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The role of light in our biological processes and systems is extensively known. In
addition, the use of light devices has been introduced in the field of healthcare
as an opportunity to administer power light at specific wavelengths to improve
our body functions and counteract light deficiency. One of these techniques is
photobiomodulation (PBM), which uses red to infrared light in a non-invasive way to
stimulate, heal, regenerate, and protect tissue. The main proposed mechanism of
action is the stimulation of the cytochrome c oxidase (CCO), the terminal enzyme in
the mitochondrial electron transport chain. PBM has achieved positive effects on brain
activity and behavioral function of several adult animal models of health and disease,
the potential use of this technique in developing stages is not surprising. This research
aims to examine the effects of PBM on the prefrontal cortex and hippocampus of 23
day-old healthy male (n = 31) and female (n = 30) Wistar rats. Three groups of each
sex were used: a PBM group which received 5 days of PBM, a device group submitted
to the same conditions but without light radiation, and a control basal group. CCO
histochemistry and c-Fos immunostaining were used to analyze brain metabolic activity
and immediate early genes activation, respectively. Results displayed no metabolic
differences between the three groups in both sexes. The same results were found in the
analysis of c-Fos positive cells, reporting no differences between groups. This research,
in contrast to the PBM consequences reported in healthy adult subjects, showed a
lack of PBM effects in the brain markers we examined in young healthy rat brains. At
this stage, brain function, specifically brain mitochondrial function, is not disturbed so
it could be that the action of PBM in the mitochondria may not be detectable using
the analysis of CCO activity and c-Fos protein expression. Further studies are needed
to examine in depth the effects of PBM in brain development, cognitive functions and
postnatal disorders, along with the exploration of the optimal light parameters.
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INTRODUCTION

The role of light in our biological processes and systems is
extensively known. It is a potent regulator of body functions
that can activate other complex biological pathways. Light
controls our sleep-wake cycles, our circadian rhythms, impacts
our mental health, and provides us with essential vitamins
(Dompe et al., 2020; Bertani et al., 2021). In this regard,
the use of light devices has been introduced in the field of
healthcare as an opportunity to administer power light at specific
wavelengths to improve our body functions and counteract light
deficiency (Dompe et al., 2020). One of these techniques is
photobiomodulation (PBM) which uses red to infrared light,
wavelengths between 600 and 1,100 nm, to stimulate, heal,
regenerate and protect tissue (Hamblin, 2016; Mitrofanis and
Jeffery, 2018). PBM is a non-invasive, inexpensive and safe
technique (Gutiérrez-Menéndez et al., 2020).

At present, PBM therapy is widely used in several clinical
conditions: diabetes, ulcers, blood disorders, coronary artery
diseases, and musculoskeletal complications, among others, and
presents well supported neurobiological effects, such as the
improvement of wound healing, the regeneration of damaged
tissues, and the reduction of pain and inflammation (Salehpour
et al., 2019a; dos Santos Cardoso et al., 2021b). However,
this therapy is not only used in peripheral tissues, it can
also be applied to the nervous system. In this regard, the
first evidence of PBM’s beneficial effects on the brain was
after its application for ischemic stroke in different animal
models (Hamblin, 2019). After that, numerous studies have
documented a large number of positive brain effects resulting
from this therapy, suggesting PBM as a new modality for neural
activity stimulation to improve brain functions (Salehpour et al.,
2018; Arias et al., 2019). The most supported outcomes of
the use of PBM on the brain are the increase of intracellular
ATP production, along with the improvement of metabolic
function; changes in cerebral oxygenation and blood flow; anti-
inflammatory effects; upregulation of anti-apoptotic proteins,
increment of antioxidants and less excitotoxicity, the stimulation
of neurons and glial cell neurogenesis, synaptogenesis, migration,
and the secretion of brain neurotrophins (Hamblin, 2016, 2019;
Dompe et al., 2020; Gutiérrez-Menéndez et al., 2020; dos
Santos Cardoso et al., 2021a). The main proposed mechanism
of action to achieve such changes is the stimulation of
the cytochrome c oxidase (CCO), the terminal enzyme in
the mitochondrial electron transport chain (Salehpour et al.,
2019b; Dompe et al., 2020; Gutiérrez-Menéndez et al., 2021).
However, PBM effects without adverse outcomes can only
be reached with optimum parameters (wavelength, energy
density, irradiance, area, mode of administration, etc.) and
that is the current issue: the lack of consensus on which
parameters are appropriate for each situation (Salehpour
et al., 2018; Gutiérrez-Menéndez et al., 2020). Most of
the studies support that the use of wavelengths between
810 nm and 1,064 nm in adult human and animal models
of health and disease, are versatile and adequate to achieve
several effects on brain activity and behavioral function
(Gutiérrez-Menéndez et al., 2020).

The postnatal period is a critical phase for the development
of the mammal brain. During this period, the dynamic gene
expression and the methylation changes generate several effects
on neurogenesis, synaptogenesis and neural circuit formation
(Simmons et al., 2013). Studies using rat models have shown that
the first three postnatal weeks are essential for the development
of the neural system, with radical changes happening in terms
of synaptic connectivity, neuroendocrine response and global
neural gene expression (Simmons et al., 2013). Moreover, the
cell energy metabolism is maturing and adult mitochondria
characteristics are reached around postnatal day (PND) 30
(Kalous et al., 2001). Changes in BDNF mRNA and protein
levels are also reported during this period, the profile of changes
shows an increase in brain structures in the postnatal period
and a decrease in the aging phase (Karege et al., 2002). All
these processes allow immature brains which are particularly
vulnerable to different insults (toxic, traumatic, vascular, etc.) to
adapt (Calabrese et al., 2013).

Taking into account the high plasticity and the responsiveness
of the postnatal brain, the use of PBM could be an effective
technique for the modulation of the developing nervous system
and could even be considered a potential treatment for several
developmental disorders. Therefore, this study aims to analyze
the effects of PBM on the young prefrontal cortex (PFC) and
hippocampus of healthy male and female Wistar rats. Three
groups between PND23 and PND29 of each sex were used: a
PBM group that received 5 days of PBM, a device group that
was submitted to the same conditions as the experimental group
but without light radiation, and a control basal group. After PBM
administration, we analyzed the three groups and compared each
sex according to brain metabolic activity and the activation of
immediate early genes through a CCO histochemistry and c-Fos
immunostaining, respectively.

MATERIALS AND METHODS

Animals
A total of 61 Wistar rats, 31 males and 30 females aged between
23 and 29 days old from the Oviedo University vivarium were
used in this research. Animals were sorted by sex in transparent
polycarbonate cages located in a room at a constant temperature
(22 ± 2◦C), 65–70% of relative humidity and an artificial light-
dark cycle of 12 h (8:00–20:00/20:00–8:00). They had ad libitum
access to food and tap water.

Animals were randomly separated by sex into three different
groups: male (PBM; n = 10) and female (PBM; n = 10) PBM
groups that received the radiation; male (PBMD; n = 10) and
female (PBMD; n = 10) device PBM groups which were submitted
to the same conditions as the PBM group but with the light
switched off and finally, male (C; n = 11) and female (C; n = 10)
control groups that were kept in their cages.

The animal manipulation and all the procedures carried out
in this study were according to the European Communities
Committee 2010/63/EU and Royal decree N◦ 53/2013 of
the Ministry of the Presidency related to the protection of
animals used for experimentation and other scientific purposes.
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The study was approved by the Ethics Committee of the
Principality of Asturias.

Photobiomodulation Therapy
The following procedure was carried out with both sexes for 7
days. The first 2 days, coinciding with PND22 and PND23, were
devoted to getting the animal habituated to the researcher and
the procedure. At PND22, animals were handled for 5 min and
the first third of their head, just between the eyes, was shaved to
maximize light penetration across prefrontal areas. The next day
(PND23), animals were immobilized by the researcher one by one
on a soft surface and the PBM device was placed on the shaved
region for 10 min in OFF mode. This process was done 3 times
until each animal had undergone 30 min. During the following
5 days (PND24-PND28), the same immobilized procedure was
carried out, but the light device was in ON mode. DPBM and
PBM groups were submitted to the same procedures, but the
PBM device was kept OFF during all the studies in the DPBM
group. A laser with a continuous wave at 810 nm wavelength was
used for irradiation in PBM groups. The device was operated at
an output power of 40 mW and irradiance of 65.6 W/m2, with a
beam size of 0.0495 cm2. PBM groups received 36 cycles of PBM
(40 s ON and 10 s OFF) reaching a total irradiation time of 24 min
and an average fluence of 46.5 J/cm2 per day. Approximately
0.8% of the applied power reaches the brain tissue. This value was
previously determined in rat skulls using a PM 160 optical power
meter (ThorLabs, United States). Skull was placed on a bench
designed for this purpose wherein at the top was the radiation
laser and at the bottom, below the skull, the optical power meter.

Tissue Processing
The day after finishing the light procedure, on PND29, animals
were euthanized and brains were removed, frozen rapidly using
N-methyl butane (Sigma-Aldrich, Madrid, Spain), and stored
at −40◦C. Coronal brain sections (30 µm) were cut at −20◦C
in a cryostat (Microm HM 505-E, Germany). Two series were
obtained from each brain, one was mounted on non-gelatinized
slides to conduct the CCO histochemistry and the other one on
gelatinized slides to carry out the c-Fos immunostaining.

Cytochrome C Oxidase Histochemistry
The procedure carried out for the tissue treatment was previously
described by Zorzo et al. (2019). To quantify enzymatic activity
and to control staining variability across the baths, sets of tissue
homogenate standards from Wistar rat brains in PND29 were cut
at different thicknesses (10, 30, 50, and 70 µm) and included with
each bath of slides. Sections were fixed for 5 min using 0.1 M
phosphate buffer (pH 7.6) with 10% (w/v) sucrose and 25% (v/v)
glutaraldehyde. Then, three baths of 0.1 M phosphate buffer with
10% (w/v) sucrose were carried out for 5 min each, and one bath
of 0.05 M Tris buffer, pH 7.6 for 8 min [0,275 mg/l cobalt chloride
(Aldrich, Germany), 10% (w/v) sucrose (Sigma, Germany), 6 g/l
Trizmabase (Sigma, United States), and 0.5 (v/v) dimethyl-
sulfoxide (Sigma-Aldrich, Madrid, Spain)]. After that, sections
and standards were maintained in a 0.1 M phosphate buffer,
pH 7.6, for 5 min and incubated in a solution of 0.0075% (w/v)
cytochrome c (Sigma-Aldrich, Madrid, Spain); 0.002% (w/v)

catalase (Sigma, Spain); 5% (w/v) sucrose (Sigma, Germany);
0.25% (v/v) dimethyl-sulfoxide (Sigma-Aldrich, Madrid, Spain);
and 0.05% (w/v) diaminobenzidine tetrahydrochloride (Sigma-
Aldrich, Madrid, Spain) in 800 ml of 0.1 M phosphate buffer at
37◦C for 1 h. Next, the reaction was stopped by fixing the tissue
in a buffered 4% (v/v) formalin with a 0.1 M phosphate buffer,
pH 7.6, 10% (w/v) sucrose, and 37% (v/v) formalin for 30 min at
room temperature. Finally, the slides were dehydrated through a
series of graded alcohols, cleared with xylene (Avanter, Poland),
and cover slipped with Entellan (Merck, Germany).

c-Fos Immunohistochemistry
Sections were fixed in a 0.1 M 4% (w/v) paraformaldehyde buffer
(pH 7.4) for 30 min, in continuous agitation, and rinsed in two
baths of 0.01 M phosphate-buffered saline (PBS) (pH 7.4). After
that, they were incubated for 30 min with 3% (v/v) hydrogen
peroxidase (Sigma-Aldrich, Madrid, Spain) in PBS (0.01 M, pH
7.4) to remove endogenous peroxidase activity, and washed twice
in PBS (0.01 M, pH 7.4) for 10 min. Sections were maintained in a
solution of 1% (v/v) Triton X-100 (Sigma-Aldrich, United States)
in PBS (0.01 M, pH 7.4) for 10 min and, subsequently, washed
in PBS (0.01 M, pH 7.4). After blocking with a phosphate buffer
(0.01 M, pH 7.4) solution containing 3% (v/v) bovine serum
albumin (Sigma-Aldrich, Madrid, Spain) for 30 min, sections
were incubated with a rabbit polyclonal anti-c-Fos antibody
solution (1:7,500) (Merck, Spain) diluted in a solution of PBS
(0.01 M, pH 7.4), bovine serum albumin (Sigma-Aldrich, Madrid,
Spain), and Triton X-100 (Sigma-Aldrich, United States) for 24 h
at 4◦C in a humid chamber. Next, slides were washed in two
baths of PBS (0.01 M, pH 7.4) for 10 min each, and incubated
in a goat anti-rabbit biotinylated IgG secondary antibody (Pierce,
United States; diluted 1:480 in incubating solution) for 1 h
at room temperature in a humid chamber. After two washes
of PBS (0.01 M, pH 7.4) for 10 min each, sections were
reacted with avidin-biotin-peroxidase complex (Vectastain ABC
Ultrasensitive Elite Kit, Pierce, United States) for 1 h in a humid
chamber. They were rinsed with two baths of PBS (0.01 M, pH
7.4), and the reaction was visualized by treating the sections
for 4 min in a solution of PBS (0.01 M, pH 7.4), 0.05% w/v
diaminobenzidine tetra-hydrochloride (Sigma-Aldrich, Madrid,
Spain), 33% (v/v) hydrogen peroxidase solution and 0.05%
(w/v) ammonium nickel (II) sulfate hexahydrate (Sigma-Aldrich,
Madrid, Spain) in total darkness. The reaction was terminated
by washing the sections twice in PBS (0.01 M, pH 7.4), and
they were dehydrated through a series of graded alcohols, cleared
with xylene (Avanter, Poland) and cover slipped with Entellan
(Merck, Germany). All the immunohistochemistry procedures
included sections that served as controls where the primary
antibody was not added.

Cytochrome C Oxidase Optical Density
Quantification
The CCO histochemical intensity was quantified by
densitometric analysis, using a computer-assisted image
analysis workstation (MCID, Interfocus Imaging Ltd., Linton,
England) which consisted of a high precision illuminator, a
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digital camera, and a computer with the specific image analysis
software MDCID Core 7.0. The mean optical density (OD) of
each region was measured using three consecutive sections in
each subject. In each section, four non-overlapping readings were
taken, using a square-shaped dissector adjusted for each region
size. A researcher who was blind to the groups registered a total
of 12 measurements per region/animal. Then, OD values were
converted to CCO activity units, determined by the enzymatic
activity of the standards measured spectrophotometrically.

We defined the regions of interest according to the atlas of
Paxinos and Watson (2007). The regions and their distances in
mm counted from bregma were: +3.24 mm for the cingulate
cortex (CG), prelimbic cortex (PL) and infralimbic cortex (IL)
and -3.24 mm for the CA1, CA3, and the dentate gyrus (DG)
subfields of the dorsal hippocampus.

c-Fos Cells Counting
Quantification was performed by systematically sampling each
selected region using counting frames superimposed over
the region with a microscope (Leica Microsystems DFC490,
Germany) coupled to a computer with the Leica Application
Suite X software (Leica Microsystems, Germany) with a total
magnification of 192X. The sizes of the counting frames were
250,000 µm for CG, PL and IL and 72,000 µm for CA1, CA3
and DG. The total area sampled by these frames per region in
each section was: 500,000 µm for CG, PL and IL; 144,000 µm
for CA1 and CA3 and finally, 72,000 µm for DG. c-Fos-positive
nuclei were defined based on homogenous gray-black stained
elements with a well-defined border. Finally, the mean c-Fos
positive nuclei count in two sections was calculated for each
subject and region.

The regions of interest and their distances (mm) counted from
bregma according to the atlas of Paxinos and Watson (2007)
were: +3.24 mm for the cingulate cortex (CG), prelimbic cortex
(PL) and infralimbic cortex (IL) and -3.24 mm for the CA1, CA3,
and the dentate gyrus (DG) sub-fields of the dorsal hippocampus.
In these regions, we quantified the number of c-Fos positive
nuclei in two alternate sections 30 µm apart. The slides were
coded so that the researcher who performed the entire analysis
did not know the treatment of the individual subjects.

Statistical Analysis
The data were analyzed using the SigmaPlot 12.5 program
(Systat, Richmond, United States). Differences were considered
statistically significant when p < 0.05. We used a Shapiro-
Wilk test to test the normality assumption (p > 0.05). When
the data fit a normal distribution, we used parametric tests.
Otherwise, we used non-parametric tests. The SigmaPlot 12.5
software program (Systat, Richmond, CA, United States) was also
used for the graphic representation of the results. We presented
data as mean + SEM.

Cytochrome C Oxidase Results
Statistical groups comparisons (PBM, PBMD and C) of CCO
activity in each sex were analyzed using a one-way ANOVA
for each region of interest. We carried out a two-way ANOVA
[Sex × Group (PBM, PBMD and C)] to examine differences

between sexes for each region of interest. Post hoc comparisons
using the Holm-Sidak method were carried out when significant
differences were found.

c-Fos Activity
The results of the c-Fos quantification were expressed as the
average of c-Fos positive cells/µm2 for the two consecutive
sections of each region of interest. We analyzed differences
between the three groups (PBM, DPBM and C) in each sex using a
one-way ANOVA. Additionally, a two-way ANOVA [Sex x Group
(PBM, PBMD and C)] was performed to examine c-Fos activity
differences between sexes for each region of interest. Holm-Sidak
method was used when significant differences were found.

RESULTS

Cytochrome C Oxidase Activity
The analysis of the metabolic activity in male and female groups
showed the same pattern of CCO activity in both sexes. The
three studied groups (PBM, PBMD, and C) did not show CCO
differences in any of the regions of interest in the male group
[CG: F(2, 27) = 0.973, p = 0.391; PL: F(2, 28) = 1.677, p = 0.205;
IL: F(2, 28) = 0.283, p = 0.756; CA1: F(2, 27) = 2.268, p = 0.123;
CA3: F(2, 27) = 0.901; p = 0.418; DG: F(2, 27) = 0.162, p = 0.851;
Figure 1A] or in the female group [CG: F(2, 28) = 1.112, p = 0.343;
PL: F(2, 28) = 1.196, p = 0.317; IL: F(2, 28) = 0.366, p = 0.697;
CA1: H2 = 0.294, p = 0.864; CA3: F(2, 28) = 0.161; p = 0.852;
DG: F(2, 28) = 0.322, p = 0.727; Figures 1B, 2]. Regarding the
analysis of the differences in CCO activity between sexes, the two-
way ANOVA showed that only the Sex factor was significant in
all the studied regions [CG: F(1, 55) = 96.286, p < 0.001; PL:
F(1, 56) = 92.622, p < 0.001; IL: F(1, 56) = 64.901, p < 0.001;
CA1: F(1, 56) = 123.085, p < 0.001; CA3: F(1, 56) = 115.807,
p< 0.001; DG: F(1, 56) = 58.533, p< 0.001]. Post hoc comparisons
showed a general pattern of higher metabolic activity in the
female groups in all the studied regions [CG: t = 9.813, p < 0.001;
PL: t = 9.624, p < 0.001; IL: t = 8.056, p < 0.001; CA1: t = 11.094,
p < 0.001; CA3: t = 10.761, p < 0.001; DG: t = 7.651, p < 0.001;
Figure 3].

c-Fos Results
The number of c-Fos positive nuclei, as in the CCO analysis,
reported no differences between any of the three groups (PBM,
PBMD, and C) in the male [CG: F(2, 19) = 0.869, p = 0.425; PL:
F(2, 19) = 0.451, p = 0.644; IL: F(2, 19) = 0.304, p = 0.741; CA1:
F(2, 27) = 0.571, p = 0.572; CA3: F(2, 27) = 0.522; p = 0.599;
DG: F(2, 27) = 1.500, p = 0.241; Figure 4A] or female groups
[CG: H2 = 3.144, p = 0.208; PL: F(2, 26) = 0.680, p = 0.516; IL:
F(2, 26) = 0.373, p = 0.692; CA1: F(2, 26) = 0.279, p = 0.759;
CA3: F(2, 26) = 0.363; p = 0.699; DG: F(2, 26) = 0.069, p = 0.933;
Figure 4B] in any of the quantified regions (Figure 5). Regarding
the differences in c-Fos positive nuclei between sexes, results
showed that only the Sex factor was significant in CG [F(1,
45) = 7.544, p = 0.009], PL [F(1, 45) = 6.939, p = 0.012], IL [F(1,
45) = 9.186, p = 0.004], and CA3 [F(1, 53) = 13.919, p < 0.001] but
not in CA1 [F(1, 53) = 0.738, p = 0.394] and DG [F(1, 53) = 2.326,
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FIGURE 1 | CCO results (mean ± SEM). (A) CCO values in 29-day-old male groups (PBM, PBMD, C). There were no differences between the groups in the
assessed areas (p > 0.05). (B) CCO values in 29 day-old female groups (PBM, PBMD, C). No significant differences were found in any of the areas (p > 0.05).
Groups: C, control group; PBMD, photobiomodulation device group; PBM, photobiomodulation group. Areas: CG, Cingulate cortex; PL, Prelimbic cortex; IL,
Infralimbic cortex; CA1, field CA1 of hippocampus; CA3, field CA3 of hippocampus; DG, Dentate Gyrus. PND, postnatal day; CCO, cytochrome c oxidase.

FIGURE 2 | CCO samples. Representative photograph of the CCO optical
density of the three groups (C, PBMD, and PBM) in PFC and HPC. There
were no differences between groups in any of the studied regions in male or
female samples. Groups: C, control group; PBMD, photobiomodulation
device group; PBM, photobiomodulation group. Areas: CG, Cingulate cortex;
PL, Prelimbic cortex; IL, Infralimbic cortex; CA1, field CA1 of hippocampus;
CA3, field CA3 of hippocampus; DG, Dentate Gyrus. PFC, prefrontal cortex;
HPC, hippocampus; PND, postnatal day; CCO, cytochrome c oxidase.

p = 0.133]. Post hoc comparisons showed more c-Fos positive
nuclei in male groups in CG (t = 2.747, p = 0.009), PL (t = 2.634,
p = 0.012) and IL (t = 3.031, p = 0.004) while, in contrast,
female groups had greater c-Fos expression in CA3 (t = 3.731,
p < 0.001) (Figure 6).

FIGURE 3 | CCO differences between sexes in the three groups (PBM,
PBMD, and C) in each region of interest (mean ± SEM). Female groups
showed a general pattern of higher metabolic activity in all the studied areas
(*p < 0.05). Groups: C, control group; PBMD, photobiomodulation device
group; PBM, photobiomodulation group. Areas: CG, Cingulate cortex; PL,
Prelimbic cortex; IL, Infralimbic cortex; CA1,field CA1 of hippocampus; CA3,
field CA3 of hippocampus; DG, Dentate Gyrus. PFC, prefrontal cortex; HPC,
hippocampus; PND, postnatal day; CCO, cytochrome c oxidase.

DISCUSSION

To our knowledge, this is the first research to examine PBM
effects in the postnatal brain of healthy male and female rats. In
our study, we applied an 810 nm near-infrared light to the scalp
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FIGURE 4 | c-Fos-positive cells (positive cells of c-Fos/µm2) results in the regions of interest. (A) c-Fos results in 29 day-old male groups (C, PBMD, and PBM). No
significant differences were found in any of the areas (p > 0.05). (B) c-Fos results in 29 day-old female groups (C, PBMD, PBM). There were no differences between
the groups in the assessed areas (p > 0.05). Groups: C, control group; PBMD, photobiomodulation device group; PBM, photobiomodulation group. Areas: CG,
Cingulate cortex; PL, Prelimbic cortex; IL, Infralimbic cortex; CA1, field CA1 of hippocampus; CA3, field CA3 of hippocampus; DG, Dentate Gyrus. PND,
postnatal day.

FIGURE 5 | c-Fos samples. Representative microphotograph of the c-Fos immunostaining in the IL cortex. (A) c-Fos sample of the control group. (B) c-Fos sample
of the photobiomodulation device group. (C) c-Fos sample of the photobiomodulation group. No differences in c-Fos protein expression were found between the
three groups in the male or female groups. IL, Infralimbic cortex.

surface over the prefrontal region of 24 day-old male and female
Wistar rats in order to analyze its potential alterations in brain
metabolic activity and c-Fos protein expression. Results showed
that both brain activity markers were not disturbed after the use
of light in any of the sexes.

PBM is a relatively new technique that uses light in the red
or red infrared range to heal, restore, stimulate physiological

processes, normalize cellular function, and repair injury or
disease damages (de Pauli Paglioni et al., 2019; Ramezani
et al., 2021). The most support mechanism of action is the
light particles absorption by the CCO enzyme particularly in
stressed/damaged cells (Martin et al., 2021). CCO is localized in
the electron transport chain of the mitochondrial membrane and
it is involved in the production of the main energy molecule, the
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FIGURE 6 | c-Fos positive cells (positive cells of c-Fos/µm2) differences
between sexes in the three groups (PBM, PBMD, and C) in each region of
interest (mean ± SEM). Male groups showed more c-Fos positive cells in the
prefrontal cortex (CG, IL, and PL) (*p < 0.05) while female groups showed
higher c-Fos expression in CA3 (*p < 0.05). Groups: C, control group; PBMD,
photobiomodulation device group; PBM, photobiomodulation group. Areas:
CG, Cingulate cortex; PL, Prelimbic cortex; IL, Infralimbic cortex; CA1, field
CA1 of hippocampus; CA3, field CA3 of hippocampus; DG, Dentate Gyrus.

adenosine triphosphate (ATP) (Gutiérrez-Menéndez et al., 2020).
PBM has been employed since the 1990s for therapeutic purposes
such as inflammatory, infectious, traumatic or autoimmune
lesions (de Pauli Paglioni et al., 2019). At present, PBM is also
being used in the treatment of many pathological disorders and
diseases such as Parkinson’s and Alzheimer’s diseases, depression,
traumatic brain injury, etc., as a non-invasive non-thermal and
painless therapy, achieving positive cognitive and brain effects
(Meynaghizadeh-Zargar et al., 2019; Salehpour and Hamblin,
2020; Salehpour et al., 2021). Despite light absorption is has
supposed to occur particularly in stressed/damaged cells, it has
been also studied the effects of this technique on healthy adult
subjects with no clinical symptoms, finding positive effects.
Human research reported an overall improvement in cognitive
functions after the use of PBM most of them by using a
wavelength of 1,064 nm (Barrett and Gonzalez-Lima, 2013;
Blanco et al., 2016, 2017; Hwang et al., 2016; Gonzalez-Lima,
2017; Wang et al., 2017; Gonzalez-Lima et al., 2019; Holmes et al.,
2019; Saucedo et al., 2021). Regarding brain activity markers,
Gonzalez-Lima (2017) found an increase of CCO and oxygenated
hemoglobin concentrations in the prefrontal cortex and Wang
et al. (2017) and Zomorrodi et al. (2019) showed variations in
the brain waves frequency. Moreover, healthy animal studies
achieved better behavioral outcomes and brain changes after
PBM radiation (Michalikova et al., 2008; Arias et al., 2020;
Gutiérrez-Menéndez et al., 2021; Table 1).

The development of the nervous system depends on the
continuous interaction of several processes that start during
the fetal period. Some of these developmental processes are
completed before birth and others continue in the postnatal

period, extending into adulthood (Tsujimoto, 2008). The
postnatal stage is a sensitive period of brain development. It is
characterized by the presence of neurogenesis and gliogenesis,
cell’s migration and differentiation, and the rapid formation of
synapses (synaptogenesis) and their remodeling and elimination
(Bandeira et al., 2009; Miki et al., 2014; Chen et al., 2017).
However, all these processes do not start at the same time.
Individual brain regions have been shown to have individual time
scales for maturation, being the PFC and also the hippocampus
ones of the latest (Tsujimoto, 2008; Mengler et al., 2014).
Likewise, cell metabolism also matures after birth. Mitochondria
exhibit an increment of CCO activity and higher content of
cytochrome in the first month of postnatal life, increasing their
oxidative capacity (Kalous et al., 2001). According to these claims
and taking into account all the positive PBM outcomes on
brain function and activity, the potential use of this technique
not only in healthy adult brains but also in developing stages
is not surprising. However, little research is focused on PBM
administration in these periods. In order to contribute to
increasing the knowledge of the effects of PBM in the postnatal
period, we applied 5 days of PBM therapy in healthy male and
female Wistar rats starting at PND 24. As we mentioned before,
the choice of the light parameters is an essential component
that we have to consider in the use of this technique. In our
study, we choose a near-infrared light of 810 nm due to the
high support of this wavelength from other research (Gutiérrez-
Menéndez et al., 2020; dos Santos Cardoso et al., 2021a), as well
as previous pilot studies in young subjects that our team carried
out. Regarding the treatment duration and the way of application,
we decided to administer PBM manually for 30 min in order to
reduce stress during the application. After PBM administration,
we analyzed differences between groups according to metabolic
activity and the activation of immediate early genes in each sex.
In this developmental stage, there is an increment of cytochrome
content and CCO activity (Kalous et al., 2001). As PBM has its
potential effect on the CCO, as a result, its redox status and
its functional activity would be modulated (Karu, 2014; Dompe
et al., 2020) so in our research, changes in the metabolic activity
of our subjects would be expected. However, we did not find CCO
differences between male groups nor female groups in the PFC
or the hippocampus. Little research has focused specifically on
the analysis of the metabolic activity after PBM administration.
Most of the studies were carried out using adult samples and
they support the idea that the photon absorption by CCO leads
to an increase in enzyme activity, oxygen consumption and
ATP production due to the photodissociation of inhibitory nitric
oxide (Gonzalez-Lima, 2017; Hamblin, 2017, 2019; Hennessy
and Hamblin, 2017; Arias et al., 2020). However, the contrary
effect was also found, a reduction in the oxidative metabolic
activity in several limbic regions of adult control rats after PBM
administration (Gutiérrez-Menéndez et al., 2021; Table 1). It
should be noted that despite the results being directly dependent
on which parameters have been chosen and there was high
variability between these studies (Gutiérrez-Menéndez et al.,
2020), PBM administration achieves CCO modifications in adult
control subjects. Moreover, CCO changes after PBM have been
identified in adult healthy subjects, in several models of disease
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TABLE 1 | Comparison of PBM parameters used in previous research.

References Sample Age period PBM device Wave type Wavelength (nm) Irradiance
(mW/cm2)

Arias et al. (2016) Portal hypertension
animals

Adulthood LED – 610 ± 10 50

Arias et al. (2020) Healthy animals Adulthood LED – 610 ± 10 50

Banqueri et al.
(2019)

Early stressed
animals

Adulthood Laser – 1,064 (Power: 30 mW)

Barrett and
Gonzalez-Lima
(2013)

Healthy humans Adulthood Laser Continuous 1,064 250

Blanco et al. (2016,
2017)

Healthy humans Adulthood Laser Continuous 1,064 250

Buzzá et al. (2019) Healthy animal Newborn LED – 630 4

De Taboada and
Hamblin (2019)

Alzheimer’s disease
animal model

Adulthood Laser Pulsed 810 (Powers: 40, 200,
and 400 mW)

dos Santos
Cardoso et al.
(2021a)

Healthy animals Adolescence/Adulthood Laser Continuous 810 (Power: 100 mW)

Gonzalez-Lima
(2017);
Gonzalez-Lima
et al. (2019)

Healthy humans Adulthood Laser Continuous 1,064 250

Gutiérrez-
Menéndez et al.
(2021)

Healthy animals Adulthood Laser – 1,064 (Power: 30 mW)

Holmes et al.
(2019)

Healthy humans Adulthood Laser – 1,064 250

Hwang et al. (2016) Healthy humans Adulthood Laser – 1,064 250

Li et al. (2021) Posttraumatic
stress disorder
animal model

Adulthood Laser Continuous 808 25

Méndez et al.
(2021)

Hepatic
encephalopathic
animals

Adulthood LED – 610 ± 10 50

Michalikova et al.
(2008)

Healthy animals Adulthood Laser Continuous 1,072 –

Nadur-Andrade
et al. (2016)

Bothrops moojeni
venom in animals

Adulthood Laser – 685 (Power: 30 mW)

Saucedo et al.
(2021)

Healthy humans Adolescence/Adulthood Laser Continuous 1,064 250

Shinhmar et al.
(2020)

Healthy humans Adulthood LED – 670 40

Shinhmar et al.
(2020)

Healthy humans Adulthood Laser – 1,064 160

Zomorrodi et al.
(2019)

Healthy humans Adulthood LED Pulsed 810 75, 25, and 100

and also in cognitive tasks, reporting a general decrease in
metabolic activity in the radiated groups (Arias et al., 2016;
Banqueri et al., 2019; Gutiérrez-Menéndez et al., 2021; Méndez
et al., 2021). Nevertheless, in our study, after the application of
PBM in young healthy subjects, we did not find any alterations
in metabolic activity in male or female groups Additionally, the
analysis of the metabolic activity differences between sexes in
the three groups (PBM, PBMD, C), showed higher CCO activity
in the three female groups than male groups in the prefrontal
cortex and the hippocampus. These results are according with
the previous study of Spivey et al. (2008) that showed lower

male regional metabolic activity in prefrontal and parietal cortex
of healthy juvenile rats compared to the juvenile female group.
Similar results using adult samples were found by González-
Pardo et al. (2020). In the same way, the c-fos proto-oncogene
expression has been less studied after the application of PBM.
This immediate early gene is one of the first groups of genes that
express within minutes after synaptic and neuronal activation
triggered by extracellular stimulation and it is involved in cell
proliferation and differentiation (Velazquez et al., 2015; Li et al.,
2021). As in the CCO studies, results are controversial: several
research studies have achieved an increase of c-Fos protein
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expression but others found a decrease of its expression in several
brain areas in healthy and disease models (Nadur-Andrade et al.,
2016; De Taboada and Hamblin, 2019; Arias et al., 2020; Li et al.,
2021; Table 1). By contrast, in our study, we did not achieve
any alterations in the c-Fos protein expression between young
groups in males or females after light application. However,
differences in the c-Fos expression between sexes in the three
groups (PBM, PBMD, and C) were found. The three male groups
displayed greater c-Fos positive cells than females in the three
studied areas of the prefrontal cortex while, in contrast, female
groups showed higher c-Fos expression in the CA3 subregion of
the hippocampus.

Our results are in accordance with the studies of Shinhmar
et al. (2020), dos Santos Cardoso et al. (2021a), and Saucedo
et al. (2021) (Table 1), who compared light administration
effects on retinal function, CCO and hemodynamic activity
and neuroinflammatory response, respectively, between young
and aged subjects. They found that after radiation, PBM effects
were greater in the older subject groups. It is known that in
brain aging several neurodegeneration processes, such as local
inflammation and energy metabolism reduction, take place (dos
Santos Cardoso et al., 2021b,c). Therefore, these researchers
speculated that the age-related mitochondrial decline, which is
not present in young populations, plays a key role in the outcomes
of PBM therapy (Shinhmar et al., 2020; dos Santos Cardoso et al.,
2021a; Saucedo et al., 2021). The same reasons can explain our
findings, as we applied PBM therapy in young subjects without
any apparent health issues and in the developing brain. At this
stage, brain function, specifically brain mitochondrial function,
is not disturbed so, the action of PBM in the mitochondria
is not detectable using the analysis of CCO activity and c-Fos
protein expression. We can suspect that PBM therapy would
be more effective in mitochondrially-compromised individuals
such as in adult/older subjects and even in several diseases,
than in young healthy subjects (Scaglia, 2010; Saucedo et al.,
2021). Nevertheless, there is a study by Buzzá et al. (2019)
which found high weight, faster eye-opening, and normal blood
count in the developmental postnatal stage after applying red
light in postnatal rats from PND2 until PND13. Despite the
chosen subjects being healthy and newborn rats, results showed
earlier maturity without damage in the radiated group, showing
the potential applications of PBM in the first developing stages
(Buzzá et al., 2019; Table 1). The study of Buzzá et al. (2019) used
PBM at an earlier developmental stage compared to the present
study and did not examine any brain modification, differing
from our functional assessment of metabolic activity’s and c-Fos
expression’s alterations. However, it should be pointed out that
our study has several limitations that could lead to the results we
found. The analysis of CCO and c-Fos variations could be not
enough to detect PBM changes in these healthy young brains and
the addition of other functional or behavioral methods could have
helped to show PBM effects. Additionally, despite we included
a device group submitted to the same conditions as the PBM
group but without the light radiation for each sex in an attempt
to control any stress influences, the inclusion of a positive control
group would be relevant to show that the histological methods
used are sensitive to changes. These markers of brain function

suffer modifications in demanding conditions such as in an
early stress period (Banqueri et al., 2019) or under cognitive
requirements (Gonzalez-Lima, 2017; Gutiérrez-Menéndez et al.,
2021; Table 1).

In conclusion, we applied 5 days of 810 nm-PBM therapy in
the frontal area of the brain of male and female rats from PND
24 to PND 28 and we did not find any changes in metabolic
activity nor c-Fos protein expression in any of the studied groups
in the PFC nor the hippocampus. Taking into account the positive
effects reported in the developmental stage in healthy subjects,
the analysis of CCO and c-Fos variations carried out in our study
could be not enough to detect PBM changes in these healthy
young brains. More studies are necessary to examine in depth
PBM outcomes in brain development, cognitive functions and
postnatal disorders, along with the exploration of the optimal
light parameters.
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