include the maximal winning streak of any
population, the number of state changes, and the amount of time
for which no winner could be determined. These metrics allow
us to qualitatively assess the performance of the WTA dynamics
on a substrate by identifying too stable or too fragile winner
populations. The respective winner population is determined by
counting the spikes per population within a 15ms time window.

A second example is the similarity of activations curves to
the rectifying linear unit (ReLU) activation function known from
ANN. The motivation is clear: when converting pre-trained
ANNs to SNNs a required feature is that neuron output rates
increase linearly with increasing activation (Cao et al., 2015).
This benchmark samples through different input spike rates
measuring the output and calculating the similarity between both
curves. As a main metric we chose the average deviation from the
target curve for every frequency, which is then again averaged
across the different frequencies. A low deviation testifies that the
neural substrate is capable of reproducing the ANN activation
curve. A second metric is the averaged standard deviation. Here,
a high value indicates larger variances across different neurons.

2.3.3. Full Application Benchmark

Full application benchmarks build the last category of
benchmarks. Here, a high-level task is solving a certain
problem using SNNs and benchmark metrics are usually
related to accuracy. For this work we evaluated selected
applications/algorithms for which the only requirement is that
all target systems are able to potentially support it. This excludes
networks with, e.g., continuous access to membrane potential.
As an example for this category, the spiking binary associative
memory benchmark (BiNAM) (Stöckel et al., 2017) calculates
the retrieved amount of information in bits and compares it to
the non-spiking variant. The BiNAM is trained offline and used
as a synaptic connection matrix in the SNNs. Neuron parameters
are tuned to reach maximal capacity, which is equal or below the
capacity of the non-spiking variant. To reduce the computation
time of this benchmark and in contrast to the analysis in Stöckel
et al. (2017), larger networks are tested with a subset of samples
only, which approximates the real relative capacity.

A second example is a spiking Sudoku solver (Ostrau
et al., 2019), where the Sudokus are representative of the class

Frontiers in Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 3 | Winner-Takes-All implementation styles. Random spike source are not included in the picture, as every neuron of the excitatory populations (1 and 2) has

a one-to-one connection to its individual Poisson spike source.

of constraint-satisfaction problems. As mentioned above, this
network uses WTA structures to implement the solver. Here,
every possible number in the Sudoku puzzle is represented by a
population of neurons. Sudoku rules, interpreted as constraints
on all numbers, are implemented using inhibitory connections
between the different numbers. Hence, there is inhibition
between the numbers situated in a single cell, same numbers
in a row, column, and sub-box of the Sudoku. Every neuron
in this network has its own Poisson spike source. For analysis,
spikes are binned and the respective winner in a Sudoku cell is
determined. The benchmark metric is the bio-time to solution,
which returns the value of the first time bin in which the solution
is complete. The previous publication (Ostrau et al., 2019)
analyzed the time-to-solution of 100 assorted Sudoku puzzles for
every Sudoku size. Here, we reduce the analysis to a single puzzle
to reduce benchmark time, but add GeNN as additional backend
and compare the time and energy to solution to algorithmic
approaches. Furthermore, the model is used in the validation of
the proposed energy model.

A third benchmark is the conversion of deep neural networks
to SNNs (Ostrau et al., 2020a). For this conversion, DNNs
are trained using ReLU activation functions without biases,
and for simplicity, only densely connected layers. This pre-
trained network is converted to a SNN by rescaling the weights
and converting the input data into rates (Diehl et al., 2015).
Currently, this procedure is only evaluated for the MNIST
handwritten digits dataset. To reach optimal performance,
neuron parameters have to be adapted. For the analogue Spikey
system, it was necessary to scale down the MNIST images by
3 × 3 average pooling to create a network that maps on the
substrate. This network has as 81 × 100 × 10 layout and
further employs excitatory connections only. A second network
included in this analysis is the 784 × 1,200 × 1,200 × 10
network published with Diehl et al. (2015). To reach higher
accuracies on the analogue system and encounter neuron to
neuron variability, a hardware in the loop retraining approach
is applied, similar to the one presented in Schmitt et al.
(2017). Furthermore, we extended this set of benchmarks by
also employing time-to-first spike encoding, where normalized
input values are mapped to spikes using f (x) = (1 − x) ·

T, where T is a configurable timescale. The original analysis
of converted and pre-trained DNNs in Ostrau et al. (2020a)
is extended here by a time-to-first spike encoding and an

energy-per-inference comparison to standard accelerators for
DNN inference.

A basic building block for the Neural Engineering Framework
(Eliasmith and Anderson, 2004), but also an application by
itself, is the approximation of functions via activation curves
of neurons. For this, we feed spike rates into a population
of neurons (one-to-all connection) and measure the response
function of individual neurons. Given a certain variability across
the population, one finds different response curves (compare
Figure 4) that can be used as basis of the function space of
continuous functions.

f (x) ≈

#Neurons∑

i

aigi(x) (1)

Here, x is a number that has to be mapped to the available
rate interval, gi(x) is the decoded response rate of a neuron,
and ai are the neuron specific coefficients. For encoding x into
rates, we normalize the input interval and linearly transform it
to rates (given a maximal rate as a parameter). The response to
that rate is decoded to values in the unit interval, again given a
maximal frequency. For fixing the coefficients in Equation (1), it
is required to have at least as many sampling points as neurons in
the target population. For testing the approximation capabilities,
more sampling points are used, including points in between the
original ones for fitting, from a second simulation/emulation.
This is shown in Figure 4 on the right side. Since the output
activity of neurons should be more or less the same in several
runs, we can use the same set of input/output rates to fit several
functions. In theory, one could see the coefficients as decoding
weights, and using a second matrix for encoding, we could
chain these approximation populations to approximate more
complex calculations, which is not currently covered in this
benchmark.

An application from robotics is the spiking localization and
mapping algorithm. Existing work proposes a sort of spiking
state machine to track the current position and head direction
of the (virtual) robot, and learning a map of the surroundings
using spike-timing dependent plasticity (STDP) and a bumper
sensor (Kreiser et al., 2018a,b, 2020). We adopt this network
and use it as a benchmark using the accuracy of the learnt
map as a benchmark metric (pixel-wise false positives for a
learnt obstacle that does not exist in the simulation and false

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 4 | (Top) Activation curves for various neurons for fitting (left) and testing. Every second neuron has a positive bias, and the input is inserted via inhibitory

connections (depicted in yellow). (Bottom) Results of the function approximation for exponential and sinus function using the testing activation curves.

negative for a not learnt obstacle). The WTA populations
used for tracking the current state of the robot could not
be reliably tuned on analogue hardware using population-wise
neuron parameters and would require neuron-specific tuning
of 364 neurons, which is why this is currently not included.
Here, only an automated approach would lead to reproducible
results. The original work however targeted analogue hardware,
demonstrating that the proposed algorithm is indeed suited for
this kind of system.

2.4. Comparison to DNN Benchmarks
The original meaning of DNN benchmarks is related to
datasets for benchmarkDNN algorithms and network topologies,
comparing the efficiency and accuracy of networks. Since
our target is benchmarking hardware systems, we focus on
hardware benchmarks, where the learning algorithm and
network topologies are typically fixed. One of the first benchmark
suites for DNN acceleration is Baidu Deep Bench3. This
suite was introduced when the field of DNN accelerators
began to grow while the DNN community was in fast
progress, and representatives of an application domain are
yet to exist. Thus, full applications benchmarks could not
be integrated into the suite. Furthermore, every hardware
system came with its own deep learning library, increasing
the effort to maintain such a suite. Consequently, the authors
decided to do some low-level benchmarking using typical
core workloads of deep learning. These are comparable
to our aforementioned low-level benchmarks. Instead of
benchmarking dense or convolutional connectivity schemes or
vectorized application of the activation function, our benchmark
suite targets spike input and output rates, as well as the

3https://github.com/baidu-research/DeepBench (accessed November 3, 2021).

bandwidth between populations using various connectivity
schemes.

Later, DAWNBench (Coleman et al., 2017, 2019) was
introduced to the community. In comparison to DeepBench,
the workloads cover various application categories instead of
computational kernels. Besides benchmarking mere execution
speed of these DNNs, its benchmarkmetrics account for potential
differences in precision and accuracy of accelerators. As with
less precise data formats the inference speed can be increased
but usually at the cost of impeded accuracy. For training the
network, the time required to reach a pre-defined accuracy is
measured, which should account for the variances in speed
and accuracy. If the criterion is met, the trained network
could be used for inference, where delay between input and
output is the main metric. DAWNBench built the basis for
the current state-of-the-art benchmark suite MLPerf, which
not only includes several application domains for DNNs, it
also separates training and inference benchmarks and consists
of several execution domains, from embedded to sever scale
machine learning (Mattson et al., 2020; Reddi et al., 2020). In
all application domains, a state-of-the-art network topology has
been developed by the community, and as such, the suite can
be considered to be representative of the field. Furthermore,
most currently developed hardware accelerators support the
feature set required to execute the selected networks. This is
not the case for neuromorphic computing: There is a broad
range of learning algorithms and workarounds for the back-
prop algorithm, let alone the available neuron and synapse
models. As such, there are only few commonly agreed learning
algorithms that can be ported to all hardware platforms. Hence,
our benchmark suite relies on low-level benchmarks too which,
as a class of benchmarks, have been historically the first step to
DNN benchmarking.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 873935

https://github.com/baidu-research/DeepBench
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

2.5. Energy Model for Neuromorphic
Hardware
To estimate the power consumption of a network simulated on
a target system we identified the following workloads as core
contributions to the overall energy expenditure:

• The static power consumption of the idle neuromorphic
system

• The energy required for a virtual spike source neuron to emit
an event

• The power required to simulate/emulate an idle neuron
• The energy used for a real neuron to emit a spike
• The energy expenditure of transmitting a single spike
• The static power required for activating STDP and the energy

per synaptic event

By subsequently activating different parts of a full network
we are able to calculate the different contributions from
individual processes. In more detail, we start measuring idle
power consumption. Next, idle neurons are simulated. For
calculating the power per simulated neuron, the idle power
is subtracted. Following this line, the energy per generated
action potential is measured by simulating neurons that fire by
themselves after subtracting the power for idle neurons and idle
hardware. In the end, the different processes are mapped to a
power/energy budget. Given a network simulation, the overall
energy expenditure can be calculated. For simplicity of themodel,
we do not account for different channels of spike communication.
For example, whether source and target neuron are situated on
the same chip or in close physical neighborhood plays no role in
our model.

For SpiNNaker, the power measurement is done using a
Ruideng UM25C USB meter. It measures the power for a supply
voltage up to 20V, which allows the measurement of both the
small SpiNN3 board (5V) and the larger SpiNN5 board (12V).
For Spikey, the sample rate of the USB meter is insufficient.
Thus, we fix the power supply (Aim TTi CPX200DP) to 5V and
measure the supply current using a Fluke 289. The NVIDIA
GPU allows to directly read out the current power consumption
using monitoring tools. All setups allow automation of the
measurement process using either the provided Bluetooth or
serial interface. For the final calculation, every value is an average
covering 20 measurements. Furthermore, the devices have been
plugged in for several minutes to assure that devices reach their
idle temperature.

To compare the energy expenditure of neuromorphic
hardware to its biological counterpart, we use the data acquired
by Attwell and Laughlin (2001), which calculate the amount
of ATP molecules required to maintain resting potential and
for active signaling. These values were calculated for the rat’s
neocortex and have to be adapted for the human brain. According
to Lennie (2003), the human brain consists of larger neurons,
which can be accounted for by using factors of 2.6 for the
energy expenditure of maintaining resting potential and 3.3
for action potential generation. Finally, Howarth et al. (2012)
argues that the overlap of sodium and potassium fluxes during
action potential generation in the human brain is actually smaller

TABLE 1 | Various contributions to the overall energy expenditure of the human

brain.

Action ATP molecules Energy expenditure

in W

Action potential 1.57 ×109 7.86 × 10−11

Resting potential 1.15 ×109 5.77 × 10−11

Post-synaptic receptors 1.40 ×105 7.00 × 10−15

Neurotransmitter recycling 1.14 ×104 5.70 × 10−16

Other pre-synaptic loads 1.20 ×104 6.00 × 10−16

Single neuron 4.03 ×109 2.02 × 10−10

Single neuron + housekeeping 4.98 ×109 2.49 × 10−10

Single neuron refers to a spike rate of 4Hz and a fan-out of 2,000.

than originally assumed, correcting the original value of 4 from
Attwell and Laughlin (2001) to 1.24. Furthermore, the costs
of auxiliary functions in the brain (“housekeeping”) is about
33% of the signaling costs (Howarth et al., 2012). Table 1 lists
the different contributions to the overall energy expenditure
of a single neuron. The resting potential expenditure includes
the costs of glia cells under the assumption of a one-to-one
correspondence. The contribution of “other pre-synaptic loads”
includes the costs for vesicle cycling and Ca2+ recycling. For
the overall power consumption we assume (following Attwell
and Laughlin, 2001) an average spike rate of 4 Hz while the
average fan out of a neuron is 2,000. For converting the amount of
freed energy per ATP molecule, Rosing and Slater (1972) reports
4.6495−5.5628·10−20 J ATP−1. Hence, we used 5·10−20 J ATP−1

for our calculations. When scaling the energy expenditure up to
full brain size using 8.61 · 1010 ± 8.12 · 109 neuron cells of the
human brain (Azevedo et al., 2009) we end up with an overall
energy expenditure of 21.5W.

3. EXPERIMENTS AND RESULTS

This section provides results for the three categories of
benchmarks. Major outcomes are discussed and evaluated.
Furthermore, the proposed energy model is validated on selected
benchmarks. Since individual contributions to the energy model
are known, the model allows us to trivially upscale networks
to brain size and compare neuromorphic to biological energy
efficiency. Finally, the efficiency is also compared to algorithmic
approaches for the Sudoku network and to ANN accelerators for
the converted pre-trained networks.

3.1. Characterization Benchmarks
In this category of benchmarks we look at two examples. The
first one measures the maximal output rate of a set of neurons.
Figure 5 demonstrates the behavior of our target neuromorphic
systems regarding this metric. CPU/GPU simulations are not
included, as these do not suffer from any spike loss. Here, the
maximal output rate is only limited by time resolution and
the refractory period of the simulated model. Quite similar, the
SpiNNaker system does not show any output bandwidth issues.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 5 | Measured output rate (left) and the indirectly measured input rate from virtual spike source neurons using a one-to-one connection scheme (right). Light

coloring indicates the empirical standard deviation across neurons.

The maximally required output buffers can be calculated before
the simulation and the SpiNNaker software stack will ensure
that spikes are copied to the host machine when reaching these
limits. Both analogue systems suffer from bandwidth restrictions,
as spikes are communicated via the on-chip network before
reaching the target storage. However, the systems run in an
accelerated manner, so in wall-clock terms the actual rates are
increased by a factor of 104.

The second benchmark indirectly measures the amount of
output spikes measurable when all neurons receive a spike
at the same time via one-to-one connection. Ten spikes per
neuron are inserted during the simulation and we provide
the average number of output spikes. On SpiNNaker, the loss
usually appears at the receiving neuron. If a core (simulating 255
neurons) receives too many inputs within the same timestep, the
computation of that core lags behind the global timer. In our
case, the computationally more expensive conductance-based
LIF neuron model requires more resources than the current-
based one, thus these limits depend on the neuron/synapse
model in use. Note, that if running into such problems,
the SpiNNaker software stack provides several configuration
options to reduce the computational load of individual cores,
including a slow-down of the simulation or the reduction of
simulated neurons per core (which then requires more cores
for the simulation of the network). For the Spikey system,
the quite prominent drop in output spikes is related to the
usage of the second block of neurons of the system. When
using a single block only, the average amount of spikes is
more or less constant, indicating that the origin of spikes loss
is not a bandwidth issue, but more related to the neuron to
neuron variability. For BrainScaleS, the amount of spikes for
few neurons reaches the target of 10. Here, we expect that
the closeness of output spikes reaches some output bandwidth
bottlenecks. The overall constant curve for larger networks
indicates that there is no additional constraint when using
multiple HICANN chips.

3.2. Application Inspired Subtasks
TheWTA behavior is tested for two populations only to check the
general capability of the system to demonstrate the appropriate
behavior. Results for this set of benchmarks are provided in
Supplementary Table 2. For analogue platforms we see in spike
raster plots, that random neurons are activated quite often.
Especially for Spikey one can distinguish several neurons that
emit spikes more easily compared to neighboring neurons. This
reduces the capability of the substrate to simulate two equally
probable winner populations and acts as a bias. To account
for variances across simulation due to random seeds and trial-
to-trial variation in analogue systems, benchmark metrics are
averaged using ten simulations. The chosen metrics for this kind
of network do vary a lot across simulations, as the random
input noise to neurons is different for every instance. For
BrainScaleS the obtained values are comparably worse, even in
the one-to-one comparison to Spikey. This is basically due to
different days of the evaluation and parameter tuning leading
to different results and this should not be seen as a general
deficit of the hardware platform. The second part of the table
(in the Supplementary Material) shows values for the exact
same benchmarks, but using only as few neurons as possible
[simulators: one (source) neuron; Spikey: two neurons, doubled
number of source neurons; BrainScaleS: two source neurons, but
four neurons per population]. Here, all platforms demonstrate
the capability of embedding WTA dynamics, with analogue
hardware tending to have a higher variation in winners compared
to the simulators.

Figure 6 shows measured activation curves. The aim is to
reuse these curves to approximate the ReLU activation function
known from the field of deep learning. Thus, the aim is to
measure the capability of a system to simulate converted pre-
trained networks with rate-encoding. Using a single input neuron
that is connected to a simulator specific number of neurons,
all target systems demonstrate the ability to approximate the
ReLU function in certain frequency boundaries. For simulators,

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 6 | Activation curves for various simulators. “Spikey Full” refers to the usage of both neuron blocks on the Spikey system. The target curve is depicted in

black. SpiNNaker is tested with two different simulation timesteps.

this maximal frequency is, besides potential bottlenecks, limited
by the refractory period and the timestep of the simulation.
For SpiNNaker, no bottlenecks should be triggered in this
setup, thus the deviations are results of the timestep of 1ms
for running the network in realtime. The curves for the full
Spikey system (employing both neuron blocks of the system)
and the BrainScaleS system resemble each other. The rate
limitation is a consequence of the large speedup and readout
restrictions. The latter is due to shared priority encoders with
limited maximal output rate of packages into the digital network
effectively limiting the measurable number of spikes. If using
only one neuron block of the Spikey system, the sensible
range of frequencies is larger and meets expectations from
the previously discussed low-level benchmarks. Putting these
results into numbers, the Supplementary Table 3 of results in the
Supplementary Material validates the discussed observations.
Note, that by reducing the measured frequency corridor the
average deviation is expected to decrease.

3.3. Applications
The BiNAM benchmark comes in four different implementation
styles, using bursts and/or populations to represent bits in
input and output. Here, we present the results from the
simple variant only, although (Stöckel et al., 2017) demonstrated
that the analogue platforms potentially benefit from averaging
the output over several neurons. The results are provided in
Supplementary Table 4, and we summarize the most important
findings here. In comparison to the old publication, several things
have changed in our evaluation. First, we reduced the amount
of samples used in the spiking recall phase. While training the
BiNAM, we still use the theoretical prediction for the optimal
sample count for determining the amount of binary patterns
to store. For recall, we make use of the first few randomly
generated patterns only and the exact amount of samples is

configurable. Since false positives and negatives are on average
equally distributed across these random samples, results are still
in overall accordance with the full recall. This effectively reduces
the simulation times of the larger networks. Second, the new
set of results include GeNN and BrainScaleS platforms. While
simulators perform close to the original, non-spiking model of
the BiNAM, analogue platforms show reduced accuracy. For
Spikey, an increased amount of false positives demonstrate that
input bottlenecks are not the problem.With an increased amount
of output spikes due to false positives, a potential pitfall is that
correct positives are lost while false positives are recorded. This
seems to be more of an issue with the BrainScaleS system: Here,
the smallest network produces no false positives, but already
some false negatives, which are mostly related to the neuron to
neuron variability. Higher accuracy could only be reached using
a neuron specific training of parameters. Spreading the network
to two or more HICANNs, the performance of the network
is degraded. An increased amount of false positives implies an
issue with the read-out causing the increasing number of false
negatives. When using larger networks that are spread across
the wafer, the amount of false negatives decreases. We can only
guess that spreading the activated neurons across more HICANN
reduces the average load on individual priority encoders and
routers.

The Sudoku benchmark comes in three styles: the first one
is how a possible end-user would program such a network.
Every possible number is presented by its own population.
Between populations, high-level connectors are used (e.g., all-to-
all connectors) to implement the direct inhibition. The second
benchmark implements exactly the same network but uses a
single population which includes all neurons. Connections are
realized using custom connection lists, only the random noisy
input is connected via one-to-one connectors. Comparing results
(see Table 2) of both implementations reveals how good the

Frontiers in Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 2 | Results of the Sudoku benchmark for several implementation styles and two Sudoku sizes.

Platform Bio runtime Sudoku Bio time to solution Wall-clock time to solution

in ms size in ms in ms

Simple Sudoku

GeNN-CPU 5,000 2 × 2 20 0.81 ± 0.06

10,000 3 × 3 4420 3,645.26 ± 219.17

GeNN-GPU 5,000 2 × 2 20 2.8 ± 0.04

NEST 5,000 2 × 2 20 9.77 ± 0.70

10,000 3 × 3 2980 24,106.13 ± 3,447.74

BrainScaleS 50,000 2 × 2 6264 ± 6333.54 0.63 ± 0.63

SpiNNaker 5,000 2 × 2 20 200.01 ± 0.00

Simple Sudoku—single population

GeNN-CPU 5,000 2 × 2 20 0.44 ± 0.06

10,000 3 × 3 4420 1,212.41 ± 82.48

GeNN-GPU 5,000 2 × 2 20 1.31 ± 0.02

10,000 3 × 3 4420 376.47 ± 6.44

NEST 5,000 2 × 2 20 6.30 ± 0.44

10,000 3 × 3 2980 9,553.49 ± 51.32

BrainScaleS 50,000 2 × 2 6780 ± 10899.87 0.68 ± 1.09

SpiNNaker 5,000 2 × 2 20 200.01 ± 0.00

10,000 3 × 3 1660 16,600.33 ± 0.00

Mirrored inhibition Sudoku

GeNN-CPU 5,000 2 × 2 120 423.41 ± 2.28

GeNN-GPU 5,000 2 × 2 120 25.26 ± 2.07

NEST 5,000 2 × 2 100 52.79 ± 0.25

Spikey 30,000 2 × 2 363 ± 288.60 0.04 ± 0.03

SpiNNaker 5,000 2 × 2 140 4,200.17 ± 0.00

2 × 2 refers to a Sudoku featuring numbers 1–4, 3 × 3 is the standard Sudoku size.

underlying software can merge neuron groups. On SpiNNaker,
the individual populations are mapped to individual cores, thus
every core simulates only few neurons. This highly inefficient
usage leads to the larger network not being available on the
SpiNNaker platform. Furthermore, the simulation tools GeNN
and NEST do also benefit from such a merging of populations,
as the wall clock to solution is lower. For the GeNN GPU, the
larger Sudoku network would require lots of working memory
at compile time, which is why it is not included. Otherwise,
we see that the biological time to solution is unaffected by the
implementation style (when keeping the seeds for random input
generation fixed). For BrainScaleS, the simulation is evaluated
ten times to measure the influence of trial-to-trial variations of
the analogue substrate. For comparison, using random seed in
a GeNN simulation for the generation of input noise results in
a time-to-solution of 58.0 ± 53.7ms for the small and 2716.0 ±

1869.5ms for the large Sudoku. Thus, the variance through trial-
to-trial variation matches to some extent the variation due to
different random input. While mean time to solution is similar
between both implementation styles, the standard deviation is
larger for the merged implementation. We are not aware of any
specific issue that might be causing this and guess that this is
related to the mapping to the hardware system: The networks
is mapped to a restricted list of HICANNs, but we leave the

placement of individual neurons to the BrainScaleS software
stack. Between repetitions, this mapping is kept fixed. Due to
the different layout of both networks we cannot assume that the
same virtual neuron is placed to the same hardware neuron in
both implementations. Thus, one can assume that the simple
implementation style was mapped in favor of this specific Sudoku
or that by revealing the internal structure of the network, the
mapping reduces the amount of spike loss appearing during the
emulation.

For the larger Sudoku network, we were not able to reliably
emulated it on the BrainScaleS system. However, using neuron
specific parameters and a hardware in-the-loop training should
result in decreased time-to-solution and reliable solving for larger
Sudokus, too. The last implementation benchmarked includes
a workaround for the Spikey system avoiding direct inhibition.
Here, we see that fast solving of such constraint problems is
possible on analogue hardware, and find the shortest wall-clock
time to solution.

Next, we evaluate rate-coded converted deep neural networks.
We focus on two networks, the first being created to be mapped
to the Spikey platform using a 81 × 100 × 10 layout without
bias and inhibition. The input images are rescaled using 3 × 3
average pooling. The second network has been published by
Diehl et al. (2015). The aim is to reach an accuracy close to

Frontiers in Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 3 | Results of pre-trained and converted DNNs.

Platform Parallel Accuracy Sim. time Bio time/inf.

instances in % in s in ms

Spikey network 90.13%

GeNN-CPU 1 89.11 6.83 ± 0.25 500

100 88.87 4.29 ± 0.02 500

GeNN-GPU 1 89.10 35.64 ± 029 500

100 88.87 0.70 ± 0.01 500

NEST 1 88.98 86.43 ± 2.09 500

20 88.98 62.83 ± 3.70 500

BrainScaleS 1 57.92 ± 5.92 0.95 900

Spikey 1 65.23 ± 0.78 0.35 300

SpiNNaker 1 88.41 6677.20 500

239 88.40 235.22 500

In-the-loop retraining

BrainScaleS 1 83.03 0.95 900

Spikey 1 85.16 0.22 180

Diehl network 98.84%

GeNN-CPU 1 98.85 276.23 ± 1.24 500

36 98.85 325.56 ± 3.12 500

GeNN-GPU 1 98.85 46.89 ± 0.66 500

36 98.85 9.85 ± 0.01 500

NEST 1 98.82 1763.54 ± 22.17 500

53 98.82 2646.66 ± 246.88 500

SpiNNaker 1 98.73 13695.06 500

53 98.77 1724.87 500

Diehl network (TTFS) 98.84%

GeNN-CPU 1 97.59 42.49 ± 1.14 9.12 ± 1.02

10 97.60 40.99 ± 0.40 9.12 ± 1.02

GeNN-GPU 1 97.60 30.66 ± 0.54 9.12 ± 1.02

10 97.60 4.37 ± 0.02 9.12 ± 1.02

NEST 1 97.59 540.95 ± 7.54 9.94 ± 1.01

10 97.57 581.39 ± 1.80 9.94 ± 1.01

SpiNNaker 1 97.57 4817.04 9.05 ± 1.08

61 97.56 626.44 9.05 ± 1.08

Only those benchmarks in the lowest part of the table employ the sparse time-to-first-spike

(TTFS) instead of rate encoding. An extended table is found in Supplementary Table 5.

The best results are highlighted in bold.

the original ANN accuracy. Thus, we used the 10 first images
of the training set to coarsely optimize SNN parameters using
parameter sweeps. Afterwards, we increased to number of images
to 100 to do a more fine-grained optimization of the most
fragile parameters like the maximal frequency for encoding
inputs and the scaling parameter for pre-trained weights. To
fully utilize the systems, several parallel instances of the same
network evaluate mutually exclusive parts of the test set of 10,000
images. Regarding the loss of accuracy during the conversion
process, we find a drop in accuracy of up to 1.5% for digital
platforms and the Spikey network. For the analogue systems
this loss is significantly larger which can be accounted for using
the HIL retraining. Nevertheless, the loss is about 5%. Note,

that for this retraining the inference time per sample has been
adapted to reach maximal accuracy (see last column of Table 3).
When comparing simulation times, the advantages of accelerated
analogue neuromorphic computing come into play. Only the
GPU with massively parallel instances is on a comparable level
(at a much larger power consumption).

The network proposed by Diehl et al. (2015) features a smaller
conversion loss. Here, the rate-coded variant suffers from up
to 0.1% loss. Curiously, the GeNN simulation even improves
the accuracy on one image which is most likely due to a lucky
circumstance in the parameter/rate conversion process4. For
SpiNNaker, the number of neurons per core was reduced to 180
(200 for the largest network on the SpiNN5 board). The machine
timescale factor was increased to two (not for the largest network)
effectively slowing down the simulation. Otherwise, the workload
per core, due to the employed rate-coding, would overload and
lead to lost spikes or even a break-down of the simulation. Thus,
SpiNNaker is as fast as a single threaded NEST simulation, one
order of magnitude slower than the GeNN CPU simulation and
two orders of magnitude slower than the GPU simulation. When
switching to time-to-first-spike (TTFS) encoding, the number of
neurons per core is set to default while the timestep is decreased
to 0.1ms slowing down the simulation by a factor of ten. This is
due to the increased time precision required by this encoding.
The overall loss during the conversion process is a bit larger,
which might be due to the employed conductance-based synapse
model [the original publication (Rueckauer and Liu, 2018) uses a
simpler synapse model]. The overall response time (time between
inserting the first spike of an TTFS encoded image) to the
first and classifying spike in the last layer is about 9ms. The
performance comparison to DNN accelerators is provided in
Section 3.5.

Results for the function approximation benchmark are shown
in Table 4. Simpler functions, like the linear function, can be
approximated with a very small overall deviation. Furthermore,
all target platform show quite similar approximation errors. For
digital simulators this is realized using two distinct diversification
mechanisms. First, a constant rate of spikes is fed to target
neurons using random connections weights (both inhibitory and
excitatory). Second, random but fixed input rates are inserted
using fixed weights. On analogue hardware this is not necessary
due to the naturally occurring neuron-to-neuron variability.
Here, higher approximation errors are most likely related to
trial-to-trial variances.

The last benchmark performs partial workloads of a SLAM
algorithm. Figure 7 visualizes not only the coverage of the
random trail of the robot in its virtual map, but also the learnt
map of the simulators. This test environment features a 15 × 15
map with four obstacles. All tested platforms demonstrate the
successful learning of the surroundings using the STDP (a spike
pair rule with additive weight dependence) enabled connection.
Small deviations from the target map occur due to not or only
once visited spots in the map.

4This is reproduced in the quantization process for the neural compute stick in

Table 8.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 4 | Average deviations for selected functions in the function approximation benchmark.

Platform f(x) = x f(x) = 10 + x f(x) = sin(2πx) f(x) = cos(2πx) f(x) = exp(2x)

GeNN-CPU 0.01 ± 0.01 0.37 ± 0.42 0.30 ± 0.56 0.16 ± 0.27 0.17 ± 0.29

GeNN-GPU 0.02 ± 0.01 0.38 ± 0.41 0.16 ± 0.14 0.18 ± 0.20 0.12 ± 0.10

NEST 0.02 ± 0.02 0.68 ± 0.82 0.29 ± 0.27 0.17 ± 0.14 0.19 ± 0.22

BrainScaleS 0.14 ± 0.38 1.54 ± 3.78 0.77 ± 1.92 0.52 ± 1.44 0.67 ± 1.76

Spikey 0.05 ± 0.06 0.51 ± 0.54 0.27 ± 0.29 0.25 ± 0.26 0.24 ± 0.25

SpiNNaker 0.02 ± 0.02 0.41 ± 0.38 0.32 ± 0.63 0.29 ± 0.44 0.23 ± 0.30

FIGURE 7 | Result of the spiking SLAM benchmark. The leftmost map visualizes the map with the obstacles (blue circles). Black pixels are not visited by the virtual

agent while red ones are visited once or twice. The best achievable representation is missing two pixels (see the SpiNNaker result), as two points close to the right

obstacles are not visited by the virtual agent.

TABLE 5 | Results of the energy model in comparison to the biological counterparts.

Brain Spikey SpiNNaker R2600X Intel mobile RTX2070

Housekeeping 4.75E-11 1.37E-06 1.66E-04 4.49E-04 1.23E-04 9.76E-07

Resting potential 5.77E-11 3.83E-08 8.99E-05 4.77E-05 4.25E-05 3.63E-06

Action potential 1.96E-11 4.39E-10 1.04E-08 3.04E-08 4.46E-09 4.71E-09

Transmission 8.17E-15 1.08E-11 9.59E-09 5.82E-08 2.14E-08 3.40E-09

Single neuron 2.49E-10 1.49E-06 3.33E-04 9.62E-04 3.37E-04 3.18E-05

Full brain 2.15E+01 1.29E+05 2.87E+07 8.29E+07 2.90E+07 2.74E+06

Values for the simulation of 1s of model time are reported in Joule. The single neuron and full brain estimates assume a fan-out of 2,000 synapses and a spike rate of 4Hz. R2600X: AMD

Ryzen 2600X. Intel mobile: Intel Core i7-4710MQ. RTX2070: NVIDIA RTX 2070. Both CPUs are measured using a PeakTech power meter. The lowest values from simulators/emulators

are highlighted in bold.

3.4. Energy
First, the energy expenditure of neuromorphic hardware is
compared to the human brain. Table 5 summarizes costs for
the various contributions to the overall energy expenditure.
Values for the brain are adapted from Table 1. For neuromorphic
hardware, “housekeeping” refers to the scaled system’s idle
power. For transmission, the values for random connectivity
schemes are used. To scale values up to a full brain simulation,
we assume that every neuron is connected to 2000 neurons
and firing at 4Hz similar to Attwell and Laughlin (2001). The
results demonstrate the superiority of the analogue system in
regard to efficiency. Only the housekeeping costs are lower
for the GPU due to the large number of neurons simulated.
SpiNNaker performs on par with both CPUs and is less efficient
compared to the GPU. Comparing the values for a single
neuron or the full brain simulation, the biological paragon
is four orders of magnitude more efficient than the analogue
implementation. This huge difference cannot be compensated

by using a modern fabrication process: According to Sun et al.
(2019), the performance per watt doubles every 3–4 years.
Applying the same scaling factor to the SpiNNaker system, this
results in more than 8-fold improvement, which closes the gap to
the GPU implementation. The step from 180 to 22/28nm FDSOI
sub-threshold process would result in 50-fold improvement
(Rubino et al., 2019) for analogue implementations, which most
likely applies to the above-threshold circuits in Spikey, too.
This results in ∼2.6KW, which is still two orders of magnitude
above the values found in biology. Note, that this is a naive
upscaling only, as the system neither supports simulation of such
many neurons nor do they provide the infrastructure to connect
these.

To validate the proposed energy model, predicted values
for several networks are compared to measured ones. These
results are summarized in Table 6. For the Spikey system,
predicted values are quite close to measured values and
deviations are <10% but are not covered by the statistical

Frontiers in Neuroscience | www.frontiersin.org 13 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 6 | Validation of the energy model.

Platform Acc. E/Inf. Prediction of E/Inference in mJ

in % in mJ GeNN Spikey SpiNN3 SpiNN5

Spikey network with parallelism 1

GPU 86.04 160.8 46.8 ± 1.3 0.19 ± 0.00 939.9 ± 2.5 8071.8 ± 16.6

Spikey 68.89 0.2 – 0.19 ± 0.00 939.9 ± 2.5 8071.7 ± 16.5

SpiNN3 87.07 950.8 – 0.19 ± 0.00 939.9 ± 2.5 8071.7 ± 16.5

SpiNN5 87.07 8148.1 – 0.19 ± 0.01 939.9 ± 2.5 8071.8 ± 16.6

Spikey network with parallelism 239

CPU 86.03 – – 0.00 ± 0.00 89.6 ± 1.3 38.6 ± 6.4

SpiNN5 87.04 38.2 – 0.00 ± 0.00 89.4 ± 1.3 38.5 ± 6.3

Diehl network with parallelism 4

GPU 98.83 217.0 265.4 ± 16.3 – 1871.1 ± 43.1 7232.5 ± 205.5

SpiNN3 98.73 993.5 – – 1806.0 ± 41.1 7181.3 ± 196.5

SpiNN5 98.74 6597.8 – – 1806.0 ± 41.1 7181.3 ± 196.5

Diehl network with parallelism 53

CPU 98.86 – – – 1046.1 ± 39.6 1013.5 ± 185.4

SpiNN5 98.77 488.5 – – 979.8 ± 37.6 961.3 ± 176.1

— in J in J in mJ in J in J

Mirror Inhibition

GeNN-GPU 56.0 378.5 ± 57.0 2.7 ± 0.0 14.2 ± 59.8 160.3 ± 71.3

GeNN-GPU† 62.6 261.2 ± 82.8 2.8 ± 0.0 88.0 ± 22.9 187.8 ± 114.7

Spikey 0.0029 – 2.7 ± 0.0 155.7± 6.5 1174.1 ± 33.4

Single population

GeNN-GPU 15.3 7.5 ± 0.2 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

SpiNN3 134.3 – 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

SpiNN5 1171.6 – 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

Spiking SLAM

GeNN-GPU 303.1 108.8 ± 2.8 – 45.7 ± 0.12 390.6 ± 0.8

SpiNN3 46.0 – – 45.7 ± 0.12 390.6 ± 0.8

SpiNN5 398.0 – – 45.7 ± 0.12 390.6 ± 0.8

For selected networks the measured energy (3rd column) is compared to the prediction of the energy model (right part of the table). For the Spikey network, input rates have been

adapted to values used for the Spikey system to improve comparability. Thus, the reported accuracy might be reduced compared to Table 3. Missing values are either due to missing

runtime for the GPU simulation, or due to the network not being compatible with the Spikey system. More data points are found in Supplementary Table 6.
†Simulation using three neurons per population similar to the Spikey parameter set.

error. Even better, relative deviation for the SpiNNaker system
is <3%. This however is not true for the Diehl network,
where low-level settings like the number of neurons have been
changed explaining larger deviations. For GPU simulations the
prediction is usually correct in order of magnitude, but severely
deviates from actual measurements. Here, some features, like
dynamic voltage and frequency scaling or temperature dependent
clock rates, are not covered by the proposed energy model.
Nevertheless, for Spikey and SpiNNaker the proposed model
predicts the energy expenditure of a network simulation even
though the network has been executed with, e.g., the GeNN
simulator. More interestingly, there is an overall agreement of
predictions based on analogue emulation and digital simulation.
Thus, one can use the Spikey system to estimate the energy
expenditure of a SpiNNaker simulation and vice versa (if the
network maps to both systems).

3.5. Comparison to Classical Solutions
Finally, we address the comparison to classical algorithmic
approaches for solving a Sudoku or ANN inference. In
Table 7, the time and energy to solution of the former
application are compared between a Raspberry Pi 4 with
2GB of RAM and neuromorphic systems. On the Pi 4 the
Coin-Or Cbc5 was employed to efficiently solve the Sudoku.
For the small Sudoku puzzle, Spikey is the most efficient
platform in regard to both time and energy to solution. The
GPU is faster, but also more energy consuming compared to
the algorithmic implementation. For the larger Sudoku, the
latter outperforms SpiNNaker and the GPU implementation.
This is most likely due to the SpiNNaker system and
the GPU not being fully utilized. With a more up-to-date

5Found at https://github.com/coin-or/Cbc.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2022 | Volume 16 | Article 873935

https://github.com/coin-or/Cbc
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

manufacturing process (see Section 4 above), the SpiNNaker
implementation would be on the same level of efficiency as the
RPI 4.

For deep network inference (see Table 8), the Spikey system is
again the fastest and most efficient system. However, the ANN
accelerators perform similar at a higher accuracy. Again, the
rather old technology in Spikey is accountable for at least an
order of magnitude in efficiency. The Intel Neural Compute

TABLE 7 | Comparing Sudoku solving on a Raspberry Pi 4 using an algorithmic

approach with SNN solvers.

System Time to solution Energy to solution

in ms in J

2 × 2 Sudoku

RPI 4 2GB 5.00 0.016

SpiNN3 200.00 0.537

Spikey 0.04 10−4 × 2.105

GeNN-GPU 1.42 0.061

3 × 3 Sudoku

RPI 4 2GB 261.0 0.91

SpinNN3 560.0 16.77

GeNN-GPU 370.6 26.72

Metrics are time and energy to solution. The fastest and most efficient values are

highlighted in bold.

Stick 2 (NCS)6 benefits from a larger batchsize, which is defined
at compile time. For the Edge TPU7 a batchsize could not
be configured. Both accelerators were able to simulate the
full network without doing computation on the host machine.
The GPU simulation requires one order of magnitude more
energy, while SpiNNaker (even with full utilization) requires
two orders of magnitude more energy. For the larger Diehl
network, SpiNNaker, and the GPU simulation are on the same
level of efficiency, while the latter being significantly faster.
Switching to TTFS encoding and only counting the energy
expenditure until the first, classifying spike appears closes the gap
between both platforms and ANN accelerators. Here, a modern
manufacturing process would result in SpiNNaker being themost
efficient system. Note, that the slightly reduced accuracy in SNN
simulations with TTFS encoding might be encountered by using
SNN specific training methods (e.g., Neftci et al., 2019).

4. DISCUSSION

To tackle the problem of missing cross-platform performance
assessment in neuromorphic computing, we presented
SNABSuite, an open-source benchmark suite. SNABSuite
features a set of workloads implemented in a platform-agnostic
way, but also providingmechanisms for benchmark and platform
configuration. This allows to account for varying neuron models,
parameter inaccuracies, and platform sizes. The suite has been

6Results created with Open Vino 2021.3.
7The TPU was interfaced with the Pycoral Frogfish Release from February 2021.

TABLE 8 | The table reports time and energy per inference in SNNs compared to ANN accelerators.

System Batch- Parallel Accuracy in % Time per Inf. in ms E per Inf. in mJ

size netw. value to Spikey value to Spikey value to Spikey

Spikey network (90.13% ANN accuracy)

Coral edge TPU 1 90.20 5.04 0.05 0.03 0.3 0.1

Intel NCS 2 1 90.10 4.94 1.92 1.90 10.6 10.4

200 90.10 4.94 0.12 0.10 0.6 0.4

GeNN-GPU 100 88.87 3.71 0.07 0.05 3.7 3.5

SpiNNaker 239 88.40 3.24 23.50 23.48 38.2 38.0

Spikey 1 85.16 0.00 0.02 0.00 0.2 0.0

to SpiNN to SpiNN to SpiNN

Diehl network (98.84% ANN accuracy)

Coral edge TPU 1 98.85 1.29 1.43 −4.83 7.7 3.9

Intel NCS 2 1 98.84 1.28 2.53 −3.73 13.8 10.0

200 98.84 1.28 0.71 −5.55 3.8 0.0

GeNN-GPU 36 98.85 1.29 1.00 −5.26 181.6 177.8

SpiNNaker 53 98.77 1.21 172.49 166.23 188.5 184.7

GENN-GPU (TTFS) 10 97.60 0.04 0.44 −5.82 4.7 0.9

SpiNNaker (TTFS) 61 97.56 0.00 6.26 0.00 3.8 0.0

The batchsize is configured for ANN accelerators. The number of parallel instances of the same network is used for SNN simulations. Values are compared to the most efficient

neuromorphic solution, too. Highlighted are the most accurate and the fastest/most efficient results.

Frontiers in Neuroscience | www.frontiersin.org 15 June 2022 | Volume 16 | Article 873935

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

deployed to a range of neuromorphic systems (from mixed-
signal to fully digital) and SNN simulators, demonstrating the
capabilities of the framework. Selected benchmarks have been
presented and evaluated revealing hardware specific constraints
for neural modeling and potential workarounds for issues
encountered when using these systems. Benchmarks belong
to three categories with varying closeness to full applications
and extrapolation capabilities: low-level benchmarks revealed
constraints that influence the available SNNs deployable to
a given system. These constraints hold for every application,
thus their relevance is quite broad. Application kernels, like the
presented WTA architectures, represent a full class of networks,
but still not solve a real task like object detection or CSP
solving. These belong to the class of full application benchmarks,
providing natural benchmark metrics but having only limited
meaning for other applications implemented on neuromorphic
hardware. We presented results for DNN inference, function
approximation, spiking Sudoku solving, and SLAM.More results
can be found in the Supplementary Material.

For future development of our benchmark framework, two
directions are possible: due to the modular structure and
the hardware abstraction layer, adding new platforms to the
comparison is eased up to a certain extent. Here, possible
candidates include Intel Loihi (Davies et al., 2018), BrainDrop
(Neckar et al., 2019), or DYNAPs (Moradi et al., 2018).
Furthermore, successors have been announced for systems
discussed here (Billaudelle et al., 2019; Mayr et al., 2019). The
second direction covers the implementation of new benchmarks.
Most interesting is the embedding of the various direct training
methods published within the recent years. These methods allow,
similar to the hardware-in-the-loop approach discussed above, to
encounter the neuron variability found in analogue circuitry.

One major argument for neuromorphic computing is the
improvement in efficiency compared to algorithmic or standard
DNN implementations. To validate this argument, we proposed a
simple energy model relating costs of high-level SNN operations
(e.g., action potential generation) to low-level energy costs.
This model successfully predicts the energy budget of networks
emulated on Spikey or simulated on SpiNNaker as long as low-
level configurations would not deviate from the default. Here,
especially changing the number of neurons per core on the
SpiNNaker system leads to larger deviations, as the idle cost
per neuron is increased. The energy model does not cover all
features of a modern digital processor, thus energy predictions
for GPU simulations were found to be insufficient. Nevertheless,
the model allowed us to scale up the energy budget to a full
brain simulation. Comparing these to the costs of the human
brain we found mixed-signal hardware, being the most of
efficient system in consideration, to lag behind by four orders of
magnitude (even in this very optimistic and simplified upscaling).
Furthermore, switching to a modernized fabrication technology,
this gap cannot be closed in the short run. To conclude the
energy related discussion, we presented a comparison to ANN

accelerators and to a Raspberry Pi 4 for selected benchmarks.
We demonstrated, that for small scaled Sudokus the SpiNNaker
system was not fully utilized and thus the RPI4 is performing
better. Only the mixed-signal system had superior time and
energy to solution metrics. Similarly, this system is most efficient
at DNN inference at the cost of accuracy. For SpiNNaker,
switching to TTFS encoding resulted in an efficiency competitive
to ANN accelerators, despite the rather old technology in which
SpiNNaker cores are fabricated in.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: http://yann.lecun.com/exdb/mnist/; https://
github.com/dannyneil/spiking_relu_conversion.

AUTHOR CONTRIBUTIONS

CO and CK conducted the experiments. MT and UR supervised
this work and contributed with various corrections and
comments. All authors contributed to writing the article and
approved the submitted version.

FUNDING

This research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7)
under grant agreement no 604102 and the EU’s Horizon 2020
research and innovation programme under grant agreements
Nos. 720270 and 785907 (Human Brain Project, HBP). It has
been further supported by the Cluster of Excellence Cognitive
Interaction Technology CITEC (EXC 277) at Bielefeld University,
which was funded by the German Research Foundation (DFG).
We acknowledge support for the publication costs by the Open
Access Publication Fund of Bielefeld University and the Deutsche
Forschungsgemeinschaft (DFG).

ACKNOWLEDGMENTS

We thank the Electronic Vision(s) group from Heidelberg
University and Advanced Processor Technologies Research
Group from Manchester University for access to their hardware
systems and continuous support. We thank James Knight
from the University of Sussex for support regarding the
GeNN implementation. Tables and Figures have been previously
published with the dissertation thesis of CO (Ostrau, 2022).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.873935/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 16 June 2022 | Volume 16 | Article 873935

http://yann.lecun.com/exdb/mnist/
https://github.com/dannyneil/spiking_relu_conversion
https://github.com/dannyneil/spiking_relu_conversion
https://www.frontiersin.org/articles/10.3389/fnins.2022.873935/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

REFERENCES

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in

the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

doi: 10.1097/00004647-200110000-00001

Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L.,

Leite, R. E. P., et al. (2009). Equal numbers of neuronal and nonneuronal cells

make the human brain an isometrically scaled-up primate brain. J. Compar.

Neurol. 513, 532–541. doi: 10.1002/cne.21974

Billaudelle, S., Stradmann, Y., Schreiber, K., Cramer, B., Baumbach, A., Dold,

D., et al. (2019). Versatile emulation of spiking neural networks on

an accelerated neuromorphic substrate. arXiv preprint arXiv:1912.12980.

doi: 10.1109/ISCAS45731.2020.9180741

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T., Zhang, J.,

et al. (2019). Analysis of DAWNBench, a time-to-accuracy machine

learning performance benchmark. ACM SIGOPS Oper. Syst. Rev. 53, 14–25.

doi: 10.1145/3352020.3352024

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., et al. (2017).

DAWNBench: An End-to-End Deep Learning Benchmark and Competition,

Technical Report.

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.

Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies, M., Srinivasa, N., Lin, T.-H. H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P., et

al. (2021). Advancing neuromorphic computing with Loihi: a survey of results

and outlook. Proc. IEEE 10, 1–24. doi: 10.1109/JPROC.2021.3067593

Davison, A. P. (2008). PyNN: a common interface for neuronal network

simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C. C., Pfeiffer, M., et al.

(2015). “Fast-classifying, high-accuracy spiking deep networks through weight

and threshold balancing,” Proceedings of the International Joint Conference on

Neural Networks, doi: 10.1109/IJCNN.2015.7280696

Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACK Benchmark:

past, present and future. Concurr. Comput. 15, 803–820. doi: 10.1002/cpe.728

Eliasmith, C., and Anderson, C. H. (2004). Neural engineering.

Eppler, J. M. (2008). PyNEST: a convenient interface to the NEST simulator. Front.

Neuroinform. 2:12. doi: 10.3389/neuro.11.012.2008

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P.

S. (2021). Fast simulations of highly-connected spiking cortical models using

GPUs. Front. Comput. Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural

ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Howarth, C., Gleeson, P., and Attwell, D. (2012). Updated energy budgets for

neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow

Metab. 32, 1222–1232. doi: 10.1038/jcbfm.2012.35

Jordan, J., Mørk, H., Vennemo, S. B., Terhorst, D., Peyser, A., Ippen, T., et al.

(2019). NEST 2.18.0 (2.18.0). Zenodo. doi: 10.5281/zenodo.2605422

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain

simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.

doi: 10.1038/s43588-020-00022-7

Kreiser, R., Cartiglia, M., Martel, J. N., Conradt, J., and Sandamirskaya,

Y. (2018a). “A neuromorphic approach to path integration: a head-

direction spiking neural network with vision-driven reset,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence), 1–5.

doi: 10.1109/ISCAS.2018.8351509

Kreiser, R., Renner, A., Leite, V. R. C., Serhan, B., Bartolozzi, C., Glover, A., et al.

(2020). An on-chip spiking neural network for estimation of the head pose of

the iCub robot. Front. Neurosci. 14:551. doi: 10.3389/fnins.2020.00551

Kreiser, R., Renner, A., Sandamirskaya, Y., and Pienroj, P. (2018b). “Pose

estimation and map formation with spiking neural networks: towards

neuromorphic SLAM,” in 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Madrid), 2159–2166.

doi: 10.1109/IROS.2018.8594228

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–497.

doi: 10.1016/S0960-9822(03)00135-0

Maass, W. (2014). Noise as a resource for computation and learning in networks of

spiking neurons. Proc. IEEE 102, 860–880. doi: 10.1109/JPROC.2014.2310593

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson,

D., et al. (2020). “MLPerf training benchmark,” in Proceedings of Machine

Learning and Systems, Vol. 2, eds I. Dhillon, D. Papailiopoulos, and V. Sze,

p. 336–349. Available online at: https://proceedings.mlsys.org/paper/2020/file/

02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

Mayr, C., Hoeppner, S., and Furber, S. (2019). SpiNNaker 2: A 10 million core

processor system for brain simulation and machine learning. arXiv preprint

arXiv:1911.02385, 10–13.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multi-core architecture with heterogeneous memory structures for Dynamic

Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A.

R., et al. (2019). Braindrop: a mixed-signal neuromorphic architecture with

a dynamical systems-based programming model. Proc. IEEE 107, 144–164.

doi: 10.1109/JPROC.2018.2881432

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks: bringing the power of gradient-based

optimization to spiking neural networks. IEEE Sign. Process. Mag. 36,

51–63. doi: 10.1109/MSP.2019.2931595

Ostrau, C. (2022). Energy and Performance Estimation for Neuromorphic

Systems. Dissertation Thesis. Bielefeld University. doi: 10.4119/unibi/2962759

Ostrau, C., Homburg, J., Klarhorst, C., Thies, M., and Rückert, U. (2020a).

“Benchmarking deep spiking neural networks on neuromorphic

hardware,” in Artificial Neural Networks and Machine Learning-

ICANN 2020 (Bratislava: Springer International Publishing), 610–621.

doi: 10.1007/978-3-030-61616-8_49

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2019). “Comparing

neuromorphic systems by solving sudoku problems,” in 2019 International

Conference on High Performance Computing & Simulation (HPCS) (Dublin),

521–527. doi: 10.1109/HPCS48598.2019.9188207

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2020b). “Benchmarking of

neuromorphic hardware systems,” in Neuro-inspired Computational Elements

Workshop (NICE’20) (Heidelberg), 1–4. doi: 10.1145/3381755.3381772

Petrovici, M. A., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller,

L., et al. (2014). Characterization and compensation of network-level anomalies

in mixed-signal neuromorphic modeling platforms. PLoS ONE 9:e108590.

doi: 10.1371/journal.pone.0108590

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.

(2013). Six networks on a universal neuromorphic computing substrate. Front.

Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G., Wu, C.-

J., et al. (2020). “MLPerf inference benchmark,” in 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA) (Valencia),

446–459. doi: 10.1109/ISCA45697.2020.00045

Rhodes, O., Bogdan, A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., et

al. (2018). sPyNNaker: A Software Package for Running PyNN Simulations on

SpiNNaker. doi: 10.3389/fnins.2018.00816

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,

et al. (2020). Real-time cortical simulation on neuromorphic hardware. Philos.

Trans. R. Soc. A 378:20190160. doi: 10.1098/rsta.2019.0160

Rosing, J., and Slater, E. (1972). The value of 1G◦ for the hydrolysis of

ATP. Biochim. Biophys. Acta 267, 275–290. doi: 10.1016/0005-2728(72)9

0116-8

Frontiers in Neuroscience | www.frontiersin.org 17 June 2022 | Volume 16 | Article 873935

https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1002/cne.21974
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1002/cpe.728
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1038/jcbfm.2012.35
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1109/ISCAS.2018.8351509
https://doi.org/10.3389/fnins.2020.00551
https://doi.org/10.1109/IROS.2018.8594228
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1109/JPROC.2014.2310593
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.4119/unibi/2962759
https://doi.org/10.1007/978-3-030-61616-8_49
https://doi.org/10.1109/HPCS48598.2019.9188207
https://doi.org/10.1145/3381755.3381772
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1016/0005-2728(72)90116-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

Rowley, A. G. D., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., Lester, D.

R., et al. (2018). SpiNNTools: the execution engine for the SpiNNaker platform.

Front Neurosci. 13:231. doi: 10.3389/fnins.2019.00231

Rubino, A., Payvand, M., and Indiveri, G. (2019). “Ultra-low power silicon

neuron circuit for extreme-edge neuromorphic intelligence,” in 2019 26th IEEE

International Conference on Electronics, Circuits and Systems (ICECS) (Genoa),

458–461. doi: 10.1109/ICECS46596.2019.8964713

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking

neural networks using sparse temporal coding,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence),

1–5. doi: 10.1109/ISCAS.2018.8351295

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner,

S. (2010). “A wafer-scale neuromorphic hardware system for large-scale

neural modeling,” in Proceedings of 2010 IEEE International Symposium

on Circuits and Systems (Paris), 1947–1950. doi: 10.1109/ISCAS.2010.55

36970

Schmitt, S., Klahn, J., Bellec, G., Grubl, A., Guttler, M., Hartel, A., et al.

(2017). “Neuromorphic hardware in the loop: training a deep spiking

network on the BrainScaleS wafer-scale system,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AK), 2227–2234. IEEE.

doi: 10.1109/IJCNN.2017.7966125

Stöckel, A., Jenzen, C., Thies, M., and Rückert, U. (2017). Binary associative

memories as a benchmark for spiking neuromorphic hardware. Front. Comput.

Neurosci. 11:71. doi: 10.3389/fncom.2017.00071

Sun, Y., Agostini, N. B., Dong, S., and Kaeli, D. (2019). Summarizing CPU and

GPU design trends with product data. arXiv preprint arXiv:1911.11313.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation

software NEST for a full-scale cortical microcircuit model. Front. Neurosci.

12:291. doi: 10.3389/fnins.2018.00291

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ostrau, Klarhorst, Thies and Rückert. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 June 2022 | Volume 16 | Article 873935

https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.1109/ICECS46596.2019.8964713
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.3389/fncom.2017.00071
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Benchmarking Neuromorphic Hardware and Its Energy Expenditure
	1. Introduction
	2. Methods
	2.1. Neuromorphic Systems and Simulators
	2.2. Benchmark Framework
	2.3. Neuromorphic Benchmarks
	2.3.1. Low-Level Characterization Benchmark
	2.3.2. Application Inspired Sub-task
	2.3.3. Full Application Benchmark

	2.4. Comparison to DNN Benchmarks
	2.5. Energy Model for Neuromorphic Hardware

	3. Experiments and Results
	3.1. Characterization Benchmarks
	3.2. Application Inspired Subtasks
	3.3. Applications
	3.4. Energy
	3.5. Comparison to Classical Solutions

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

