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The widespread use of machine learning algorithms in radiomics has led to a proliferation

of flexible prognostic models for clinical outcomes. However, a limitation of these

techniques is their black-box nature, which prevents the ability for increased mechanistic

phenomenological understanding. In this article, we develop an inferential framework for

estimating causal effects with radiomics data. A new challenge is that the exposure

of interest is latent so that new estimation procedures are needed. We leverage a

multivariate version of partial least squares for causal effect estimation. The methodology

is illustrated with applications to two radiomics datasets, one in osteosarcoma and one

in glioblastoma.

Keywords: latent causal effect, link-free inference, medical imaging, personalized medicine, sufficient dimension

reduction

1. INTRODUCTION

Radiomics explores relationships between image-derived characteristics of a tumor and other
parameters, including clinical outcomes and genomic profiles, including gene expression, somatic
mutations, and DNA methylation (Mazurowski, 2015). In particular, several groups have built
classifiers to predict tumor molecular phenotypes using radiomic inputs (e.g., Kickingereder et al.,
2016; Rios Velazquez et al., 2017; Yip et al., 2017; Xi et al., 2018). More recently, there has been
tremendous interest in using modern machine learning and in particular deep learning tools in
order to build state-of-the-art classifiers for predictions (Lao et al., 2017; Li et al., 2017; Parnian
et al., 2020).

In spite of their state-of-the-art performance, use of these complex models comes at a cost.
Because many of these classifiers are “black-box” in nature, clinicians consequently have a difficult
time understanding the predictions. More generally, most work in radiomics has focused on
pattern-based associations in the data with a machine learning viewpoint in one of two ways. First,
these analyses could take the form of clustering algorithms, such as t-SNE or UMAP, in which
interesting clusterings lead to followup discoveries. Second, a classification or supervised learning
framework could be adopted in which the radiomics features could be used to predict a class label
or phenotype of interest. For this approach, a typical evaluation is classification accuracy of the
ROC curve or F1 values where higher values are better. While there has been tremendous successes
in radiomics with these machine learning techniques, it still remains elusive from the end goal of
developing mechanistic insights into tumorigenesis.
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In this article, we seek to introduce causal modeling concepts
into radiomics. While there has been much work on using these
ideas in genomics (e.g., Huang and Pan, 2016; Aung et al., 2020)
and brain imaging (e.g., Chén et al., 2018), their application
to radiomics has not occurred. We argue that adopting this
viewpoint in radiomics has the following advantages:

1. It allows one to view radiomics as measurements of
properties of the tumor and its characteristics.

2. Developing a causal model allows one to link tumorigenic
mechanisms to observed data.

3. The causal inferential pathway is compatible with the trend
toward systems biology (Alon, 2019) while not being as
purely reductionist as approaches such as those based on
mathematical models or ordinary differential equations.

However, a challenge that this approach introduces is that we
must view the tumor as a latent construct, and causal inference
with latent structures is much more challenging. There has
been much recent interest in the use of latent class modeling
of treatment effects on outcomes (Collins and Lanza, 2009).
Bandeen-Roche et al. (1997) proposed a latent class modeling
approach in which pseudodraws from the inferred latent class
distribution are then used to fit regression models on the
outcome. Multiple pseudodraws are generated, and the multiple
regression results are combined using Rubin’s imputation rules
(Little and Rubin, 2019). A simpler approach is to use a
classify/analyze approach (Clogg, 1995) in which each individual
is assigned to a latent class, and then the group assignment is used
as a covariate for which standard propensity score methods can
be applied. In a recent study, Schuler et al. (2014) compared these
approaches, along with a joint modeling approach developed by
Kang and Schafer from an unpublished technical report at the
Methodology Center of Penn State University. The approaches
can be broadly grouped as being 1-step vs. 3-step approaches
(Asparouhov and Muthén, 2014). The former methods fit a joint
model describing both the latent classes as well as the latent
classes’ effect on the outcome. The latter go through a series
of three steps: (a) fit a model to describe the joint classes; (b)
assign membership of the individuals to these classes; (c) fit a
regression model of the outcome on the inferred latent class.
Schuler et al. (2014) provide a nice discussion of the strengths
and weaknesses of each approach. In their conclusions, they
suggest that 1-step methods offer many advantages but that
one barrier to their implementation is computational. To be
precise, estimation based on a joint likelihood for both the
latent class and causal effect modeling might have issues with
numerical convergence.

Our new contributions to the literature in the current paper
are the following:

1. Extension and formalization of the classical potential
outcomes framework (Rubin, 1974; Holland, 1986) to
accomommodate latent treatment effects. This entails
developing the necessary assumptions for definition and
identification of an appropriate causal estimate with
observed data. This leads to a new quantity, the local latent
average causal effect.

2. Development of a new estimation procedure for the local
causal effect with latent variables. This leverages techniques
from sufficient dimension reduction and partial least
squares (Naik and Tsai, 2000).

To our knowledge, the use of latent causal inferential techniques
has not been developed for effect estimation in radiomics or
genomics. The most related technique comes from genetics,
where principal components-type approaches are used to adjust
for population stratification, which is a type of confounding
(Patterson et al., 2006; Epstein et al., 2007). However, in that
setup, latent variables are used to model confounders, not the
main effect of interest, which is the focus of the current article.
As a proof of concept, we apply our approach to two radiomics
datasets in the literature, one from glioblastoma, the other a
public available data from osteosarcoma (Zhang et al., 2019).

2. MOTIVATING DATASETS

In this article, we will use two datasets to illustrate the
methodology as a proof of concept. We use these because the
distribution of the outcome is different. For the study described in
Section 2.1, the outcome is continuous, while for that in Section
2.2, the outcome is binary.

2.1. Glioblastoma Multiforme Study
Glioma is the most common type of brain cancer; it develops
in the glial cells (Ohgaki, 2009). Among these, glioblastoma
multiforme (GBM) is the most frequent and malignant histologic
type. Patients with GBM have on average 3% 5-year survival after
diagnosis (Ohgaki, 2009). The dataset we work with comes from
the Cancer Genome Atlas, consisting of data on 226 subjects
with GBM. For these subjects, imaging was done using three
protocols: T1, T2 and FLAIR. In this paper, we only focus on the
first two. T1 and T2 refer to protocols that utilize two different
properties of fMRI. With fMRI, the magnetic current induces a
magnetic field, and T1 refers to the speed at which the electron
spins in the blood realign with the recovery of the longitudinal
orientation. T2 refers to the loss ofmagnetization as a result of the
loss in phase coherence of the electrons. The T1 and T2 images
were represented in DICOM format, which was then converted
to NIfTI format and processed for standardization with 1mm
isovoxel resolution as follows:

1. Postcontrast T1-weighted images (T1C) were resampled to
1mm isovoxel resolution.

2. T2 images were registered to T1C images after skull
stripping, using the FMRIB software library (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSL).

3. Image signal intensity was normalized using the
WhiteStripe R package.

The tumor areas, defined as areas of T2 hyper-intense tumor
and edema on FLAIR images, were segmented by using semi-
automatic methods, including signal intensity thresholding,
region growing, and edge detection, with an open source software
(Medical Image Processing, Analysis and Visualization, https://
mipav.cit.nih.gov/). Radiomic features were extracted from all
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isotropic voxel image segmented regions of interest (ROIs) using
pyRadiomics (Van Griethuysen et al., 2017). Extraction settings
were configured to features from original images, as well as
Wavelet filtered and Laplacian of Gaussian (LoG) filtered images
and were calculated considering adjacent voxel in 3 dimensions.
In total, 1046 radiomic features were extracted per image.

2.2. Osteosarcoma Study
Osteosarcoma is a cancer that usually develops in the cells
that form bone, the osteoclasts. It happens most often in
children, adolescents, and young adults. In a recent study,
Zhang et al. (2021) conducted a study of 102 subjects
with osteosarcoma who underwent neoadjuvant chemotherapy.
Prior to having treatment, they received a dynamic contrast-
enhanced MRI (DCE-MRI) scan. The Response Evaluation
Criteria in Solid Tumors were used to evaluate the neoadjuvant
chemotherapy response as effective (complete remission and/or
partial remission) or ineffective (stable and progressive disease).

Using the Radcloud software platform, Zhang et al. (2021)
extracted a total of 1,409 quantitative imaging features. They
can be divided into four groups: (a) Group 1 represent typical
summaries for the distribution of voxel intensities within the
MR image; (b) Group 2 are three-dimensional features that
reflect the shape and size of the region; (c) Group 3 are
second-order texture features that quantify region heterogeneity
differences, calculated from gray-level run length and gray-
level co-occurrence texture matrices; (d) Group 4 contains
1,302 first-order statistics and texture features after applying
Laplacian, logarithmic, exponential, and wavelet filters on the
image. The goal is to see whether or not radiomics can predict
treatment response.

3. PROPOSED METHODOLOGY

3.1. Potential Outcomes Framework
We first review the potential outcomes framework of Rubin
(1974) and Holland (1986) and begin by assuming that the
treatment is observed. For the sake of exposition, we will assume
that it is continuous, similar to Imai and Van Dyk (2004). Let
Z denote the treatment, with possible values z ∈ Z . Define
{Yi(z) : z ∈ Z} to the set of potential outcomes for subject i,
i = 1, . . . , n; Yi(z) represents the potential outcome for subject i
with the treatment equals z. In addition, we assume the existence
of a set of confounders X. For proper causal inference within the
potential outcomes framework, one needs the assumption based
on strong ignorability of the treatment:

{Y(z) : z ∈ Z} || Z|X, (1)

which in words states that treatment assignment is conditionally
independent of the set of potential outcomes given covariates.
In the case of binary treatment, Rosenbaum and Rubin (1983)
refer to (1) as the strongly ignorable treatment assumption.
Heuristically, what (1) implies is that the potential outcomes can
be viewed as predefined random variables. The randomness in
the populations occurs due to the non-ignorable missing data
mechanism, in the sense of Little and Rubin (2019), that makes

only one of the potential outcomes observable for each subject.
In addition, we make the assumption of consistency so that the
observed outcome for a subject coincides with the corresponding
potential outcome.

Based on the potential outcomes, we can define the following
local causal effect parameter

LCEi(z) = Yi(z + 1)− Yi(z), z ∈ Z (2)

for i = 1, . . . , n. We also note the dependence of (2) on the
treatment. If we assume that the effect is constant over levels of Z,
then it would be possible to pool effects to result in a statistically
more efficient estimator of the local causal effect.

Two more assumptions that are commonly invoked in the
causal inference literature are the positivity assumption and the
common support condition. The former states that E(Z|X) 6= 0
for all possible values of X. In other words, there exist no regions
of the confounder distribution that preclude observe any possible
value of the treatment. The common support condition states
that there is sufficient overlap in X across all values of Z.

If we were to average the local causal effects (2) over all
subjects (i = 1, . . . , n), then this would correspond to a local
average causal effect. In the case where the treatment is binary,
this effect reduces to the average causal effect that has been
considered in the literature.

Analogous to the propensity score of Rosenbaum and Rubin
(1983) in the case of binary treatment, we can consider a
quantity representing the conditional mean of treatment given
confounders, E(Z|X). This is a special case of the generalized
propensity score of Imai and Van Dyk (2004) and has several
desirable properties. The first is that it reduces the modeling of
confounders to modeling a conditional mean of treatment, which
reduces the dimension. Second, provided E(Z|X) is correctly
modeled, then it functions as a balancing score in that if (1) holds,
then {Y(z) : z ∈ Z} || Z|E(Z|X). The properties of E(Z|X) lead to
a natural strategy for performing causal inference:

1. Fit a model for E(Z|X).
2. Given the predicted conditional mean in (1), perform a

regression of Y on Z in which an adjustment is made using
E(Z|X).

There is a variety of approaches to perform adjustment in the
second step of this algorithm. These include inverse weighting
methods, regression adjustment, matching, subclassification, or
a combination thereof. Please see Lunceford and Davidian, 2004
for more discussion on these methods.

3.2. Latent Treatment: Model Formulation
and Estimation
We now relax the assumption that the treatment Z be observed.
Instead, we now have available several observations U ≡

(U1, . . . ,UK) that capture the latent treatment variable Z.
A commonly used assumption here is the so-called local
independence assumption (Henning, 1989), which states that
conditional on Z, U1, . . . ,UK are conditionally independent. We
can then factorize the joint distribution of the potential outcomes
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(denoted here as Y(·)) Z, X and U as

fY(·),Z,X,U = fY(·)|Z,X,UfZ|X,UfX,U

= fY(·)|U,XfZ|X,UfX,U,

where we have the assumption (1) to simplify the conditional
distribution going from the first line to the second. If we further
assumption that the joint density fX,U are ancillary for the
causal parameters of interest, then we can base our approach to
inference by specifying likelihoods corresponding to fY(·)|U,X and
fZ|X,U, respectively. Recapping, here are the assumptions we need
for valid causal effect estimation of the LCE in the latent case:

1. Z || {Y(z) : z ∈ Z}.
2. The components of U are conditionally independent given Z.
3. The components of U are conditionally independent of any

variable S given Z.
4. E(Z|X) exists for all X.

We note that Assumptions 2 and 3 look similar but are
conceptually different. The former deals with the radiomics
features providing conditionally independent information given
the tumor and is referred to as local independence. By contrast,
the latter has to do with measurement invariance (Meredith,
1993), namely that the radiomics measurements are capturing
the same concept independent of other variables. In fact, it is
assumption 3 that is a very important one if one wishes to have
any chance of the radiomics data analyses reflecting potentially
generalizable findings.

Figure 1 depicts our conceptual model. We could then
convert Figure 1 into a causal diagram (Greenland et al., 1999)
which leverages the graphical model for causation (Pearl, 2009).
We can use the traditional rules about directed acyclic graphs
to model conditional independence. In particular, the observed
radiomics data will be conditionally independent given the latent
variable. In addition, the latent variable d-separates (Pearl, 2009)
the confounders fromU. The causal effect we focus on in Figure 1
is that from the latent variable to the clinical outcome. This
separation of the scientific estimants (i.e., causal effects) from the
data represent one of the appealing features of Figure 1.

We note that the structure of Figure 1 is related to diagrams
used by practitioners of structural equations modeling (SEM,
Bollen and Pearl, 2013). In that literature, relationships between
latent variables are referred to as the structural model, while
those relating latent to measured are called measurement models.
SEM combines the two types of models in order to induce
a joint distribution for the observed data which is then used
for estimation and inference. As described by Bollen and Pearl
(2013), the structural model is consistent with the potential
outcomes framework that we outlined in Section 3.1.

Thinking of the radiomics data as the main effect in a causal
analysis is consistent with a tumor progression model in which
the cancer’s behavior at clinical diagnosis matters, and any
biological preceding events can only play the role of confounders.
Biologically, this means that confounders increase the propensity
for tumorigenesis to occur.

4. METHODOLOGY

4.1. Proposition and Partial Least Squares
Based on the assumptions and conditional independence
statements we have laid out in the previous sections, we have
following proposition.
Proposition 1. The random variable Z d-separates both U and X

and Y and X.
While proposition 1 is quite simple in nature, it in fact reveals

a powerful result and leads to a new approach to causal effect
estimation. In particular, we can estimate Z as a latent variable in
two simultaneous regressionmodels: (1)U onX; (2) Y onX. This
simultaneous estimation has potential benefits largely due to the
absence of direct arrows from U to Y in Figure 1. We have thus
converted a causal effect estimation problem into a multi-task
learning problem with a latent variable.

Our algorithms for causal effect estimation will be based on
partial least squares (PLS) (Helland, 1988, 1990). PLS presumes
that Ui and Xi (i = 1, . . . , n) are both linear functions of a set
of common latent factors. An alternative characterization for PLS
was given by Stone and Brooks (1990). Suppose that we are fitting
the following model:

E(Yi|Zi) = ZT
i β0 (3)

Then, Stone and Brooks (1990) consider the following class of
objective functions:

Var(ZT
i β)2Cov(Yi,Z

T
i β)α/(1−α)−1,

where Var and Cov and short-hand notation for variance and
covariance, and α is a number between 0 and 1. In this
framework, values of α = 0, α = 1/2 and α = 1 correspond
to the objective functions maximized by ordinary least squares
(OLS), partial least squares (PLS) and principal components
regression (PCR), respectively. Using this framework, we find
that the PLS algorithm acts as some hybrid between the usual
least squares estimator and the principal components regression
approach of Massy (1965).

The algorithm for multivariate PLS that we will use is the
kernel algorithm proposed by Dayal and MacGregor (1997). We
assume that the columns of U and X are centered and scaled.
Recall again that the PLS model formulation is given by

(

X = TP′ + E

U = VQ′ + F

)

, (4)

where T and V are n × l matrices, and P and Q are the so-called
locaing matrices corresponding to X and U, respectively. The
dimension of P is p × l, while for Q, it is m × l. The matrices
E and F are the error terms with entries being independent and
identically distributed normal random variables with mean zero
and variance σ 2.

The kernel algorithm proceeds as follows:

1. Compute the matrices X′X and X′U.
2. Let b = 1. Compute q1 as the eigenvector corresponding to

the largest eigenvalue ofU′X′XU. Then set w′
b
= (X′U)bqb
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FIGURE 1 | A conceptual model diagram relating confounders, radiomics and outcome variables in medical studies. The goal is to estimate the causal effect

corresponding from the arrow from the “Latent variable” circle to the clinical outcome.

and rescale the entries of wb to have unit norm. For b = 1,
(X′U)b = X′U; for b > 1, its definition will be given in (5).

3. Compute rb. For b = 1, r1 = w1, while for b > 1,

rb = wb −

t−1
∑

a=1

p′awbrb.

4. Compute tb = Xrb, pb = t′
b
X/t′

b
tb and q

′
b
= r′

b
(X′U)/t′

b
tb.

5. Compute

(X′U)b+1 = (X′U)b − pbq
′
b(t

′
btb) (5)

1. Repeat steps (2)-(5).

At the end, the regression coefficients are given by the outer
product of the matrix consisting of rb and that consisting of qb.
This kernel algorithm has been implemented in the kernelpls.�t
function that is available in the pls package (Wehrens and Mevik,
2007).

4.2. Theoretical Justification
Partial least squares methods were given a justification for the
single-index model by Naik and Tsai (2000). This was done
by incorporating ideas from the field of sufficient dimension
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FIGURE 2 | Survival distribution plots for the subjects in the glioblastoma radiomics study. For all plots, the x axis represents the time in weeks and the y-axis is the

survival probability. Panel (A) shows the Kaplan–Meier plot for the entire population, along with associated 95% pointwise confidence intervals. Panel (B) shows the

Kaplan–Meier estimates by grade (solid = grade 2; dashed = grade 3; dotted = grade 4). In Panel (C), the survival distributions by IDH mutation status (solid =

mutant; dashed = wild-type) are presented. Finally, the gender-specific survival distributions (solid = female; dashed = male) are given in (D).

reduction (Li, 2018). This is a branch of statistics in which the
goal is to develop “model-free” procedures in order to summarize
data while preserving regression relationships. The field started
with the observation by Brillinger (2012) in which ordinary least
squares methods provide estimates that were consistent up to

a sign for regression parameters in more general single-index

models. A recent overview of the field can be found in Li (2018).

We now develop amultivariate extension of the results of Naik

and Tsai (2000). To do this, we consider a multivariate response

for each subject that can be summarized as a an K−dimensional
vector U along with a p−dimensional vector of covariates X.

We then formulate the following multivariate regression
model:







U1

...
UK






=







g1(β
′
1X, ǫ1)
...

gK(β
′
KX, ǫK),






(6)

where gj (j = 1, . . . ,K) are monotonic functions in both
arguments and ǫ1, . . . , ǫK are random vectors representing the
error distributions for the models. In (6), the p−dimensional
parameter vectors β1, . . . ,βK specify the directions of interest.
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In the case where K = 1, model (6) reduces to a generalized
single-index model. We make the following assumptions.
Assumption 1. X has a multivariate normal distribution.
Assumption 2. The covariance matrices n−1X′X and n−1X′U

converge in probability to limits 6xx and 6xu, respectively.
Assumption 3. Taken as an operator, the range of 6xx coincides
with the range of 6xu.

Based on these three assumptions, we have the following
result.
Theorem: Under Assumptions 1–3, the multivariate PLS
estimator converges in probability to a constant times
(β1, . . . ,βm).
Proof: The multivariate PLS estimator can be expressed
as R̂(R̂′n−1X′XR̂)−1R̂′n−1X′U, where R̂ is the matrix
derived from the Kryvlov sequence of matrices of n−1X′X

and n−1X′U. By assumption 2, this will converge to
R(R′6xxR)

−1R′6xuβ
∗. By assumption 3, β∗ will the in

the space spanned by R so that 6
1/2
xx β∗ will be in the

space spanned by 6
1/2
xx R. The statement of the theorem

then follows.
One of the major assumptions in traditional sufficient

dimension reduction procedures has been the linearity
assumption, which is satisfied by multivariate normal
distributions and more generally, elliptically symmetric
distributions. This gets violated in situations with discrete
predictors. Recently, Ghosh (2022) has developed an
interpretation of sufficient dimension reduction methods from
an information-theoretic point of view. In this interpretation,
the partial least squares algorithm can be viewed as an
information-maximization operation under less restrictive
distributional assumptions than those required in Theorem 1 of
the paper.

4.3. Integration With Causal Modeling and
Implementation Details
In examining Figure 1, we propose the following strategy for
causal effect estimation.

1. Run a multivariate PLS regression of the radiomics data on
the confounders.

2. Using the scores as the inferred latent treatment from the
output of the PLS regression, perform causal inference of
the treatment on outcome.

We have lots of choices on how to perform step 2. above.
Our approach is to use regression adjustment as a means of
inferring causal effects. For the standard error, we will use the
non-parametric bootstrap (Efron, 1981).

We note that the outcome of the multivariate PLS can
be fairly general. These include variables that are continuous,
binary or unordered categorical. For right-censored failure time
variables, we use the suggestion of Keleş and Segal (2002)
and compute a first-stage martingale residual from a null
model (i.e., one with no covariates). We then treat the residual
as a continuous variable to be input into the partial least
squares algorithm.

TABLE 1 | Latent causal effects and associated confidence intervals in

glioblastoma study.

Confounders n Estimate 95% confidence interval

Gender, grade 225 −0.19 (−0.27, −0.08)

Gender, grade, IDH 203 −0.20 (−0.26, −0.11)

The estimates denote the average latent local causal effect of radiomics on survival.

There are two analyses reported here. The first row denotes an analysis in which gender

and grade are confounders. The second row represents an analysis in which gender,

grade, and IDH mutation status are confounders. The n refers to the sample size used.

The estimate is the estimated causal effect using the methods in Section 4. The 95%

confidence intervals are obtained using the non-parametric bootstrap.

5. NUMERICAL EXAMPLES

5.1. Glioblastoma Multiforme Study
The confounders available in this analysis are gender, grade, and
IDH mutation status. Mutations of the isocitrate dehydrogenase
(IDH1) gene has been shown to be a marker of oncogenesis
and is one of the most specific biomarkers in the diagnostic
classification of secondary GBM (Dang et al., 2010) Gliomas with
mutated IDH have improved prognosis compared to gliomas
with wild-type IDH and are detected by immunohistochemistry
and magnetic resonance (MR) spectroscopy (Cohen et al.,
2013). We first characterize survival in the population and by
grade, IDH mutation status and gender. These are presented in
Figure 2.

Based on the plots, we see that there are differences in survival
based on grade and IDH mutation status and not for gender. We
also note that 22 subjects are missing IDH mutation, while 1 is
missing grade and gender.

We next applied the latent causal effect approach in the paper
with two sets of confounders: (gender, grade) and (gender, grade,
IDH mutation statu). We note that the former analysis will have
225 subjects, while the latter will have 203. The results are shown
in Table 1.

The model that is being fit is for the adjusted survival time
as a function of the latent variable. Based on the analysis, we
see that there is a highly significant effect of the treatment on
outcome. Both analyses that higher values of the latent construct
are associated with lower adjusted times to death.

5.2. Osteosarcoma Study
In this dataset, there is only one confounder, the stage of cancer
(stage IIB vs. not). Of the 102 subjects, 75 were stage IIB.
The effect of radiomics on treatment response was analyzed
here. The multivariate PLS algorithm yields an average causal
effect of 0.099, with an associated 95% confidence interval of
(−0.13, 0.20). As an alternative, we computed the first principal
components using the radiomics data and fit a regression model
of treatment response Y on the principal component and stage.
Based on the fitted model, we obtained the following equation:

Y = 0.29− 0.02PC1+ 0.23Stage,

with associated standard errors of 0.01 and 0.11 for the principal
component and stage. While both variables are statistically
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FIGURE 3 | A framework for viewing the radiomics measurements as mediation variables. The exposure here is a DNA mutation which leads to tumorigenesis that is

captured by the imaging and radiomics feature and which leads to a clinical outcome.

significant at a 0.05 level of significance (p-values of 0.05 and
0.03 for PC score and stage, respectively), we note that the
direction of the effect is reverse that from the multivariate
PLS approach.

6. DISCUSSION

In this article, we have introduced an approach to
causal modeling with radiomics data. The assumptions

needed for identification of the causal effects from
observed data along with an estimation procedure for
causal effects. We have demonstrated the application
of the methodology to two radiomics datasets in
cancer. Further evaluations are need to demonstrate

validation of the methodology. To help readers, we

have made code available to do the analysis with
the osteosarcoma data at the following location:
http://github.com/GhoshLab/CausalRadiomics.
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An alternative approach to radiomics data is to treat
it as a mediation variable in a causal effects analysis.
There, it would be an intermediate variable, and genetic
data would serve as the main exposure. Viewing the
radiomics as mediation variable makes explicit the role
of initiating events. In Figure 3, we suggest a DNA
mutation as the beginning event, but other choices could
be entertained.

In this setup, the radiomics is viewed as a downstream
event, and the mutation will have effects on survival as
mediated through the radiomics and effects outside the pathway.
In Huang and Pan (2016), the authors used microRNA as
the exposure and gene expression from several pathways
as the mediators. For this setup, they develop tests of
mediation and associated testing procedures. More recently,
in Aung et al. (2020), a Bayesian approach to mediation
analysis as developed, in which methylation profiles were the
high-dimensional mediators of a univariate exposure. Their
algorithm was based on a variable selection procedure with
shrinkage priors to select for mediators. Finally, we note
the principal mediation directions approach of Chén et al.
(2018). For their application, subject-level functional magnetic
resonance imaging profiles were the mediator, and the goal
was to understand the areas of the brain that mediated pain-
invoked stimuli. In Chén et al. (2018), the authors used a
supervised principal components approach similar to what
is presented here. We will explore extensions of our latent
causal inference procedures to the mediation problem in
future work.
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