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Rett syndrome (RTT) is a severe progressive neurodevelopmental disorder characterized
by various neurological symptoms. Almost all RTT cases are caused by mutations in
the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, and several mouse models
have been established to understand the disease. However, the neuroanatomical
abnormalities in each brain region of RTT mouse models have not been fully understood.
Here, we investigated the global and local neuroanatomy of the Mecp2 gene-deleted
RTT model (Mecp2-KO) mouse brain using T2-weighted 3D magnetic resonance
imaging with different morphometry to clarify the brain structural abnormalities that
are involved in the pathophysiology of RTT. We found a significant reduction in global
and almost all local volumes in the brain of Mecp2-KO mice. In addition, a detailed
comparative analysis identified specific volume reductions in several brain regions in the
Mecp2-deficient brain. Our analysis also revealed that the Mecp2-deficient brain shows
changes in hemispheric asymmetry in several brain regions. These findings suggest
that MeCP2 affects not only the whole-brain volume but also the region-specific brain
structure. Our study provides a framework for neuroanatomical studies of a mouse
model of RTT.

Keywords: Rett syndrome, methyl-CpG-binding protein 2, magnetic resonance imaging, brain structure,
volumetric analysis, neurodevelopmental disorder
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INTRODUCTION

Rett syndrome (RTT) is a severe and progressive
neurodevelopmental disorder caused by mutations in the
X-linked gene encoding methyl-CpG-binding protein 2
(MECP2) (Amir et al., 1999). With an incidence of approximately
1:10,000 female births, RTT is one of the most common causes
of severe intellectual disability in adult female (Laurvick et al.,
2006). Patients with RTT show normal development up to
18 months of age. This course is followed by the loss of acquired
fine and gross motor skills and the ability to engage in social
interaction. In many cases, patients develop seizures, cognitive
impairment, autonomic dysfunction, and stereotypic hand
movements (Chahrour and Zoghbi, 2007). Autopsy studies
of patients with RTT revealed a 12–34% reduction in brain
weight and volume, and the effect was most pronounced in the
prefrontal, posterior frontal, and anterior temporal regions, with
structural abnormalities at the cellular level, such as decreased
dendritic length, reduced spine density, and cell body size
(Belichenko et al., 1994; Bauman et al., 1995; Armstrong, 2005).
In other studies, the RTT brain showed no obvious degeneration,
atrophy, or inflammation, indicating that RTT is a postnatal
neurodevelopmental disorder rather than a neurodegenerative
disorder (Jellinger et al., 1988; Reiss et al., 1993; Chahrour and
Zoghbi, 2007). In particular, anxiety is one of the prominent
symptom of the behavioral phenotype of RTT (Barnes et al.,
2015). A series of studies have reported a high prevalence of
anxiety and anxiety-related disorders such as fear in RTT, such
as sudden mood changes, screaming episodes, inability to stop
crying, and self-abuse (Sansom et al., 1993; Barnes et al., 2015;
Cianfaglione et al., 2015).

To further understand the pathophysiology of RTT, several
mouse models with different Mecp2 mutations were generated
in the past. Mecp2-knockout (Mecp2-KO) mice, lacking either
exon 3 or both exons 3 and 4 (Chen et al., 2001; Guy
et al., 2001) or carrying a truncated allele of Mecp2 at
amino acid 308 (Shahbazian et al., 2002) undergo a period of
normal development, followed by severe progressive neurological
phenotypes such as motor impairments, seizures, stereotypic
forepaw movements, hypoactivity, and microcephaly. Female
Mecp2± mice also had behavioral abnormalities, but with a
later age of onset. Conditional Mecp2 deletion in the brain,
using the Nestin-Cre transgene, results in a phenotype similar to
that observed in conventional Mecp2-KO mice, demonstrating
that MeCP2 dysfunction in the brain is sufficient to cause the
disease (Guy et al., 2001). In addition to mouse models, rat and
zebrafish models that mimic Mecp2 loss have been developed
(Pietri et al., 2013; Veeraragavan et al., 2016). While the rat model
has been reported to show similar developmental and behavioral
abnormalities, it has been shown that zebrafish model is viable
and fertile, suggesting that Mecp2 might be more indispensable
in higher organisms.

Although RTT patients and mouse models show profound
neurological phenotypes, the major neuropathological changes
in the brain are characterized by an overall decrease in brain
size (Bauman et al., 1995; Kaufmann et al., 2000; Chen et al.,
2001; Armstrong, 2005). Magnetic resonance imaging (MRI)

has been used to identify specific pathological changes in
the brain. MRI has the advantage of enabling non-invasive
imaging, and it can be used to obtain functional and structural
information of the whole brain. MRI completely covers brain
volume without limiting depth penetration, and high-resolution
three-dimensional (3D) imaging can be achieved accordingly
(Wu and Lo, 2017). Therefore, a detailed analysis using MRI
technology may reveal important insights into RTT pathology
and the impacts of MeCP2 on brain structure development
when conducted in mouse models with Mecp2 mutations. MRI
studies of RTT patients have revealed volume reductions in
frontal gray matter, basal ganglia, substantia nigra, midbrain,
cerebellum, and brainstem area and preservation of the occipital
cortex (Murakami et al., 1992; Reiss et al., 1993). Preferential
reduction of the anterior frontal lobe area appears to correlate
with clinical severity in patients (Carter et al., 2008). Another
report of a study in which MRI was performed for children
with RTT revealed decreased volumes of the cerebellum, whereas
cerebral cortical volumes and subcortical gray matter volumes
were preserved in the children (Shiohama et al., 2019). In
addition, MRI studies using a mouse model for RTT such as
Mecp2-null KO mice showed volume loss in many of the same
areas as humans, suggesting that these models reproduce the
human phenotypic gross anatomy (Saywell et al., 2006; Ward
et al., 2009). However, these studies using RTT mouse models
limited their analyses to certain areas and detailed volume
changes throughout the Mecp2-deficient brain have not been
fully investigated.

In this study, we performed a detailed whole-brain anatomical
analysis of RTT mouse models using T2-weighted 3D MRI with
different morphometric analysis processes. We identified Mecp2-
deficient specific changes in brain structure and laterality, which
are associated with the phenotypes of RTT patients and mouse
models. Our study provides a framework for neuroanatomical
studies of RTT mouse models.

MATERIALS AND METHODS

Experimental Animals
All aspects of animal care and treatment were performed
according to the guidelines of the Experimental Animal
Care Committee of Nagoya University. Mecp2-KO mice
(Mecp2tm1.1J ae) were generated by deleting exon 3, containing
the methyl-DNA-binding domain of Mecp2 (Chen et al., 2001),
and they were obtained from Jackson Laboratories. All mice
used in this study, both mutant and wild-type (WT) littermates
were bred from wild-type C57BL/6J males and Mecp2tm1.1J ae

heterozygous females. All mice were housed as 2–5 animals
per cage and maintained on a 12-h light/dark cycle with water
and food available ad libitum. Mecp2-KO male mice at the age
of 6 weeks and their WT littermates were used in this study
(n = 4 WT males, 4 Mecp2-KO males).

Genotyping
After weaning, mouse genomic DNA was extracted from the
tip of the tail using phenol-chloroform DNA extraction, and a
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FIGURE 1 | Mean body weights and whole-brain volumes for Mecp2-KO
mice and WT mice. T2-weighted images of WT mice (A) and Mecp2-KO mice
(B) are shown. Loss of Mecp2 leads to a drastic decrease in body weight (g)
(C) and whole-brain volume (mm3) (D). Statistical test: Welch’s t-test. n = 4
mice per group. **p < 0.01.

TABLE 1 | Results of each statistical test of Figure 1.

Mann-Whitney U
test

Welch’s
t-test

Body weight 0.0286* 0.0049**

Whole brain volume 0.0286* 0.0063**

n = 4 mice per group. *p < 0.05. **p < 0.01.

polymerase chain reaction strategy was used to distinguish WT
from mutant alleles using standard methodologies.

Tissue Preparation for Magnetic
Resonance Imaging
The mice were initially anesthetized with an intraperitoneal
injection of a mixture of medetomidine, midazolam,
and butorphanol, and then intracardially perfused as
described previously (Cahill et al., 2012). Briefly, following
transcardial perfusion with phosphate-buffered saline and 4%
paraformaldehyde, the heads of the mice were decapitated, and
their skin and lower jaw were removed accordingly.

Magnetic Resonance Imaging
Acquisition and Processing
Magnetic Resonance Imaging Acquisition
The MRI acquisition method has been described previously
(Yano et al., 2018; Abe et al., 2019). The brains were immersed
in 0.2 mM gadolinium containing PBS for 1 week. The brains
were firmly fixed in an acrylic tube filled with Fluorinert
(Sumitomo 3M Limited, Tokyo, Japan) to minimize the signal
intensity attributable to the medium surrounding the specimen.

Ex vivo MRI of mouse brains was performed with a 7 T
Biospec 70/16 MRI scanner (Bruker Biospin GmbH, Ettlingen,
Germany) equipped with actively shielded gradients at a
maximum strength of 700 mT/m and a transmitting/receiving
volume coil with an inner diameter of 22 mm. High-resolution
anatomical images of the whole brain were acquired using a rapid
acquisition with relaxation enhancement (RARE) sequence with
the following parameters: effective echo time (eTE) = 20 ms,
repetition time (TR) = 350 ms, RARE factor = 4, number of
averages = 12, spatial resolution = 75 × 75 × 75 (µm)3, scan time
8 h 19 min 48 s.

Atlas Registration and Quantifying Anatomical
Regions
Processing pipeline 1: The acquired structural T2-weighted
images were registered to atlas coordinates (Lein et al.,
2007; Oh et al., 2014; Hikishima et al., 2017) using the
script “antsRegistrationSyN.sh” in Advanced Normalization
Tools (ANTs) open-source software.1 Each brain label (575
regions in total) (Komaki et al., 2016) was obtained by
applying an inverse transformation based on the registration
information from the atlas coordinates to the native
coordinates of the individual data (Uematsu et al., 2017;
Takata et al., 2021). The individual label volume, which was
automatically segmented by the ANT pipeline, was measured
using the ITK-SNAP (Yushkevich et al., 2006; Seki et al.,
2017).

Processing pipeline 2: The acquired structural T2-weighted
images were analyzed using the Atlas Normalization Toolbox
using elastiX version 2 (ANTx2) (Lein et al., 2007; Hubner
et al., 2017; Koch et al., 2019)2 running in MATLAB
(MathWorks, Natick, MA, United States) toolbox for image
registration of mouse MRI data. Through the ANTx2
pipeline, MR images were processed using SPM123 and
non-linear warping of tissue probability maps in ELASTIX
(Klein et al., 2010),4 and these were registered in the Allen
Mouse Atlas 2017 (CCFv3) (Lein et al., 2007; Hikishima
et al., 2017; Hubner et al., 2017). After checking the visual
inspection of atlas registration, the estimated volumes for
each anatomical region in the native space were individually
calculated for each mouse.

Evaluation of Structural Hemispheric
Asymmetry
The laterality index (LI) was calculated for each mouse as
[VL − VR]/[VL + VR] × 100, as described previously (Springer
et al., 1999). VL and VR were the volumes for the left and right
hemispheres, respectively. LIs were subsequently classified as left
hemisphere dominant (LI > 20), symmetric (−20 ≤ LI ≤ +20),
or right hemisphere dominant (LI < −20).

1http://stnava.github.io/ANTs/
2https://github.com/ChariteExpMri/antx2
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12
4https://elastix.lumc.nl
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FIGURE 2 | Comparison between brain region volumes of WT and Mecp2-KO mice obtained using volume-based morphometry. Atlas registration and quantification
of anatomical regions in WT mice and Mecp2-KO mice were performed using volume-based morphometry (A–D). Several regional brain volumes in Mecp2-KO mice
compared with WT mice were significantly decreased, including the somatosensory cortex (E), visceral area (F), temporal association area (G), and ectorhinal area
(H). Statistical test: Welch’s t-test. n = 4 mice per group. *Significant difference.

Ethics Statement
All animal experiments were conducted under protocols
approved by the Animal Experimental Committee and the
recombinant DNA experiment committee of Nagoya University.

Statistical Analysis
Statistical analysis was performed using Prism 7 (GraphPad
Software, San Diego, CA, United States) and IBM SPSS statistics
(IBM, Armonk, NY, United States). All data are presented as
mean ± standard error of the mean (SEM). Differences between
groups were examined for statistical significance using the
student’s t-test, Welch’s t-test or Mann-Whitney test, followed by
Bonferroni correction or false discovery rate (FDR) adjustment

for multiple comparisons. Statistical significance was set at a
p-value of < 0.05.

RESULTS

Mecp2-Null Mice Show Reduced Body
Weight and Whole-Brain Volume
To investigate the effect of loss of the Mecp2 gene in the brain, we
performed a T2-weighted MRI scan on hemizygous and matched
WT controls (Figures 1A,B). There was a significant overall
difference in body weight and whole-brain volume between
Mecp2-KO mice and WT mice (Figures 1C,D and Table 1).
Mecp2-KO mice weighted 49% as much as their WT littermates
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TABLE 2 | List of significantly altered each regional brain volume in Welch’s t-test
(Processing pipeline 1).

Calculated regional brain volume (processing pipeline 1)

Region WT (mm3) Mecp2-KO
(mm3)

Welch’s
t-test

Somatosensory area 29.06 ±0.77 22.16 ±0.71 0.0006*

Visceral area 1.97 ±0.04 1.54 ±0.02 0.0003*

Temporal association area 2.47 ±0.06 1.84 ±0.06 0.0005*

Ectorhinal area 1.44 ±0.03 1.08 ±0.01 0.0002*

n = 4 mice per group. *Significant difference (Welch’s t-test, Bonferroni correction).

(WT 17.41 ± 0.32 g, Mecp2-KO 8.54 ± 1.30 g), and they had
smaller whole-brain volumes (WT 338.62 ± 13.58 mm3, Mecp2-
KO 260.82 ± 13.18 mm3).

Mecp2-Deficient Brain Exhibits
Decreases in Regional Brain Volume
To evaluate potential neuroanatomical brain anomalies in
Mecp2-KO mice, we performed an automated regional-based
analysis using a mouse brain template (Processing pipeline
1). The analysis revealed that Mecp2-KO mice had volume
reductions compared with their WT littermates across many
regions of the brain, such as somatosensory area (WT
29.06 ± 0.77, Mecp2-KO 22.16 ± 0.71 mm3), visceral area (WT
1.97 ± 0.04, Mecp2-KO 1.54 ± 0.02 mm3), temporal association
area (WT 2.47 ± 0.06, Mecp2-KO 1.84 ± 0.06 mm3), and
ectorhinal area (WT 1.44 ± 0.03, Mecp2-KO 1.08 ± 0.01 mm3)
(Figure 2, Tables 2, 3, and Supplementary Table 1). To further
verify the neuroanatomical alterations in the Mecp2-KO brain, we
conducted a more detailed analysis pipeline (Processing pipeline
2) focusing on four regions where significant volume changes
were detected by processing pipeline 1. We then found volume
reductions in several regions in the Mecp2-KO brain compared
with the WT brain (Figures 3A,B, Table 4, and Supplementary
Tables 2, 5). The detailed analysis revealed decreases of volume in
several somatosensory areas (e.g., primary somatosensory area,
lower limb (WT 2.87 ± 0.10, Mecp2-KO 2.09 ± 0.13 mm3),
primary somatosensory area, upper limb (WT 4.83 ± 0.15,
Mecp2-KO 3.51 ± 0.21 mm3), primary somatosensory area,
trunk, layer 4 (WT 0.45 ± 0.02, Mecp2-KO 0.34 ± 0.01 mm3),
and primary somatosensory area, unassigned (WT 2.61 ± 0.06,
Mecp2-KO 1.89 ± 0.12 mm3) (Figures 3C–F). In addition,
significant reductions were also found in ectorhinal area, layer 1
(WT 0.54 ± 0.01, Mecp2-KO 0.41 ± 0.01 mm3) (Figure 3G).

The Mecp2-Deficient Brain Exhibits
Specific Decreases in Regional Brain
Volume
To explore brain regions that are specifically altered in Mecp2-
deficient brains, we evaluated the ratio of each regional brain
volume to the whole-brain volume and focused on brain regions
that are involved in the prominent symptom of the behavioral
phenotype of RTT. Then we found specific alterations in several
regions of the brain of Mecp2-KO mice, such as the bed nucleus

of the anterior commissure (WT 0.00269 ± 0.000252, Mecp2-
KO 0.00191 ± 0.0000913%), posteromedial visual area (layer 6b)
(WT 0.00284 ± 0.000148, Mecp2-KO 0.00241 ± 0.000161%),
retrosplenial area (dorsal part, layer 6b) (WT 0.00896 ± 0.000423,
Mecp2-KO 0.00709 ± 0.000777%), and field CA2 stratum oriens
(WT 0.0278 ± 0.00121, Mecp2-KO 0.0241 ± 0.00115%) (Figure 4
and Table 5). These results suggest that MeCP2 deficiency also
contributes to specific changes in the brain structure.

Loss of Mecp2 Affects Hemispheric
Asymmetry of Brain Structure
Recent studies have reported that patients with
neurodevelopmental and neuropsychiatric diseases show
abnormal laterality of brain structures (Ribolsi et al., 2014; Okada
et al., 2016; Postema et al., 2019). Since mutations in the MeCP2
gene have been associated with a wide range of neurological
disorders, we reasoned that MeCP2 affects structural asymmetry
of the brain. We then investigated the laterality of the Mecp2-null
brain. We found 69 regions of the left hemisphere dominant in
volume in Mecp2-KO mice compared with WT mice, including
the dorsal tegmental nucleus (WT LI = −8.75 ± 3.31, Mecp2-KO
LI = 39.0 ± 13.12), area postrema (WT LI = 16.8 ± 2.62, Mecp2-
KO LI = 61.1 ± 12.81), spinal nucleus of the trigeminal (caudal
part) (WT LI = −1.08 ± 0.27, Mecp2-KO LI = 30.6 ± 9.99),
and nucleus ambiguous (WT LI = 4.58 ± 0.79, Mecp2-KO
LI = 24.0 ± 3.90) (Figures 5A–D and Supplementary Table 3).
The analysis also revealed that the right hemisphere was
dominant in 20 regions, including the frontal pole (WT
LI = 1.18 ± 1.08, Mecp2-KO LI = −22.5 ± 2.01), anterior
cingulate area (ventral part, layer 1) (WT LI = −10.7 ± 7.08,
Mecp2-KO LI = −28.9 ± 8.80), main olfactory bulb (WT
LI = −6.44 ± 5.34, Mecp2-KO LI = −29.2 ± 8.53), and
subfornical organ (WT LI = −14.9 ± 3.99, Mecp2-KO
LI = −33.4 ± 10.12) (Figures 5E–H and Supplementary
Table 4). Together, these findings suggest that MeCP2
dysfunction influences the structural laterality of the brain.

DISCUSSION

In this study, we analyzed neuroanatomical measurements in T2-
weighted 3D MRI of the brain of Mecp2-KO mice using different
morphometry methods to identify the structural abnormalities
that are associated with the pathophysiology of RTT. Our data
showed the global and local volume reduction in the brain
of Mecp2-KO mice compared with WT mice, and further
analysis revealed the specific volume changes and laterality in
several brain regions.

The overall volume reduction of the brain has consistently
been found in RTT patients (Murakami et al., 1992; Reiss
et al., 1993; Carter et al., 2008) and in mouse models (Saywell
et al., 2006; Ward et al., 2009). These gross reductions in
the RTT brain may correlate with cellular phenotypes, such
as generalized reductions in neuronal soma size and dendritic
arborizations (Armstrong et al., 1995). Recent studies suggest that
loss of Mecp2 induces abnormal neural stem cell (NSC)/neural
progenitor cell (NPC) differentiation (Tsujimura et al., 2009,
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TABLE 3 | Calculated regional brain volume (processing pipeline 1; Mann Whitney U test, FDR adjustment).

Region WT (mm3) Mecp2-KO
(mm3)

M-W U
test

p-value

FDR
q = 0.2

FDR
q = 0.1

FDR
q = 0.05

FDR
q = 0.025

FDR
q = 0.01

Frontal pole, cerebral cortex 968.19±75.55 735.36±39.57 0.057 0.13548387 0.06774194 0.03387097 0.016935484 0.00677419

Somatomotor area 20263.18±716.41 15783.81±421.38 0.029 0.01290323 0.00645161 0.00322581 0.001612903 0.00064516

Somatosensory area 29064.85±773.03 22169.08±713.81 0.029 0.01935484 0.00967742 0.00483871 0.002419355 0.00096774

Gustatory area 1486.46±50.35 1162.37±35.61 0.029 0.02580645 0.01290323 0.00645161 0.003225806 0.00129032

Visceral area 1978.49±41.58 1544.83±28.89 0.029 0.03225806 0.01612903 0.00806452 0.004032258 0.0016129

Auditory area 4800.77±147.48 3511.81±179.19 0.029 0.03870968 0.01935484 0.00967742 0.00483871 0.00193548

Visual area 11082.75±344.85 8352.77±145.57 0.029 0.04516129 0.02258065 0.01129032 0.005645161 0.00225806

Anterior cingulate area 4735.62±253.92 3574.40±98.83 0.029 0.0516129 0.02580645 0.01290323 0.006451613 0.00258065

Prelimbic area 2150.66±192.10 1715.33±48.49 0.343 0.2 0.1 0.05 0.025 0.01

Infralimbic area 506.11±52.99 401.92±26.10 0.2 0.16774194 0.08387097 0.04193548 0.020967742 0.0083871

Orbital area 5150.33±396.15 4159.49±191.95 0.2 0.17419355 0.08709677 0.04354839 0.021774194 0.00870968

Agranular insular area 6290.56±260.88 4979.97±179.84 0.029 0.05806452 0.02903226 0.01451613 0.007258065 0.00290323

Retrosplenial area 8507.65±122.55 6654.97±250.68 0.029 0.06451613 0.03225806 0.01612903 0.008064516 0.00322581

Posterior parietal association area 2065.28±62.70 1513.22±7.21 0.029 0.07096774 0.03548387 0.01774194 0.008870968 0.00354839

Temporal association area 2472.70±65.81 1841.67±64.43 0.029 0.07741935 0.03870968 0.01935484 0.009677419 0.00387097

Perirhinal area 332.54±6.46 246.91±20.85 0.029 0.08387097 0.04193548 0.02096774 0.010483871 0.00419355

Ectorhinal area 1440.77±30.04 1088.26±16.13 0.029 0.09032258 0.04516129 0.02258065 0.011290323 0.00451613

Olfactory area 33444.23±2085.71 27225.08±1737.84 0.114 0.16129032 0.08064516 0.04032258 0.02016129 0.00806452

Hippocampal formation 39451.63±1687.02 29875.08±1933.83 0.029 0.09677419 0.0483871 0.02419355 0.012096774 0.00483871

Cortical subplate 5947.78±196.00 4508.67±74.18 0.029 0.10322581 0.0516129 0.02580645 0.012903226 0.00516129

Striatum 32923.00±1028.75 25027.58±1328.25 0.029 0.10967742 0.05483871 0.02741935 0.013709677 0.00548387

Pallidum 6500.48±327.70 4959.49±299.13 0.057 0.14193548 0.07096774 0.03548387 0.017741935 0.00709677

Thalamus 17926.02±777.41 13727.62±577.58 0.029 0.11612903 0.05806452 0.02903226 0.014516129 0.00580645

Hypothalamus 10404.74±693.22 7985.79±607.74 0.057 0.1483871 0.07419355 0.03709677 0.018548387 0.00741935

Midbrain 29974.90±2176.84 24076.93±1694.78 0.2 0.18064516 0.09032258 0.04516129 0.022580645 0.00903226

Hindbrain 33108.23±3537.82 25681.93±3398.90 0.2 0.18709677 0.09354839 0.04677419 0.023387097 0.00935484

Cerebellar cortex 46720.15±2135.70 37938.93±1316.11 0.057 0.15483871 0.07741935 0.03870968 0.019354839 0.00774194

Cerebellar nuclei 1789.06±178.36 1442.94±174.78 0.2 0.19354839 0.09677419 0.0483871 0.024193548 0.00967742

fiber tracts 25634.80±1457.62 19439.62±1318.01 0.029 0.12258065 0.06129032 0.03064516 0.015322581 0.00612903

Ventricular systems 3852.55±167.97 2920.58±115.77 0.029 0.12903226 0.06451613 0.03225806 0.016129032 0.00645161

n = 4 mice per group. Significance was not detected in the case of Bonferroni correction. Red indicates significance.
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FIGURE 3 | Comparison between brain region volumes of WT and Mecp2-KO mice obtained using detailed volume-based morphometry. Atlas registration and
quantification of anatomical regions in WT mice (A) and Mecp2-KO mice (B) were performed using detailed volume-based morphometry. A decrease in volume was
detected in brain regions such as the primary somatosensory area, lower limb (E), primary somatosensory area, mouth (C), primary somatosensory area, upper limb
(D), primary somatosensory area, trunk, layer 4 (E), primary somatosensory area, unassigned (F), ectorhinal area, layer 1 (G) in Mecp2-KO mice. Statistical test:
Welch’s t-test. n = 4 mice per group. *Significant difference.

2015; Nakashima et al., 2021) and abnormal fate specification of
NSC/NPC may affect changes in brain volume. Also, since body
weight of Mecp2-KO mice is decrease to about 50% of that of WT,
alterations of brain volume are expected to be dependent on their
body weight. However, further research on younger stage would
be needed to investigate this assumption.

Furthermore, region-specific structural abnormalities that are
involved in each diverse RTT phenotype including anxiety and

fear have not been clarified till date. In the present study, we
revealed specific changes in volume in several RTT brain regions,
the bed nucleus of the anterior commissure, the posteromedial
visual area (layer 6b), the retrosplenial area (dorsal part, layer
6b), and field CA2 stratum oriens, of Mecp2-KO mice. The ratio
of the bed nucleus of the anterior commissure volume to the
whole-brain volume was significantly decreased in Mecp2-KO
mice brain, and the other three regions also showed a trend
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TABLE 4 | List of significantly altered each regional brain volume in Welch’s t-test
(Processing pipeline 2).

Calculated regional brain volume (processing pipeline 2)

Region WT (mm3) Mecp2-KO
(mm3)

Welch’s
t-test

Primary somatosensory area, lower limb 2.87±0.10 2.09±0.13 0.0001*

Primary somatosensory area, upper limb 4.83±0.15 3.51±0.21 0.0001*

Primary somatosensory area, trunk, layer 4 0.45±0.02 0.34±0.01 0.0002*

Primary somatosensory area, unassigned 2.61±0.06 1.89±0.12 0.0003*

Ectorhinal area, layer 1 0.54±0.01 0.41±0.01 0.0002*

n = 4 mice per group. *Significant difference (Welch’s t-test, Bonferroni correction).

toward a decrease when compared with that of the WT brain. The
bed nucleus of the anterior commissure is predominantly linked
with the medial habenula and it has been implicated in the control
of fear responses (Yamaguchi et al., 2013). In a previous study,
ablation of the bed nucleus of the anterior commissure projection
neurons selectively enhanced fear responses (Yamaguchi et al.,
2013). Anxiety/fear behavior is a prominent component of the
behavioral phenotype of RTT patients and it has functional
consequences (Barnes et al., 2015). Fear behaviors such as
“fear in unfamiliar situations” in RTT patients were reported
in 46/63 cases (Coleman et al., 1988). The pathophysiology
underlying anxiety/fear behavior in RTT patients is unclear and
it is expected to be associated with autonomic dysfunction,
as well (Robertson et al., 2006). Our data suggest that the
volume reduction of bed nucleus of the anterior commissure
may be directly involved in these behavioral abnormalities. The
posteromedial visual area mediates visual information between
the primary visual cortex and the retrosplenial cortex, which
further projects to the hippocampus (Wang and Burkhalter,
2007). In humans, the retrosplenial cortex is engaged in spatial
navigation and representation of familiar visual environments
(Harvey et al., 2009). RTT patients have been reported to show
altered visual evoked potentials (LeBlanc et al., 2015). This
result indicates that MeCP2-deficiency causes abnormality in

visual cortical processing, and alteration of the posteromedial
visual area may contribute to visual processing impairment.
The field CA2 of the hippocampus, particularly the vasopressin
1b receptor expressed in the hippocampus, is necessary for
the regulation of social memory (Smith et al., 2016), and it
promotes social aggression depending on CA2 output to the
lateral septum, which is selectively enhanced immediately prior
to attack (Leroy et al., 2018). RTT mouse models have deficits
in long-term social learning and memory in a paradigm that has
been shown to be dependent on hippocampal function of the
hippocampus (Moretti et al., 2006). Externalizing behaviors, such
as impulsivity, hyperactivity, aggression, self-abuse, inconsolable
crying, and screaming are less frequently reported in RTT
patients (Buchanan et al., 2019). A recent study showed low
levels of overactivity, impulsivity, and self-abuse in RTT patients
compared with a control group matched for age, sex, language,
self-help skills, and intellectual ability (Cianfaglione et al., 2015).
Although these facts suggest the involvement of the field CA2
in the hippocampus, Mecp2 conditional knockout mice have
also been reported to be aggressive (Fyffe et al., 2008), and
several different pathophysiologies may be involved in this
behavior. Since almost all of the above brain regions have not
been reported as phenotype-associating regions, these findings
provide novel insight into the fundamental mechanisms of
pathophysiology of RTT and an interesting future study would
be to evaluate the changes in the region identified in the present
study in RTT patients.

This study also revealed that brain Mecp2-null mice exhibit
alterations in structural laterality in several brain regions, such
as the anterior cingulate area, subfornical organ, and dorsal
tegmental nucleus (DTN). To the best of our knowledge, no
studies on the alteration of structural laterality in the RTT brain
have been reported so far. It is possible that these changes in
laterality are associated with the pathophysiology of RTT and
mouse models. A recent study showed that manipulation of
the function of DTN neurons by the brainstem-acting drug
cloperastine (CPS) improves breathing disorders in Mecp2-
disrupted mice (Johnson et al., 2020). It is possible that

FIGURE 4 | Comparison between normalized brain region volumes of WT and Mecp2-KO mice obtained using detailed volume-based morphometry. The ratio of
each regional brain volume to the whole-brain volume was evaluated and specific regional changes, such as the bed nucleus of the anterior commissure (A),
posteromedial visual area (layer 6b) (B), retrosplenial area (C), and field CA2 stratum oriens (D) of Mecp2-KO mice were detected. Statistical test: Welch’s t-test.
n = 4 mice per group. *Significant difference.
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functional alterations induced by abnormal laterality of DTN
may contribute to breathing disorders in Mecp2-disrupted mice.
The nucleus ambiguous comprises the motor neurons of the
branchiogenic muscles of the 3rd–6th pharyngeal arch (CN IX,
X, medullary section of XI). These form a large longitudinal
rostrocaudal pars compacta of the original nucleus ambiguus.
In addition, preganglionic fibers for parasympathetic innervation
of the heart originate from the external part of the nucleus
ambiguus and dorsal motor nucleus of the vagus nerve (dmnX)
(Zandstra et al., 2021). As mentioned above, patients with RTT
encounter breathing disorders. These breathing disturbances
may be mechanically related to other disturbances, such as
dysphagia (Ramirez et al., 2020). Dysphagia mostly arises
from factors influencing chewing, such as abnormal tongue
movements, usually caused by lack of movement in the central
and frontal areas of the tongue, hypotonia, or hypertonia of
the tongue muscles, poor posture of the cervical and thoracic
spine, muscular rigidity of the shoulder girdle, hyperextension
of the neck, and tongue protrusion (Mezzedimi et al., 2017).
RTT patients are also associated with cardiovascular autonomic
disturbances that predispose patients to cardiac arrhythmias and
sudden death (Kumar et al., 2017). Immaturity of the brainstem
and lack of integrative inhibition due to poor parasympathetic
development have been suggested as possible explanations for
autonomic dysfunction (Julu et al., 2001; Kumar et al., 2017).
However, the mechanism of autonomic dysfunction in RTT is not
clearly known, and altered neurotrophin signaling, serotonergic
dysfunction, and substance P deficiency have been suggested as
possible causes for the same (Kumar et al., 2017). We believe
that abnormal laterality of the nucleus ambiguus might influence
problems related to speech, shortness of breath, swallowing, and
autonomic function of the heart. Only a limited number of
studies have reported oral findings of Rett syndrome (Bianco
and Rota, 2018). Although Rett syndrome is mostly associated
with bruxism (Mahdi et al., 2021) and oral manifestations such
as mouth breathing, tongue thrusting, digit/thumb sucking,
high arch palate, and drooling (Ribeiro et al., 1997; Bianco
and Rota, 2018; Mahdi et al., 2021), there are no reports of
sensory findings or abnormalities in this area. Our findings
showed a marked abnormal laterality in the caudal part (nucleus
caudalis) of the spinal trigeminal nucleus, which is associated
with orofacial thermal and noxious stimuli. Previously, deficits
in pain sensitivity were reported in patients (Zhang et al., 2015).
Zhang et al. (2014) reported that MeCP2 plays a crucial role in
persistent pain sensation in mice. MeCP2 has been implicated
in the early cascade of molecular steps for the initiation of
pain states (Downs et al., 2010). This has also been linked
to altered responses to noxious stimulation in RTT syndrome
(Geranton et al., 2008; Downs et al., 2010). In addition, Zhang
et al. (2015) showed that MeCP2 plays an analgesic role in
both acute pain transduction and chronic pain formation in
mice models by regulating the CREB-miR-132 pathway. In
this light, future studies evaluating the structural laterality of
the brain of patients would provide novel insights into RTT
pathophysiology.

RTT was originally thought to occur exclusively in females,
however, MECP2 mutations have been identified in males

TABLE 5 | Results of each statistical test of Figure 4.

Region Mann-
Whitney U

test

Welch’s
t-test

Posteromedial visual area, layer 6b/WBV 0.1143 0.0957

Retrosplenial area, dorsal part, layer 6b/WBV 0.2 0.0938

Field CA2, stratum oriens/WBV 0.1143 0.0724

Bed nucleus of the anterior commissure/WBV 0.0286* 0.0478*

*p < 0.05. n = 4 mice per group.

presenting with classic RTT. MECP2 mutations that cause classic
RTT in females typically lead to neonatal encephalopathy and
death in the first year of life in male and some of these
mutations have been reported in males with classic RTT and
a normal karyotype (Chahrour and Zoghbi, 2007), suggesting
that MECP2 mutations in males lead to more severe effects
due to absence of normal MECP2 and MECP2 mutations in
females exhibit moderate phenotypes compared with the case of
males. Although the present our study using male hemizygote
has limitations to elucidate pathology of RTT in females, the
findings of this study examining the effects of MECP2 loss
on brain structure would contribute to our understanding of
the brain structural pathology of female RTT. Moreover, it
is very important to investigate the correlation between the
severity of the symptoms and the changes in morphology
for deeper understanding of the impact of MECP2 mutation.
Therefore, the future study addressing this important the issue
using heterozygote female mice and other mice lines that
show more severe phenotype such as a mice line generated
by Bird is needed.

The mechanisms of RTT pathophysiology are still unclear,
and the downstream factors of MeCP2 that are involved in
the changes in brain volume have not been identified. Recent
studies have shown that MeCP2 specifically promotes the
processing of a subset of microRNAs (miRNAs), and miR-
199a has been identified as a MeCP2-target miRNA associated
with RTT pathophysiology (Tsujimura et al., 2015; Nakashima
et al., 2021). These studies have also reported that genetic
reduction of miR-199a in mice reproduces the phenotypes
of RTT mouse models, such as microcephaly, short life, and
abnormal differentiation of neural stem cells. Therefore, further
research examining the global and local neuroanatomy of miR-
199a-deficient mice using MRI would be an important and
interesting work.

In addition, although Mecp2-KO mice used in this study are
considered to bear a complete null mutation, they actually express
a small segment of MeCP2 protein. Therefore, the possibility
that the small segment of MeCP2 may affect brain structural
phenotype cannot be fully ruled out, and it is needed to be
addressed in future study.

In conclusion, our study performed a comprehensive
volumetric analysis of Mecp2-null mice brain by T2-weighted 3D
MRI and revealed the detailed neuroanatomical alterations and
changes in structural laterality of Mecp2-deficient brains. These
findings provide novel insights into regional alterations for RTT.
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FIGURE 5 | Altered laterality of the regional brain volume in Mecp2-KO mice. LI was calculated to evaluate the laterality of the regional brain volume in Mecp2-KO
mice. In total, 69 regions of the left hemisphere dominant were detected in Mecp2-KO mice, including the dorsal tegmental nucleus (A), area postrema (B), spinal
nucleus of the trigeminal (caudal part) (C), and nucleus ambiguous (D). Twenty regions of right hemisphere dominance were also detected in Mecp2-KO mice,
including the frontal pole (E), anterior cingulate area (ventral part, layer 1) (F), main olfactory bulb (G), and (subfornical organ) (H). n = 4 mice per group.
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