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The m6A methylation is reported to function in multiple physiological

and pathological processes. However, the functional relevance of m6A

modification to post-spinal cord injured (SCI) damage is not yet clear. In

the present study, methylated RNA immunoprecipitation combined with

microarray analysis showed that the global RNA m6A levels were decreased

following SCI. Then, gene ontology (GO) and kyoto encyclopedia of genes

and genomes (KEGG) analyses were conducted to demonstrate the potential

function of differential m6A-tagged transcripts and the altered transcripts with

differential m6A levels. In addition, we found that the m6A “writer,” METTL3,

significantly decreased after SCI in mice. The immunostaining validated that

the expression of METTL3 mainly changed in GFAP or Iba-1+ cells. Together,

this study shows the alteration of m6A modification following SCI in mice,

which might contribute to the pathophysiology of the spinal cord after trauma.

KEYWORDS

spinal cord injured (SCI), m6A (N6-methyladenosine), METTL3 (methyltransferase like
3), RNA, microarray

Introduction

Spinal cord injury (SCI) is a devastating pathological status that results in persistent
functional deficits and high mortality (Ahuja et al., 2017). The prevalent cases of SCI
were approximately 27.04 million worldwide (GBD 2016 Neurology Collaborators,
2019). Numerous significant advances in medical treatment have been achieved in
experimental SCI models, but no definitive therapies exist for SCI in the clinic.
The development of an effective treatment strategy is limited by an incomplete
understanding of the pathological mechanisms that occur at different stages after SCI.
The intricate biological processes and molecular events, namely, excitotoxicity, ionic
imbalance, oxidative stress, endoplasmic reticulum stress, apoptosis, and inflammation,
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govern the neuronal fate and affect neurological functional
recovery after SCI (Mehta et al., 2007; Fan et al., 2018). In recent
years, RNA modification has been reported to function in these
biological processes and molecular events (Wen et al., 2020;
Zhang et al., 2020; Wang et al., 2021b; Yang and Chen, 2021;
Yu et al., 2021; He et al., 2022).

In the process of epigenetic regulation, RNAs, which are
similar to DNA or histone, could undergo over 100 kinds of
posttranscriptional modifications in mammals (Cantara et al.,
2011; Niu et al., 2013). The internal epi-transcriptomic changes
include N1-methyladenosine (m1A), N5-methylcytosine (m5C),
N6-methyladenosine (m5A), and pseudouridine (ψ; Wei
et al., 2018; Weng et al., 2018). Among them, m6A, which
can regulate RNA structure, stability, and expression, is
regarded as the most universal and reversible modification
of all messenger RNA (mRNA) and non-coding RNA base
methylations in eukaryotic cells (Roundtree et al., 2017; Zhao
et al., 2017; Frye et al., 2018). The latest research shows
that m6A modification is mediated mainly by various “writer,”
“reader,” and “eraser” proteins (Meyer and Jaffrey, 2017),
such as methyltransferase-like (METTL) 3 and 14, Wilms
tumor 1-associating protein (WTAP), YTH domain-containing
family protein 2 (YTHDF2), fat mass and obesity-associated
protein FTO), and AlkB homology 5 (ALKBH5; Yang et al.,
2018; Liu et al., 2021). METTL-3 and -14, and WTAP
primarily mediate the conversion of adenosine to m6A, while
demethylases FTO and ALKBH5 can reverse this modification
(Widagdo and Anggono, 2018).

Emerging evidence has reported that m6A modification is
strongly associated with multiple physiological and pathological
processes, such as ischemic stroke, traumatic brain injury
(TBI), and peripheral nerve injury (Weng et al., 2018;
Chokkalla et al., 2019; Wang et al., 2019; Si et al., 2020). As
of late, Wang et al. have reported that m6A modification
was significantly changed in the early period of TBI in mice
by m6A modified RNA immunoprecipitation sequencing
(m6A-RIP-seq) and RNA sequencing (RNA-seq; Wang
et al., 2019). In the sciatic nerve lesion model, the m6A-
tagged transcripts encode many regeneration-associated
genes and protein translation machinery components
in the adult mouse dorsal root ganglion (DRG; Weng
et al., 2018). However, the role of m6A in SCI remains to
be characterized.

This study systematically profiled RNA m6A modification
landscape by m6A-mRNA and lncRNA Epi-transcriptomic
microarray in the mouse SCI model. We found altered
m6A methylation levels following SCI, leading to the change
of m6A-tagged transcripts. Furthermore, we screened and
found that the decreased METTL3-mediated m6A modification
may be responsible for the hypo-methylation following SCI.
Together, this study suggests that m6A modifications are
involved in the process of SCI, which may be a promising
therapeutic target.

Results

The global m6A levels are decreased
after spinal cord injured in mice

To investigate the role of m6A modification in SCI, we
established the mouse model with SCI and extracted spinal cord
tissues 3 days after surgery. The levels of m6A modifications
were evaluated by methylated RNA immunoprecipitation and
transcriptional microarray analysis. The global m6A levels in
the SCI group were significantly decreased compared with the
sham group, as revealed by the immunofluorescent intensity
of cy5-labeled immunoprecipitation in the microarray images
(Figures 1A,B). Consistent with the global m6A analysis, the
levels of transcript-specific m6A modification in mRNAs and
lncRNAs were also significantly lower in the SCI group than
in the sham group (Figures 1B–D). The microarray profiling
showed that the m6A levels were significantly decreased in 98%
mRNAs (194 hyper- and 11,059 hypo-methylation; Figure 1E
and Supplementary Table 1) and 97% lncRNAs (46 hyper-
and 1,556 hypo-methylation) in the SCI group compared with
the sham group (Figures 1D–F and Supplementary Table 2).
Together, these data indicated that the global m6A methylation
levels decreased in the SCI group compared with the sham
group, especially the m6A enrichment of mRNAs and LncRNAs.

Gene ontology and KEGG enrichment
analyses of differential m6A-modified
transcripts

It has been reported that m6A methylation played an
essential role in the regulation of mRNA translation in the
CNS system (Merkurjev et al., 2018). To further demonstrate
the potential function of differential m6A-tagged transcripts
(mRNAs) after SCI, gene ontology (GO) analysis, and kyoto
encyclopedia of genes and genomes (KEGG) analysis were
conducted. The results of GO analysis indicated that the
hypo-m6A-tagged transcripts after the SCI were mainly
enriched in the biological process (BP) of the cellular and
metabolic processes (Figure 2A). These hypo-m6A-tagged
transcripts were enriched in the cellular anatomical entity,
organelle, and cytoplasm revealed by cellular components
(CCs) analysis (Figure 2B). In addition, the molecular
functions (MF) of the hypo-m6A-tagged transcripts were
highly enriched in binding, catalytic activity, and transferase
activity (Figure 2C). Moreover, KEGG enrichment was
analyzed. The mRNAs with hypo-m6A modification after
SCI were primarily involved in several pathways namely
peroxisome, N-Glycan biosynthesis, mitophagy, endocytosis,
carbon metabolism, autophagy, amyotrophic lateral sclerosis,
and AMPK signaling (Figure 2D).
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FIGURE 1

Decrease of the global m6A level post-SCI in mice. (A) The representative array of images of the SCI group and sham group. Cy3 for Sup and
Cy5 for IP. (B) Fold change of the immunofluorescent intensity of cy5-labeled immunoprecipitation in the microarray images from SCI group
over sham group. (C) The heatmap of mRNA m6Amethylation level in SCI group and sham group. (D) The heatmap of LncRNA m6A methylation
level in SCI group and sham group. (E,F) The volcano plot of mRNA methylation level (194 hyper- and 11,059 hypo-methylation) (E) and LncRNA
methylation level (46 hyper- and 1,556 hypo-methylation) (F) in the SCI group over the sham group. The threshold lines are set at |fold change|
≥ 1.5 and p < 0.05 between SCI and sham. n = 4/group.

Different from hypo-m6A-tagged mRNA, hyper-m6A-
tagged mRNAs were predominantly enriched in BP of nucleic
acid metabolism, negative regulation of transcription, and
negative regulation of biosynthetic process after the SCI in
the GO analysis (Figure 2E). Cellular components analysis
demonstrated that hyper-m6A-tagged transcripts were mainly
enriched in the nucleus, organelle, and its lumens (Figure 2F).
The MF enrichments were primarily found in binding terms
(Figure 2G). In addition, the KEGG analysis demonstrated
that only the spliceosome-related pathway was significantly
associated with the hyper-m6A-tagged mRNAs (Figure 2H).

Gene ontology and KEGG enrichment
analyses of differential m6A-tagged
transcripts with altered transcription
levels

Considering the changed m6A level of transcripts may not
lead to the differences in gene expression, we next explored
the differentially expressed genes with altered m6A modification
after SCI. A total of 2,895 up-regulated and 697 down-regulated

mRNA with m6A methylation were identified after the SCI
(Figure 4A). Then, to reveal the potential role of differentially
expressed mRNA, GO and KEGG enrichment analyses were
conducted. The GO analysis showed that the up-regulated
genes were primarily involved in the cellular and metabolic
processes (Figure 3A) and enriched in the cellular anatomical
entity, intracellular, cytoplasm, and organelle (Figure 3B). The
enrichment of MF was found in binding, catalytic activity, and
structural constituent of ribosome (Figure 3C). In addition, the
KEGG analysis indicated that the up-regulated mRNAs were
significantly related to TNF signaling, spliceosome, ribosome,
proteoglycans in cancer, phagosome, and C-type lectin receptor
signaling pathway (Figure 3D).

In addition, we analyzed down-regulated genes with
altered m6A modification. The GO analysis showed that
these down-regulated mRNAs were primarily enriched in
the BP of cellular process, nervous system development,
multicellular organism development, and cellular component
organization (Figure 3E). They were mainly located in the
cellular anatomical entity, intracellular components, organelle,
cell junction, synapse, cytoplasm, cell projection, and post
synapse (Figure 3F). The enrichment of MF was primarily
found in the binding (Figure 3G). The down-regulated mRNAs
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FIGURE 2

KEGG and GO enrichment analysis of differential m6A-tagged transcripts after SCI. (A–C) Gene ontology (GO) analysis of hypo-m6A-tagged
transcripts for biological process (BP), cellular components (CC), molecular function (MF) in the SCI group over the sham group. (D) KEGG
pathway analysis of hypo-m6A-tagged transcripts in SCI group over sham group. (E–G) Gene ontology (GO) analysis of hyper-m6A-tagged
transcripts for biological process (BP), cellular components (CC), molecular function (MF) in SCI group over sham group. (H) KEGG pathway
analysis of hyper-m6A-tagged transcripts in SCI group over sham group.
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FIGURE 3

KEGG and GO enrichment analysis of the altered transcripts modified by differential m6A after SCI. (A–C) Gene ontology (GO) analysis of
differential m6A-tagged transcripts with increased transcription levels for biological process (BP), cellular components (CC), molecular function
(MF) in SCI group over sham group. (D) KEGG pathway analysis of differential m6A-tagged transcripts with increased transcription levels in SCI
group over sham group. (E–G) Gene ontology (GO) analysis of differential m6A-tagged transcripts with decreased transcription levels for
biological process (BP), cellular components (CC), molecular function (MF) in SCI group over sham group. (H) KEGG pathway analysis of
differential m6A-tagged transcripts with decreased transcription levels in SCI group over sham group.
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FIGURE 4

The altered m6A level associated with changed gene expression. (A) The scatter plot of altered m6A level associated with changed gene
expression. The threshold lines are set at |fold change| ≥ 1.5 between SCI and sham. Hyper: hypermethylation, Hypo: hypomethylation, up:
increased gene expression, down: decreased gene expression. (B–E) Validation of randomly selected two genes in different groups by real-time
quantitative polymerase chain reaction (qRT-PCR) after SCI. (B) hyper-up group, (C) hyper-down group, (D) hypo-up group, (E) hypo-down
group. Bars indicate mean ± SD; n = 5 per group. **p < 0.01 compared with sham group.

were significantly involved in pathways namely, synaptic vesicle
cycle, melanogenesis, insulin secretion, glutamatergic synapse,
gastric acid secretion, GABAergic synapse, endocrine, and other
factor-regulated calcium reabsorption, circadian entrainment,
cholinergic synapse, and cAMP signaling (Figure 3H).

Validation of altered transcription
levels to differentially m6A-modified
genes

To further characterize the differentially expressed genes
with altered m6A level, we categorized the up-/down-regulated
transcripts into four groups: m6A hypermethylation with
up-regulated transcription levels (hyper-up, 4 genes), m6A
hypermethylation with down-regulated transcription levels
(hyper-down, 116 genes), m6A hypomethylation with up-
regulated transcription levels (hypo-up, 2891 genes), m6A
hypomethylation with down-regulated transcription levels
(hypo-down, 581 genes; Figure 4A and Supplementary
Table 3). We randomly selected two genes from each
group and performed real-time quantitative polymerase chain
reaction (qRT-PCR) to validate the above observations in the
epitranscriptomic microarray analysis. Consistent with our
findings, mRNA expressions of Mllt3 and Cobll1 in the hyper-
up group were significantly increased after the SCI; whereas the
mRNA expression levels of Sema4d and Fgfr2 in the hyper-down
group were remarkably decreased after the SCI (Figures 4B,C).
The qRT-PCR showed that the expression of CCL4 and Mmp3
increased significantly after the SCI in the hypo-up group
(Figure 4D), while, the mRNA levels of Neb and Trdn in

hypo-down group were notably lower in the Tran SCI group
compared with the sham group (Figure 4E).

Methyltransferase like 3 is
down-regulated following spinal cord
injured in mice

S-adenosylmethionine (SAM) is a common substrate that
functions as a methyl donor for most methyltransferases
in important biochemical reactions. Enzyme-linked
immunosorbent assay (ELISA) showed that the concentration of
SAM did not change significantly after the SCI compared to the
sham group (Supplementary Figure 1). To further explore the
key regulator in the m6Amodification after SCI, the expression
of m6A methylase complex subunits (METTL3, METTL14,
and WTAP) and m6A demethylase (FTO and YTHDF2)
were screened based on the m6A-mRNA and lncRNA
Epitranscriptomic Microarraythe RNA-sequence database.
A significant decrease in the mRNA expression of METTL3
was observed 3 days after the SCI, consistent with the above
observation of the global m6A level (Supplementary Table 1).
METTL3 is essential to catalyze m6A-dependent methylation
(Liu et al., 2014). To validate the change of METTL3 in the
mouse SCI model, qRT-PCR analysis was conducted. The SCI
surgery significantly diminished the expression of METTL3
compared with the sham group (Figure 5A).

We then sought to demonstrate the distribution of METTL3
in different cell types of the spinal cord after trauma. The
immunofluorescent staining of METTL3 revealed that the
METTL3+ cells were positive for astrocyte marker glial fibrillary
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FIGURE 5

METTL3 is decreased in GFAP+ or Iba-1+ cells following SCI. (A) The decrease of METTL3 mRNA level by qRT-PCR at 3 days after SCI.
(B) Representative images of spinal cord sections stained for METTL3 (red) with GFAP (green) or Iba-1 (green) or CD31 (green) at 3 days after the
SCI and sham group. Scale bar, 50 µm. (C) Percentage of number of METTL3+GFAP+, METTL3+Iba-1+, and METTL3+CD31+ in SCI group
relative to the sham group. Bars indicate mean ± SD; n = 5/group. **p < 0.01 compared with the sham group. ns, no significance.

acidic protein (GFAP) and macrophage/microglia marker
allograft inflammatory factor 1 (Iba1), but rarely expressed
endothelial marker CD31 (Figure 5B). Interestingly, the
numbers of METTL3+GFAP+ and METTL3+Iba-1+ cells were
significantly lower in the SCI group than in the sham group;
while, no significant change in METTL3+CD31+ cells was
observed after the SCI surgery (Figure 5C). In conclusion, these
results demonstrate that the change of METTL3 expression
after SCI mainly occurred in GFAP+ astrocytes, and Iba-1+

macrophage/microglia cells.

Discussion

The SCI is catastrophic trauma of the central nervous
system (CNS) that can initiate multiple biological processes
and molecule events (Ahuja et al., 2017). As a key mechanism
to mediate gene transcription, epigenetics plays a critical role
in the response to trauma in the mammalian nervous system
(Meng et al., 2017). However, far too few studies have focused
on epigenetic changes in SCI (Finelli et al., 2013; Crunkhorn,
2019). Our previous study demonstrated that the epigenetic
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network is essential for vascular regeneration and functional
recovery post-SCI (Ni et al., 2019). The m6A methylation plays
a significant role in the pathological process of corneal injury,
brain injury, and peripheral nerve injury (Weng et al., 2018;
Wang et al., 2019; Dai et al., 2021; Zhang et al., 2021). In
contrast, various types of cancers and diabetes are associated
with lowered m6A abundance (Chen et al., 2020; Huang et al.,
2021; Lei et al., 2021; Ruan et al., 2021; Wang et al., 2021a; Ye
et al., 2021). Therefore, m6A homeostasis might be essential
for normal physiology, and its disorder leads to pathologies.
Nevertheless, the functional relevance of m6A modification
to post-SCI damage is not yet clear. In the present study,
we first demonstrate the m6A landscape in the SCI model
of mice. The methylated RNA immunoprecipitation combined
with microarray analysis showed that the global RNA m6A levels
were decreased following the SCI. These results indicate that
the changed m6A modification may involve the pathologies of
tissue damage in SCI.

Then, we performed profiling of m6A-tagged mRNA
and LncRNA after the SCI in mice. Consistent with the
decreased global m6Amethylation level, 11253 m6A peaks
were differentially expressed in mRNA transcriptomes after
SCI, namely 194 up-regulated and 11,059 down-regulated. In
a similar manner, 46 m6A peaks were elevated and 1,556
m6A peaks were decreased in LncRNA transcriptomes after
the SCI. Interestingly, most differential m6A-tagged mRNA
transcriptomes were hypomethylated, but their transcriptional
levels were up-regulated after SCI. This indicates that the
level of m6A methylation negatively correlated with the
transcriptional levels after SCI. Consistently, several previous
studies reported that m6A mainly functioned in mRNA
degradation (Dominissini et al., 2012; Meyer et al., 2012;
Wang et al., 2014).

We found that the BP of differential m6A-tagged transcripts
post SCI were enriched in the cellular and metabolic processes,
implying that m6A modification may contribute to metabolic
alteration after SCI. In general, SCI results in transient or
persistent spinal cord metabolic disorder because of post-
traumatic ischemia, inflammation, and other mechanisms
(Fan et al., 2018), representing m6A modification as a potential
therapeutic target in the metabolic process after SCI for further
study. Cellular Components (CC) of GO analysis suggested that
these transcripts were enriched in the cellular anatomical entity,
cytoplasm, nucleus, and intracellular organelle, indicating genes
modified by m6A were widespread in cells following the SCI.
In addition, the MF of these hypo- and hyper-methylated genes
are enriched in binding, protein binding, and nucleic acid
binding, consistent with the broad and critical roles of RNA
methylation in gene expression regulation. The KEGG analysis
showed that the m6A-tagged transcripts were enriched in
several pathways, namely spliceosome, peroxisome, autophagy,
mitophagy, endocytosis, carbon metabolism, amyotrophic
lateral sclerosis, and AMPK signaling, indicating the m6A

modification may participate in the processes of oxidative stress,
autophagy, metabolism, and nervous systems diseases.

Considering the changed m6A level of transcripts may not
lead to the differences in gene expression, we next conducted
the GO and KEGG analyses of the differentially expressed
genes with altered m6A modification after SCI. Similar to the
BP of differential m6A-tagged transcripts, the up-regulated
transcripts were enriched in the cellular process, cellular
metabolic process, and metabolic process. However, noticeably,
the down-regulated transcripts were enriched in nervous system
development, neurogenesis, and cellular process, indicating the
decay of tagged neurodevelopment-and neurogenesis-related
transcripts after the SCI. The KEGG analysis showed that the
up-regulated transcripts were enriched in the TNF signaling
pathway, ribosome, legionellosis, C-type lectin receptor
signaling pathway, phagosome, and spliceosome, suggesting
m6A modification promotes inflammation-related transcripts
following the SCI. However, the down-regulated transcripts
were enriched in the cholinergic synapse, glutamatergic
synapse, insulin secretion, melanogenesis, synaptic vesicle
cycle, and circadian entrainment. This indicates that m6A-
tagged transcripts are involved in synaptic growth, synaptic
assembly, and metabolism, thus influencing the communication
between axons post-SCI.

The METTL3, METTL14, and WTAP mainly regulate the
methylation process of m6A, while the FTO and ALKBH5
can reverse this modification (Widagdo and Anggono, 2018;
Yang et al., 2018; Liu et al., 2021). Our results showed that
only one transcript’s mRNA level of METTL3 significantly
decreased post-SCI among these key enzymes in regulating
m6A modification (Supplementary Table 4). The subsequent
qRT-PCR and immunofluorescence data verified the change of
METTL3 in mRNA expression and protein expression post-SCI.
The mRNA level of another three transcripts of METTL3 did
not change significantly, which means that they might not be
involved in the change of METTL3 post-SCI. Recent increasing
evidence suggests that METTL3, a key RNA N6-adenosine
methyltransferase, is involved in the regulation of the nervous
system (Hess et al., 2013; Shi et al., 2018; Wang et al., 2018).
The METTL3 is abundantly enriched neurogenesis during
the early stage (Yoon et al., 2017). Furthermore, conditional
METTL3 knockout (cKO) in mice impairs the differentiation
of embryonic neural progenitor cells, prolongs cell cycle
progression of radial glia, and extends cortical neurogenesis
into postnatal stages (Yoon et al., 2017). In addition,
silencing METTL3 could significantly promote cell proliferation
and migration and induce G0/G1 arrest in some cancers
(Li et al., 2017; Chen et al., 2018; Visvanathan et al., 2018). The
present study revealed that METTL3 was decreased in the early
stage after SCI and predominantly localized and down-regulated
explicitly in the GFAP+ or Iba-1+ cells. Function tests are
required to elucidate the effects of the decreased METTL3 on
astrocytes or macrophage/microglia after SCI.
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Noticeably, the expression of FTO also decreased after the
SCI. However, as the RNA demethylase, the change of FTO
was inversely correlated with the altered m6A level (Weng
et al., 2018; Mathiyalagan et al., 2019). Hence, the change of
METTL3 was consistent with the decreased trend of global
m6A after the SCI.

In conclusion, we find that both the level of global m6A
and the expression of METTL3 are significantly decreased
in the mouse SCI model. Profiling of m6A-tagged transcripts
and subsequent bioinformatics analysis reveal the potential
functions of altered m6A modified transcripts. Our study
suggests that m6A modifications could be a potential
therapeutic target for SCI.

Materials and methods

Establishment of the contusion spinal
cord injured model

All the experimental animal protocols were approved by the
Ethics Committee of The First Affiliated Hospital of Zhengzhou
University for Scientific Research. The animals were kept in
specific pathogen-free (SPF) conditions in the Department of
Laboratory Animals. The animals were housed in identical
environments (temperature 22–24◦C; humidity 60–80%) on a
12-h light–dark cycle and fed standard rodent chow ad libitum
with free unlimited food and water. The 2-month-old mice
were anesthetized with ketamine and xylazine by intraperitoneal
(i.p.) injection. After laminectomy at T10, moderate contusion
injury of the spinal cord was instigated by a modified Allen’s
weight drop mechanical assembly (10 g weight at a vertical
height of 20 mm, 10 g x 20 mm). Mice in the sham group were
only subjected to laminectomy without contusion. Bladders
were physically kneaded twice daily until full voluntary or
autonomic voiding. Antibiotic (penicillin sodium; North China
Pharmaceutical, Shijiazhuang, China) was administered once
daily for 3 days post-surgery.

m6A-mRNA and lncRNA
epitranscriptomic microarray

m6A Immunoprecipitation
The 3 µg total RNA and m6A spike-in control mixture

was added to 300 µl 1 × IP buffer (50 mM Tris–HCl, pH 7.4,
150 mM NaCl, 0.1% NP40, 40U/µl RNase Inhibitor) containing
2 µg anti-m6A rabbit polyclonal antibody (Synaptic Systems).
The reaction was incubated with head-over-tail rotation at
4◦C for 2 h. DynabeadsTM M-280 Sheep Anti-Rabbit IgG
(Invitrogen) suspension was blocked with freshly prepared
0.5% BSA at 4◦C for 2 h and resuspended in the total RNA-
antibody mixture prepared earlier. Then beads were then

washed three times with 1 × IP buffer and twice with wash
buffer (50 mM Tris–HCl, pH 7.4, 50 mM NaCl, 0.1% NP40,
40 U/µl RNase Inhibitor). The enriched RNA was eluted with
Elution buffer (10 mM Tris–HCl, pH 7.4, 1 mM EDTA, 0.05%
SDS, 40U Proteinase K) at 50◦C for 1 h. The RNA was
extracted by acid phenol–chloroform and ethanol precipitated.
The immunoprecipitated “IP” fraction contained enriched m6A
methylated RNAs, and the supernatant “Sup” fraction contained
unmodified RNAs.

Labeling and hybridization
The “IP” RNAs and “Sup” RNAs were added with equal

amounts of calibration spike-in control RNA, amplified as
cRNAs, and labeled with Cy3 (green for “Sup”) and Cy5
(red for “IP”) separately using Arraystar Super RNA Labeling
Kit (Arraystar). The synthesized cRNAs were further purified
by RNeasy Mini Kit (QIAGEN). Then Cy3 and Cy5 labeled
cRNAs were combined together and were fragmented. Then,
50 µl hybridization solution was dispensed into the gasket
slide and assembled to the mouse m6A-mRNA and lncRNA
Epitranscriptomic Microarray Arrays (8 × 60 K, Arraystar,
Rockville, MD, United States at 65◦C for 17 h in an Agilent
Hybridization Oven. The hybridized arrays were washed, fixed,
and scanned in two-color channels using an Agilent Scanner
G2505C. Agilent Feature Extraction software (version 11.0.1.1)
was used to analyze acquired array images. Raw intensities of
“IP” and “Sup” were normalized with an average of log2-scaled
spike-in RNA intensities. The “m6A methylation level” was
calculated for the percentage of modification based on the “IP”
and “Sup” normalized intensities.

Bioinformatics analysis
The hierarchical clustering heatmap analysis was performed

using the heatmap.2 function in the gplots R package.
The heatmaps of differentially m6A-methylated lncRNAs and
mRNAs were generated and clustered based on the Euclidean
distance matric. The present clustergrams represent each
transcripts’ row of data across each of the columns of variables
as a color block, using stronger intensities of blue color to
represent lower levels of the m6A methylation, and increasing
intensities of red color to represent higher levels. The volcano
plot analysis was performed using the ggplot2. function in the
gplots R package. The GO analysis was performed using the
topGO package in the R environment for statistical computing
and graphics, and Pathway analysis was calculated by Fisher’s
exact test.

Immunohistochemistry

The spinal cord sections were washed in PBS for 15 min,
then with 1% PBST (1% Triton X-100 in PBS) for 30 min
two times. The slices were incubated with a blocking solution
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(5% BSA in 1% PBST) at room temperature for 1 h. Primary
antibodies, namely, anti-METTL3 (Abcam, ab195352, and
1:500), anti-CD31 (R&D Systems, Inc., FAB3628G-100, and
1:200), anti-GFAP (Abcam, ab53554, and 1:500), anti-Iba-1
(Wako, 01127991, and 1:800) were incubated at 4◦C overnight.
The corresponding secondary antibodies (Abcam and 1:500)
were incubated for 1 h at room temperature. There were five
samples in the Sham and SCI group, respectively. For each
sample, we selected five slices, and five fields of view for each
slice under 200·magnification. The range of each field of view
is 600 × 500 µm, and there are 915 ± 85.5 cells on an average
in each field of view. In total, 2.5·104 cells were used for each
sample for cell count.

Ribonucleic acid isolation and
qRT-PCR

The spinal cord tissue for RNA isolation is 1 cm in length,
around the injury site. According to the manufacturer’s protocol,
total RNA was extracted using TRIzol (Invitrogen). The qRT-
PCR was performed using the PrimeScript RT reagent Kit
(Takara) and SYBR Premix Ex Taq (Takara) following the
specifications. For the quantification of mRNA expression,
primers were provided by Sangon Biotech (Shanghai, China).
The expression of GAPDH was used as an internal control.
The analysis of gene expression was performed using the 2
−11Ct method.

Enzyme-linked immunosorbent assay

The spinal cord tissues were collected from the SCI group
and the Sham group. The tissue supernatant was prepared and
the concentration of SAM was determined by enzyme-linked
immunosorbent assay (ELISA; Cloud-Clone Corp., Wuhan,
China) according to the manufacturer’s instructions (n = 4 per
group), respectively.

Statistical analysis

All the data were presented in the form of means ± SD.
The t-test was used to compare the differences between the
groups. All the statistical analyses were carried out using SPSS
19.0 software. p < 0.05 was considered statistically significant.
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