
fnins-16-904931 July 1, 2022 Time: 12:10 # 1

ORIGINAL RESEARCH
published: 01 July 2022

doi: 10.3389/fnins.2022.904931

Edited by:
Hayder Amin,

German Center
for Neurodegenerative Diseases

(DZNE), Germany

Reviewed by:
Mark Shein-Idelson,

Tel Aviv University, Israel
Alessio Paolo Buccino,

ETH Zürich, Switzerland

*Correspondence:
R. Ryley Parrish

rrparris1@gmail.com

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 26 March 2022
Accepted: 08 June 2022
Published: 01 July 2022

Citation:
Mahadevan A, Codadu NK and

Parrish RR (2022) Xenon LFP Analysis
Platform Is a Novel Graphical User
Interface for Analysis of Local Field

Potential From Large-Scale MEA
Recordings.

Front. Neurosci. 16:904931.
doi: 10.3389/fnins.2022.904931

Xenon LFP Analysis Platform Is a
Novel Graphical User Interface for
Analysis of Local Field Potential
From Large-Scale MEA Recordings
Arjun Mahadevan1, Neela K. Codadu2 and R. Ryley Parrish1*

1 Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada, 2 Department of Clinical
and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom

High-density multi-electrode array (HD-MEA) has enabled neuronal measurements at
high spatial resolution to record local field potentials (LFP), extracellular action potentials,
and network-wide extracellular recording on an extended spatial scale. While we have
advanced recording systems with over 4,000 electrodes capable of recording data at
over 20 kHz, it still presents computational challenges to handle, process, extract, and
view information from these large recordings. We have created a computational method,
and an open-source toolkit built in Python, rendered on a web browser using Plotly’s
Dash for extracting and viewing the data and creating interactive visualization. In addition
to extracting and viewing entire or small chunks of data sampled at lower or higher
frequencies, respectively, it provides a framework to collect user inputs, analyze channel
groups, generate raster plots, view quick summary measures for LFP activity, detect and
isolate noise channels, and generate plots and visualization in both time and frequency
domain. Incorporated into our Graphical User Interface (GUI), we also created a novel
seizure detection method, which can be used to detect the onset of seizures in all or
a selected group of channels and provide the following measures of seizures: distance,
duration, and propagation across the region of interest. We demonstrate the utility of this
toolkit, using datasets collected from an HD-MEA device comprising of 4,096 recording
electrodes. For the current analysis, we demonstrate the toolkit and methods with a low
sampling frequency dataset (300 Hz) and a group of approximately 400 channels. Using
this toolkit, we present novel data demonstrating increased seizure propagation speed
from brain slices of Scn1aHet mice compared to littermate controls. While there have
been advances in HD-MEA recording systems with high spatial and temporal resolution,
limited tools are available for researchers to view and process these big datasets. We
now provide a user-friendly toolkit to analyze LFP activity obtained from large-scale MEA
recordings with translatable applications to EEG recordings and demonstrate the utility
of this new graphic user interface with novel biological findings.
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INTRODUCTION

The technology of neuronal data acquisition using high density
multi-electrode arrays (HD-MEAs) in tissue and cell cultures
has grown dramatically over the past decade (Maccione et al.,
2013, 2014, 2015; Ingebrandt, 2015; Müller et al., 2015;
Dragas et al., 2017; Viswam et al., 2017; Steinmetz et al.,
2019; Paulk et al., 2022). A brief history of MEA technology
and advancement of these devices is discussed extensively
by Didier et al. (2020). These ever-growing, state-of-the-art
electrophysiology techniques (Stevenson and Kording, 2011;
Lopez et al., 2018; Miccoli et al., 2019) now include HD-
MEA devices capable of recording extracellular neuronal signals
from cell cultures or brain slices from thousands of electrodes
(Ronchi et al., 2019). Pharmaceutical techniques have also
expanded to include the high density multi-electrode arrays in
new assay development (Kraushaar and Guenther, 2019). Several
pharmaceutical applications and drug-testing protocols require
long-duration recordings from 45 to 90 min (Codadu et al.,
2019a), which can result in large data files of 350 to 500 GB.

While electrophysiology and chip technology progresses at a
rapid pace generating high-quality precise neuronal data with
a high degree of spatial accuracy, developing data analysis
platforms and algorithms exploiting the full potential of the
recordings is quite challenging (Mahmud and Vassanelli, 2016;
Paninski and Cunningham, 2018). The progress in data analysis
pipelines, big data algorithms, and flexible analysis platforms
to adapt to different techniques, data formats, and research
requirements is slowly evolving to handle the large scale of
data (Landhuis, 2017). Most applications using high density
MEA recordings rely on analysis of high-frequency activity,
such as action-potential data, to include useful features, such
as spike sorting, which has received a lot of attention in the
research community, including several open-source architecture
toolboxes to view and process the data (Pachitariu et al., 2016;
Yger et al., 2018; Lee et al., 2020). Proprietary software and open-
source toolboxes that come with the HD-MEA measurement
systems can sometimes be restrictive to researchers. While
they do provide blackbox-type solutions to spike identification,
sorting, generating raster plots following spike sorting and
other measures, they may not offer enough customization and
adaptability to different methods of viewing and analyzing the
data (Bridges et al., 2018). Moreover, while different toolboxes
and software platforms provide different functionality, there are
benefits and limitations related to the scalability of algorithms
for large-scale data, and new paradigms are constantly evolving
to exploit the vast potential of these recordings (Mahmud et al.,
2012; Diggelmann et al., 2018; Sedaghat-Nejad et al., 2021;
Buccino et al., 2022).

There are many options for analysis of extracellular action
potentials for large-scale MEA recordings (Franke et al.,
2015; Buccino et al., 2020; Petersen et al., 2021; Hu et al.,
2022). However, open-source, user-friendly analysis platforms
for visualizing long recordings of LFP collected from HD-
MEA systems is limited. From our review of literature and
open-source toolboxes, there are limited data-analysis pipelines
that are flexible, customizable, and object-oriented methods
for processing and visualizing data for low-frequency (0.5

to 300 Hz) LFP activity. This will continue to limit the
usefulness of these large-scale MEA recording systems for many
electrophysiologists. Nevertheless, there is an increasing number
of research labs using HD-MEAs to record LFP activity to
understand neuronal network dynamics from cortical brain slices
(Ferrea et al., 2012; Toader et al., 2013; Medrihan et al., 2015; Hu
et al., 2022). One available toolbox to view MEA data is presented
by Bridges et al. (2018), built using Python leveraging GPU
(Graphics Processing Units) capabilities to view and generate
visualization for large MEA data files. However, this toolbox
is only for viewing select traces from MEA recordings, is not
maintained, and does not have any filtering or analysis features
within the framework. In our current work, we present a much
different data pipeline built in Python with diverse features
and summary metrics rendered on a browser using Plotly’s
Dash. This data-analysis pipeline is for band-pass filtered (0.5
to 2,048 Hz) LFP activity and seizure analysis that is scalable to
large datasets, with an interactive GUI for analyzing HD-MEA
measurements. This GUI includes several features to generate
summary measures and plots, and trace LFP activity over time.
For people familiar with basic Python, this tool can also serve as
a framework to customize and add functions and visualization
based on individual researchers’ analysis requirements.

Researchers also require novel ways to track LFP activity over
space and time, as calcium imaging is limited by slow kinetics
(Tang et al., 2015; Helassa et al., 2016; Vanwalleghem et al., 2020;
Wei et al., 2020) and current voltage-imaging techniques have
several weaknesses, such as high-bleaching properties (Kulkarni
and Miller, 2017; Xiao et al., 2021). Recordings using high-
resolution MEA systems offer a new way to explore network
communication with a high degree of time and spatial resolution
but require tools to tap into their full potential. Our new data
pipeline offers an efficient and easy tool to analyze the spatial and
time resolution offered by these MEA systems. We demonstrate
the utility of this data pipeline with induction of seizure-like
activity and generating example LFP raster plots over time and
space, along with example traces from subregions of the brain.
This bird’s-eye view of LFP activity within our GUI creates a new
tool for investigation into novel insights into network dynamics,
such as how the neocortex and hippocampus interact with each
other. Furthermore, we demonstrate a novel seizure-tracking
approach using the high density of electrophysiological channels
with potential to be superior to large-scale calcium imaging to
track seizure dynamics. We present data using this analysis tool
that shows brain slices from Scn1aHet mice with a deficit in
sodium channel NaV1.1, an important channel for interneuron
excitability, have more seizure-like events (SLE) than wild-type
(WT) littermates in a low Mg2+ model. Furthermore, we show
novel data that demonstrate an increased seizure-propagation
rate in the Scn1aHet mice, likely due to the well-documented
decreased firing rates of parvalbumin-positive interneurons in
these mouse models (Martin et al., 2010; Tai et al., 2014; Favero
et al., 2018). We provide this new python-based software tool as
an open-source, customizable solution for analysis and tracking
of LFP activity using the 3Brain MEA recording system, but
it can easily be adapted to any MEA recording platform. This
GUI will also likely be suitable for analysis of large-scale EEG
recordings and provide a useful mapping tool for in vivo LFP
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activity. Our current GUI has a particular utility for analysis of
seizure-like activity but can be used for analysis of many other
network LFP signals.

MATERIALS AND METHODS

Ethical Approval
All animal handling and experimentation involving animals
were conducted following approved protocols according to the
guidelines of the Canadian Council on Animal Welfare and
approved by the Xenon Animal Care Committee (XACC).

Brain Slice Preparation
Heterozygous scn1a [Scn1a(+/-)] mice (Mistry et al., 2014) and
WT littermates were used in this study. Heterozygous mice on
the 129S6/SvEvTac background (MMRC strain number 037107)
are crossed with C57BL/6 mice at The Jackson Laboratory
(Ben Harbor, ME). The pregnant mice are then shipped to
Xenon Pharmaceuticals to litter. Pups are then genotyped to
determine their genotype as either WT for the Scn1a gene
(Scn1a+/+) or heterozygous for the Scn1a gene (Scn1a+/-).
All mice used in the study were genotyped a second time on
the day of euthanasia to reconfirm their genotype. Scn1a and
WT mice were used in this study between the ages of P21-
P28. Mice were housed in individually ventilated cages in 12 h
light, 12 h dark lighting regime. Animals received food and
water ad libitum. Mice were anesthetized with isoflurane before
being euthanatized by cervical dislocation. Brains were then
removed and stored in cold cutting solution (in mM): 3 MgCl2;
126 NaCl; 26 NaHCO3; 3.5 KCl; 1.26 NaH2PO4; 10 glucose.
For multi-electrode array recordings, 350 µm horizontal brain
slices containing both the neocortex and hippocampus were
made, using a Leica VT1200 vibratome (Nussloch, Germany).
Brain slices were then transferred to a holding chamber and
incubated for 1–2 h at room temperature in artificial CSF
(ACSF) containing (in mM): 2 CaCl2; 1 MgCl2; 126 NaCl; 26
NaHCO3; 3.5 KCl; 1.26 NaH2PO4; 10 glucose. All the solutions
were bubbled continuously to saturate with carboxygen (95%
O2 and 5% CO2).

Multi-electrode array recordings were performed on the
3Brain BioCAM DupleX system (Switzerland) using the 3Brain
Accura HD-MEA chips with 4,096 electrodes at a pitch of
60 µm. Brain slices were placed onto the electrodes with a
harp placed on top to keep the slice pressed down gently to
the recording electrodes. The slices were first incubated in the
recording chamber for 10 min in ACSF. Following the 10-
min incubation in ACSF, slices were then perfused in ACSF
that had Mg2+ lowered to 25 µM to induce epileptiform-
like activity. This allowed us to record the entire evolution
of the induced epileptiform-like activity, ensuring we were
able to record the first seizure-like events from every slice.
Recordings were obtained from the entire slice, containing
both the neocortex and the hippocampus. Experiments were
performed at 33–36◦C. The solutions were perfused at the rate
of 5.0 mL/min. Signals were sampled at 10 kHz with a high-
pass filter at 2 Hz.

Statistics
Statistics were done in GraphPad Prism 9.1.1 (San Diego, CA,
United States). Data was first checked for normal distribution
using a Shapiro–Wilk normality test. Nonparametric data was
analyzed with a Mann–Whitney test, and the parametric data was
analyzed with an unpaired Student’s t-test. GraphPad Prism was
used to graph scatter-point data. Significance was set at P ≤ 0.05
for all analyses.

Data Analysis and Figures
The analysis platform and algorithms used were custom written
in Python, including NumPy, pandas, SciPy, and visualizations
using Plotly’s Dash libraries. The code and sample data files
are provided through a GitHub repository1. Figures for the
manuscript were created using diagrams, Inkscape 1.1.

Performance
Xenon LFP Analysis Platform is a Python based Plotly
Dash application rendering an optimized, interactive web-
interface with relatively quick responsiveness. Benchmarking was
performed to assess the overall performance of the Xenon LFP
Analysis Platform (Table 1) on files of varied sizes, going up
to 7.2 GB. The total recording time for each file was 50 min,
sampled at 300 Hz, with 898,952 datapoints per channel. For
best performance speed, we would recommend keeping file sizes
to under 25% of the computers installed RAM. Performance
was assessed on a Windows Server 2019 Standard machine
with an Intel Xeon Gold 6126 CPU @ 2.60 GHz (2 processors)
and 64GB of RAM.

Channel Group Function
To generate data on subsets of channels within the GUI, groups
of channels can be selected within the GUI for analysis. The
channel group functions are useful for comparing two or three
different regions of the brain slice and for comparing LFP activity
summary measures from select brain regions of interest.

Local Field Potential Measures in
Channel Groups
LFP peak count per second: To detect local field potential
from voltage traces, the signal processing library from SciPy

1https://github.com/MicroBrew09/xenon-lfp-analysis

TABLE 1 | Benchmarking numbers for Xenon LFP analysis platform.

File size
(GB)

Active
channels

File read
time (s)

Raster output
times (s)

Time to plot 3
traces (s)

0.17 100 4.43 5.41 4.91

0.50 300 11.81 15.90 7.10

1.12 600 37.83 48.90 10.90

2.22 1,200 73.59 82.44 18.93

4.43 2,500 135.90 158.66 43.31

7.20 4,096 300.01 316.26 63.11

The total recording time for each file was ∼50 min (2,997 s), with a downsampled
frequency of 300 Hz, consisting of 898,952 datapoints per channel.
The original measurement file had a total recording time of ∼50 min (2,997 s) at a
sampling frequency of 10 kHz.
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in Python is used, specifically the “scipy.signal.find_peak”
function. This peak find function is described in detail in
the following documentation: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.find_peaks.html. The properties
for the peak, including amplitude and width, are also extracted
from the function. The inputs to this function include the
“threshold” and “width,” which are received as inputs from
the user in the GUI as Threshold (mV) and Time Duration
(s) respectively. The “find_peak” function returns the time
index of peaks, which are the local maxima or minima
points in the signal, that exceed the minimum threshold
value for the minimum specified duration for each individual
channel; no maximum limits are set. The sum of the count
of the peaks for each channel in the group is calculated as
follows:

LFP mean peak amplitude (mV)

=

∑
Average LFP peak amplitude for each channel in the group

Total number of channels in the group

LFP mean peak amplitude (mV): For each channel, the peak
locations are the local maxima or minima points in the signal, the
amplitude at each peak is the difference between the voltage at the
maxima or minimal point to the baseline voltage. The amplitude
for all the peaks in the signal is calculated, which is used to
calculate the average LFP peak amplitude for each individual
channel. For a group of channels, the LFP mean peak amplitude
is calculated as follows:

LFP mean peak amplitude (mV)

=

∑
Average LFP peak amplitude for each channel in the group

Total number of channels in the group

LFP mean peak duration (s): For each channel, the width
of each peak is extracted using “properties” in the “find_peak”
function. The duration for each peak location is the full width of
the peak (in seconds), at the baseline of the signal, which is used
to calculate the average LFP duration (width) for each individual
channel in seconds. For a group of channels, the LFP peak mean
duration is calculated as follows:

LFP mean peak duration (s)

=

∑
Average LFP peak duration for each channel in the group

Total number of channels in the group

Seizure-Like Event Network Measures
Maximum distance of spread of SLE: The Euclidean distance
from the electrode at which the initiation of SLE is observed
in the brain slice to the furthest point from the initiation
point. The row and column number are used as the x and y
coordinates, respectively. The Euclidean distance between the x, y
co-ordinates have no unit. It is multiplied by the electrode spacing

in micrometers to determine the distance of spread of seizure-like
activity in the brain slice.

Maximum distance of spread (µm)

=

[√
(x2 − x1)

2
+
(
y2 − y1

)2
]

X (Electrode spacing)

Duration of SLE: This is calculated for each channel in a
selected group. The difference between the end time and the
start time of the seizure-like event in the selected time window
of the “Channel Raster (Groups)” gives the seizure duration for
that channel. The mean and maximum duration are calculated
for each group from the duration of seizure-like activity of all
channels in that group.

Duration (s) = End time of seizure envelop− Start time

of seizure envelop

Seizure propagation speed: For the selected time interval in
the “Channel Raster (Groups),” the start time and end time of
SLE are calculated for all channels in the group. The maximum
distance of spread of the SLE is also calculated for that group.
The seizure rate is the maximum distance of spread of the SLE
divided by the mean difference in the start times of the seizure for
each individual seizure.

Seizure velocity (µm/s)

=
Maximum distance of spread

Mean difference in start time of activity in the channels

RESULTS

The data processing pipeline for LFP activity and seizure analysis
consists of three steps starting from the measurement file as
shown in Figure 1. A typical measurement file consists of 4,096
channels recorded for about 50 min at a sampling frequency
of 10 kHz. In the hdf5 format, the file size is about 250 GB
uncompressed. As a first step, channels that overlay the brain slice
are selected based on the desired resolution and exported using
the 3Brain proprietary BrainWave4 software. This exported file
consists of about 300 to 600 channels with the original sampling
frequency and a reduced file size of 80 GB. The file size and
number of channels selected in this step can vary depending on
the recording sampling frequency, resolution required for the
analysis, and recording time. Second, the extracted channels that
overlay the brain slice from the previous step are downsampled in
Python, this downsampled file maintains the same data structure
and hdf5 format as the original recording, thus has backward
compatibility with BrainWave4 software. The downsampled file
is now ready for use with our custom interactive MEA Viewer—
Xenon LFP Analysis Platform. The GUI is built in Python
using the Plotly’s Dash library, which renders visualizations in a
user-friendly web interface. A snapshot of the opening page of
the web interface is shown in Figure 2. The analysis platform
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FIGURE 1 | High-density multi-electrode array (HD-MEA) data-analysis pipeline. The data processing for LFP activity detection and network analysis starts by
selecting a group of about 600 channels that overlay the brain slice or region of interest, which are exported from the original hdf5 measurement raw file (4,096
channels, sampled at 10 kHz) to a reduced hdf5 file. This reduced file is further downsampled from 10 kHz to a desired frequency. This will be the working hdf5 file
for the Xenon LFP Analysis Platform. (3Brain Logo: ©Copyright 3Brain AG, Python Logo: ©Copyright Python Software Foundation, Plotly’s Dash Logo: ©Copyright
Plotly).

FIGURE 2 | Snapshot of the analysis GUI features. A view of the analysis GUI which is rendered in an html browser built in Python using Plotly’s Dash. The GUI has
several interactive features from individual and group channel selection, low-pass, high-pass, and band-pass filtering, viewing entire trace or a small section of the
trace, Fast Fourier Transformation (FFT) of sections from selected traces, customized raster plots, small groups of channels, and generation of group summary
measures.

has the following key functions: (1) MEA Viewer Functions:
This includes options to select and view individual channels,
generate raster plots for all the channels, apply digital signal
processing tools including FFT, low-pass, high-pass, and band-
pass filters. (2) Channels Group Functions: This function has
options to select three different regions or groups of channels,
apply peak detection, generate custom raster plots, apply digital
signal processing tools, and generate summary measures (SM)

including LFP peak count per second, number of active channels,
mean LFP peak amplitude, and mean LFP peak duration. (3)
Seizure Detection and Analysis Functions: This function is
an unsupervised automatic SLE detection on selected channel
groups and analysis of metrics on seizures observed in the brain
slice. Moreover, Python and Plotly’s Dash, which is based on
object-oriented programming and reactive callbacks, provide
options to customize or change the layout of visualization
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and data processing algorithms in the GUI, as per the user
requirement within each of these functions. The GUI application
is either hosted and run on a server or run in the local machine.
While running the Python script in the local machine, by default
the application can be accessed using a local host:8050 on a
standard web browser.

MEA Viewer Functions
A common challenge among researchers using large MEA
recording platforms is that it is not easy to explore the raw
data. The Xenon LFP Analysis Platform functions are aimed to
facilitate exploring the raw data, including viewing entire time-
series traces, apply threshold detection, and signal processing
tools to individual and groups of channels. The entire platform
is built for interactive explorations and analysis, while rendering
the visualizations quickly in a few seconds. The time range
selection (in Figure 2) is used to load and perform analysis on
desired sections of the trace or the entire recording. Selecting
channels for analysis is as easy as using the mouse to click
on the green dots that are shown with the brain slice image
in the background (Figure 2). Each point corresponds to the
channel location, x and y axis referenced to the original row
and column number on the MEA array. Multiple channels can
be selected by holding down the shift key while clicking using
the mouse. The selected channels automatically load and display
for the given time range. Any changes in channel selection,
time range selection, or analysis settings dynamically change
the analysis measures and output displays. The analysis setting
can be used to apply digital low-pass, high-pass and band-pass
filters, modify default threshold and duration for peak detection
and raster plot generation. All plots are interactive; they can be
zoomed in, zoomed out, and downloaded as ∗.png files. Zooming
small sections of the time-series in the LFP activity view will
automatically generate FFT traces in an adjacent window. These
functions are demonstrated in the Supplementary Video 1.

Figure 3 shows a sample analysis demonstrating the MEA
viewer functions in detail. In this example, 407 channels are
exported from the original recording for analysis. The analysis
file was downsampled from 10,000 Hz to 300 Hz. The green
dots overlay the neocortex, and the electrodes corresponding
to the brown dots overlay the hippocampus (Figure 3A). The
raster plot in Figure 3B highlights LFP activity in the entire
recording from LFP peak counts, which are user defined LFP
parameters within the GUI for both duration and amplitude of
the peaks (see Figure 2 and Supplementary Video 1). The raster
plot is greatly affected by the different thresholds selected and
the signal to noise ratio of the recordings; therefore, accuracy
should be verified by the user as demonstrated in Figure 3D
(see also Supplementary Video 1). The channels are arranged
according to their x, y position in the row and columns from
1 to 4,096. The default threshold and duration for LFP activity
is 0.07 mV and 0.02 s; however, the raster can be regenerated
for a range of input values by modifying the parameters in the
analysis settings (see Figure 2 and Supplementary Video 1),
including generating raster after application of low-pass, band-
pass, and high-pass filters. Figure 3C shows time-series traces
from three electrodes (highlighted in Figure 3A); one from the

hippocampus displayed in blue and one from either end of the
neocortex displayed in red and aqua, respectively. It is interesting
to note the difference in the activity pattern in the three traces
at the same instant of time. While Figure 3C show traces for
duration of the recording from the selected electrodes, a section
of these traces can be selected to view on a faster timescale
(Figures 3C,D AA), as shown in Figure 3D. The black vertical
markers at the top of each trace shows LFP activity detected based
on the given threshold and duration. This further highlights the
difference in the activity pattern in the different regions of the
brain slice at the same time. We can apply digital filters to the
traces; for example a 40–150 Hz band-pass filter to view low
and high-gamma activity (Figure 3E). We see the blue and red
trace have some gamma components; however, the aqua trace
does not have significant gamma components in the LFP activity.
The time traces are interactive. To view spectrum plots (FFT), a
small selection of the trace can be selected which automatically
generates the FFT traces adjacent to the time-series traces (as
shown in Figures 3E,F). The filtered and original traces are
usually overlaid; however, to view one or the other, clicking on
the legend selects/deselects the trace to view one or both at a time.
When digital filters are applied, the amplitude spectrum of the
band-pass-filtered and unfiltered (purple) traces are overlayed to
show the effect of filtering (Figure 3F, unfiltered: purple, filtered:
electrode-specific colors).

Channel Group Functions
The channel group functions are aimed at comparing two or three
different regions of the brain slice and to compare LFP activity
summary measures, while also generating a raster plot to study
the activity pattern in different regions. The analysis starts with
the “Channels Groups” tab (see Figure 2 and Supplementary
Video 2). Channel groups can be selected by clicking on channels
or by using the box or draw tool to select multiple channels at
the same time. The groups tab enables selecting channels under
three groups (Group1, Group 2, and Group3). The channels
for each group are selected under their respective tab. Once
respective groups and channels are selected, analysis settings
can be modified from the default settings by clicking on “Apply
Settings and Generate Plots,” which generates the raster plots and
summary measures (SM) (Figures 4A,B). Some of the measures
automatically calculated are also shown in Figure 4B, which
include Total LFP Peak count/s and total channels within the
group. Channels that have more than 20 LFP activity peaks count
in the selected time interval are considered as active channels,
and the last three measures are the LFP peak count/s, mean
peak amplitude, and mean peak duration for the top 20 most
active channels in each group. The channels considered the 20
most active channels are the 20 channels that have the most LFP
peak counts for each selected group. As shown in the summary
measures (SM) table, for Group 1 in Figure 4B (bottom), which
includes 132 channels in the hippocampus, 83 channels are active,
of which only the top 20 are used to compare the mean amplitude
and mean duration in this example. Output of the top 20 channels
is a default setting in the analysis platform which can be modified
if required to include more channels or all the channels in
the group. Further, the total activity, LFP peak amplitude, and
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FIGURE 3 | Example visualizations generated from the GUI including raster plots, time-series traces, LFP activity peaks, and time frequency transformations. (A) 407
channels selected for this analysis representing the MEA sensor spatial array, covering both the neocortex and the hippocampal regions. (B) Raster plot for all the
channels in the working file irrespective of brain regions for a selected time range, demonstrating time points of when the activity occurs in the slice. (C) Three
selected traces: the blue trace from the hippocampal region, the red trace from one end of the neocortex, and the aqua trace from the other end of the neocortex.
(D) Zoomed in view of the first seizure [the region bracketed in panel (C) as AA], with the black dashes showing a peak find function within the GUI. (E) This
demonstrates the ability to plot filtered traces along with the raw traces. (F) The amplitude frequency transformations for the traces in panels (D,E) (band-pass
filtered). The filtered FFT spectrum for each is shown in purple.

FIGURE 4 | Channel groups and raster plot can be generated to visualize LFP activity in different regions of the brain slice. (A) Sensor locations corresponding to
three different regions selected for analysis and the region-specific raster plots. Group 1 being the hippocampus, while groups 2 and 3 each being one half of the
Neocortex. (B) Summary plots and measures that can be generated within the analysis platform.

peak duration are shown in the summary plot and includes all
the channels in the group. The plots and summary measures
(SM) can easily be regenerated for suitable selection of the time

intervals by modifying the time range selection and channels in
each group. The raster plot and LFP summary measures (SM)
can also be generated following application of a digital filter.
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This can be useful for users interested in particular frequency
bands. The front-end table displays a consolidated summary for
channels in the group; however, the metrics for each individual
channel in the group can be generated as a ∗.csv file for further
analysis by clicking on the “LFP Raster Plots” hyperlink (see
Supplementary Video 2). Note that this ∗.csv file will save in the
default downloads location set by your browser, which is often
the downloads folder for most PCs, but this can be changed by
the user within the browsers. The saved analysis file for each
channel consists of LFP peak count, mean peak amplitude (mV),
peak duration (s), raw frequency power V2/Hz (for delta, theta,
alpha, beta, and gamma), channel number, and group number
for each individual channel for the time interval selected by the
user. Each time the “LFP Raster Plots” hyperlink is clicked, a new
∗.csv is generated with the current analysis settings. The code
can also be modified to save all log files continuously in a results
folder if desired.

Seizure Detection and Analysis
Functions
Seizure Detection
Detection and classification of interictal, ictal or SLE can
be quite challenging due to different types of epileptiform
activity, variability from type of measurement paradigm (4-
aminopyridine, low Mg2+, low Ca2+, high K+), and inherent
experiment-to-experiment variability (Campos et al., 2018;
Ghiasvand et al., 2020). In the Xenon LFP Analysis Platform, we
introduce a simple method to detect SLE using changes in spectral
activity and LFP activity in the traces. We found this method
quick and easy to apply to many channels (>400 channels) at a
time and compare the effects of different treatments. Moreover,
this is efficiently implemented using numpy, scipy, and signal
libraries in Python. The steps involved are illustrated in Figure 5.

We start with the time-series trace downsampled to 300 Hz.
A reference section of 60 s is selected automatically in the
first 5 min of the recording with no LFP activity, seizure-like
activity, or electrical noise spikes. This is used as a baseline for
spectral activity and voltage noise floor. The spectral magnitude is
calculated using the Short-time Fourier Transform (STFT), with
a few variable parameters that can be set or standardized in the
analysis platform, including length of time segment, window, and
overlap points (Figure 5B). The default settings for STFT in the
analysis use a time segment length of 1 s, and a Hanning window
with no overlap. For the spectral component magnitudes as a
function of time, within each time window (1 s), the sum of
all frequency components less than half the sampling frequency
is used for event detection. Two sliding windows of dimension
30 datapoints and 500 datapoints are applied to the spectral
activity peaks and LFP activity peaks independently to detect
regions of continuous seizure-like activity and time regions of no
activity (Figures 5C,D). This has a few parameters that can be
standardized based on the experiment paradigm. In the examples
discussed, we use mean+ 6 standard deviations from the baseline
spectral magnitude to detect high spectral activity and 6 standard
deviations from the baseline voltage as the threshold and a
fixed duration of 0.035 s for LFP peak activity detection. The

sliding window length (30 × 1 and 500 × 1) and cutoff values
for automatically detecting spectrally active time regions post
windowing can also be standardized. Once we have the time
points of continuous spectral activity and LFP activity, we use
overlapping points of both spectral activity and LFP activity
to detect the seizure envelop. In general, the start of SLE is
primarily detected when the spectral activity exceeds six standard
deviations from the baseline and has continuous spectral and LFP
activity for a minimum of 10 s. This again can be modified based
on the experiment paradigm. If some seizures are closely spaced,
parameters can be changed to a different value based on user
preference. Once we have the seizure envelop with start and end
times, we use this to further calculate the rate of seizure spread,
distance of spread of seizure within a region of a brain slice using
the group selection as discussed in the next section. This being
an unsupervised method, and the variability of the nature of
seizure-like activity in different regions of the tissue and between
experiments, this may require manual verification by selecting a
few channels and checking if the automatic envelop detect has
good accuracy. We noticed that when the signal to noise ratio is
high, and when clear LFP activity and spectral activity is detected,
the algorithm performs well, but may need some adjustments to
the parameters when the signal to noise ratio is low or LFP activity
is not clearly differentiable.

Seizure Analysis
The channel group raster is required to perform the seizure
detection and analysis. Each group has a separate tab
(Supplementary Video 3) under which individual channels
can be selected to view seizure-like activity highlighted by the
envelop (Figure 6A). Figure 6B demonstrates the raster plot for
three different groups. Using the raster, a region can be selected
with a potential SLE, as shown in Figure 6B (non-gray section),
to generate summary measures and a visual of the channels that
have an SLE within the selected section (Figure 6C). The channel
dots highlighted in red are channels in the respective group that
have an SLE, the blue dots are channels that did not participate
in the SLE, while the gray dots have not been selected. The time
interval shown in the summary table in Figure 6C is the selected
time interval in the raster plot (Figure 6B non-gray section). The
distance, duration, and seizure rate are calculated from the start
and end times of seizure envelop in each of the channels in the
group for the selected (zoomed in) seizure.

Three metrics are calculated from the seizure envelop for all
channels in the group: distance of spread, duration, and seizure
propagation speed. The spatiotemporal origin of the seizure
within a group is identified as the channel that first had spectral
activity above the set threshold. This timestamp and the location
of the channel is used to further calculate the distance and rate of
the seizure spread. For example, in Figure 6C, it is the maximum
distance from the green dot to the furthest red dots. If more than
one channel is highlighted green, then they have similar start
times, and the maximum distance from each point is calculated
to find the overall maximum distance. The blue dots do not
have a seizure-like event and are not included in the calculation.
The x, y position on a 64X64 grid places the channels at 1 unit
dimension from each other. The array spacing in micrometer is
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FIGURE 5 | Simple and fast unsupervised seizure detection method. (A) The raw trace from the recording downsampled to 300 Hz frequency for a sample channel.
(B) Spectral activity calculated from the Short-time Fourier Transform using Hanning Window, for a time window of 1 s with no overlap. (C) LFP activity is detected
using a threshold of 6 standard deviations from the baseline voltage for each individual channel and a fixed duration of 0.035 s, followed by applying two sets of
sliding windows (length 30 datapoints and 500 datapoints) to detect time regions of continuous activity. (D) Spectral activity is detected when the magnitude is
greater than mean + 6 standard deviations from the baseline spectrum magnitude. The spectral activity is also passed through two sliding windows to detect regions
of continuous spectral activity. (E) The overlapping regions of LFP activity and spectral activity of 10 s or more are used to identify the seizure envelop. The start of
seizure is primarily identified using the time point when the spectral activity is greater than 6 standard deviations from the baseline.

multiplied by the distance and seizure rate to get the final measure
in micrometer and micrometer/second, respectively.

We next used this seizure tracking function to examine if
neocortical seizure-like events from brain slices from Scn1aHet
mice, which are heterozygous for NaV1.1, have an altered
phenotype in the low Mg2+ model of acute ictogenesis.
The example raster plots demonstrate a likely difference in
number of seizure-like events between WT littermates and the
Scn1aHet animals (Figure 7A). Further analysis revealed that the
Scn1aHet mice do have significantly more seizures than the WT
littermates over the course of the 50-min recording (Figure 7B).
Furthermore, we found that the start time to the first seizure-
like event was significantly sooner in the Scn1aHet animals
compared to controls; further demonstrating an increased seizure
phenotype in animals with a deficit in NaV1.1 expression
(Figure 7C). Using our novel tracking algorithm for seizures
within our GUI, we compared the speed of seizure propagation
in brain slices from control mice versus the Scn1aHet mice.
Interestingly, this analysis demonstrated a significantly faster
rate of seizure propagation in brain slices from the Scn1aHet

mice compared to control (Figure 7D). There was no significant
difference found in the duration of the seizures between the
control and Scn1aHet mice (Figure 7E). This data demonstrates
novel phenotypic features of the Scn1aHet mice; a decreased
time to the appearance of the first seizure-like event and
an increased rate of seizure spread through the tissue, likely
due to deficits in feed-forward inhibition provided by the
somatostatin and parvalbumin interneurons (Trevelyan et al.,
2007; Cammarota et al., 2013; Parrish et al., 2019). These new
analysis features provided by the Xenon LFP Analysis Platform
provide new and exciting ways to understand phenotypic
differences in transgenic animals, understand how pharmacology
impacts neuronal network activity over space and time, and is
customizable to fit any researcher’s needs.

DISCUSSION

The Xenon LFP Analysis Platform aims to produce an interactive
application with high-quality visualization rendered on a web
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FIGURE 6 | Seizure activity tracking over space and time. (A) Seizures in individual channels in a group are automatically detected. Their respective start and end
times can be tracked across channels in that group. (B) Regions of the raster between time intervals can be selected as demonstrated to generate seizure maps of
selected brain regions within the interval. (C) Seizure map for the time interval selected and channels in the group, including initiation site of the seizure, maximum
distance the seizure spread from the initiation point, duration of the seizure, and the rate of seizure spread across the tissue.

browser, using open-source libraries (Python and Plotly’s Dash)
that can be standardized to an individual’s research requirements.
In the examples shown in the results section, we provide a
snapshot of simple visualization and signal processing tools;
however, this can be expanded and customized to include
additional features as per the users’ requirements by building
simple data analysis models/functions and rendering them
using callbacks in Plotly’s Dash. The data models with Xenon
LFP Analysis Platform enable creating summary measures for
comparisons and visualizations on the browser, creating an
interactive toolbox for viewing millions of datapoints at a
time, to extract meaningful results and conclusions from the
measurements. Furthermore, the application is scalable to larger
datasets with the ability to build functions that selectively
read from small chunks of data from the hdf5 array rather
than loading the entire dataset into memory for rendering
on the browser. However, it should be noted that one of the
drawbacks of hdf5 files to store HD-MEA data is that using
single dimension large arrays to store data makes indexing
and selectively reading channels very inefficient and difficult to
parallelize (Rossant, 2016a,b; Dragly et al., 2018). Most HD-MEA
measurement systems use the hdf5 files system to record/write
data to disk, which provides advantages for portability of data
but limits data analysis pipelines to parallelize signal processing
tasks on distributed systems or multicore processors and GPUs.
Some cases require reading the entire array to memory for
extracting a group of channels to apply a band-pass filter
or Fast Fourier Transforms (FFT). The current working file
size on the analysis platform is limited by local system RAM.
Future work can extend the current platform to include a data
pipeline to work with larger files of 250 GB or more exceeding
the system memory, using parallel computing algorithms for
signal processing and visualization tasks including filtering,
FFT analysis, and spike sorting on a larger scale, which is
a developing research area for computational neuroscience

that requires more exploration (Jonathan and Sahani, 2019;
Street, 2021).

The spatiotemporal resolution of HD-MEA recordings on
brain slices provides high-quality data, while also presenting
big data challenges in visualization and analysis, including
extracting meaningful reproduceable results. This can further
be complicated when testing long-duration drug protocols to
include multiple compounds at different concentrations resulting
in terabytes of data that can become overwhelming to analyze
and compare (Perkel, 2018). There is always a need for simple
data pipelines and new analysis platforms that are open source,
user friendly, scalable, and portable that can produce repeatable
analysis results for ease of comparison between paradigms
and datasets (Mouček et al., 2014; Sejnowski et al., 2014).
Standardization of analysis tools to compare different drug
protocols is key to make sense of terabytes of data collected
using different compounds, concentrations, and drug-treatment
effects (Sobolev et al., 2014). The Xenon LFP Analysis Platform
enables this by setting up standard functions with customizable
parameters to generate raster plots and LFP metrics. This includes
unsupervised methods to detect seizure-like activity. There are
three key groups of measures: (1) summary measures relating to
all channels in each recording, (2) metrics relating to channel
groups, and (3) seizure-like event measures tracked for selected
regions in the raster plots for channel groups. In the first step,
LFP activity raster and activity count for all active channels
are summarized in the “LFP Detection (All Active Channels)”
tab (Figure 2). This data is not saved and is just rendered
on the browser for viewing, which may be useful to quickly
review the recording. This is also linked to the selected time
range and analysis settings, including threshold, duration, and
digital filter parameters. In the second step, channel groups or
select regions of the brain slice may be selected along with a
specific time range to generate custom raster plots, along with
metrics like the number of active channels, LFP peak count, mean
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FIGURE 7 | Scn1aHet mice have an altered seizure pattern in the low Mg2+ model. (A) Example raster plots from a control brain slice and a brain slice from
Scn1aHet mice. (B) Scn1aHet mice have significantly more SLE than littermate controls (Mann–Whitney test, p = 0.04, n = 7–9 slices). (C) From the brain slices that
displayed SLE, Scn1aHet demonstrated a significant increase in time to first seizure compared to littermate controls (unpaired t-test, p = 0.006, n = 5–7 slices).
(D) SLE from the Scn1aHet propagate significantly faster than seizures in the littermate controls (Mann–Whitney test, p = 0.0059, n = 10–14 seizures from 5 to 7
slices). The first two seizure from the slices that had SLE were used in this analysis. (E) Seizure duration was not different between Scn1aHet and littermate controls
(Mann–Whitney test, p = 0.66, n = 10–14 seizures from 5 to 7 slices). The first two seizures from the slices that had SLE were used in this analysis. *P < 0.05,
**P < 0.01.

LFP peak amplitude, mean LFP peak duration [“Channel Raster
(Groups)”]. As shown in the results section, this is particularly
useful to compare different regions of the brain slice or different
time regions within a recording to explore the effects of a drug
application. In addition to viewing, all measures for individual
channels in each group can be saved as a ∗.csv file for further
analysis. In the third step, the raster generated in step two
can be used to select specific time points of activity to view
and analyze LFP and SLE activity (Figure 5). These measures
track network activity based on seizure envelops, start times,
and end times. This being an unsupervised method, and due
to the variability in measurement for different brain slices and
protocols, user intervention may be required in some cases to
check the activity envelop and careful selection of activity regions
in the raster plot. It is our hope that making this analysis
platform fully open source will allow others to add functions that
enhance its utility for all and aid in addressing some limitations
of this current GUI, such as aspects of the analysis requiring

some user intervention and finding alternative approaches to
streamline analysis of even larger data sets. One limitation of
the Xenon LFP Analysis Platform may be found in our seizure
detection methodology due to the frequency spectrum available
to us from the 2D C-MOS electrodes that does not penetrate
the brain slice, but rather the brain slice is laid onto the
electrodes. This current technique does not generally allow for
collection of higher frequency components that can be recorded
from acute brain slices with penetrating electrodes, where high
frequency components, such as gamma, can be used for seizure
detection (Weiss et al., 2015). As detailed in Figure 5, our
seizure detection is based on LFP activity and spectral activity,
using the frequency components that can be found within our
recordings, where the most dominant are between 1 to 30 Hz.
Nevertheless, we have found our method to be reliable, time
efficient, and robust at detection of seizures for 100 to 1,000 s of
channels at once. However, our seizure detection method cannot
discriminate completely between the pre-ictal period and the
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ictal period, meaning that pre-ictal discharges may be included
within the seizure envelop. To truly distinguish between the pre-
ictal and ictal period within a recording, one must use frequency
components well above 100 Hz (Schevon et al., 2012).

With the advent of larger recording systems, allowing for up
to six brain slices and over 1,000 channels per slice during a
single recording session, tools like this GUI are timely. These new
systems will allow for immense screening of transgenic animals
to elucidate aberrant network behavior (Mackenzie-Gray Scott
et al., 2022) and large-scale drug screening of biological tissue.
Furthermore, with epilepsy and other disorders, there is a need
to understand how different brain regions interact with each
other when challenged in media that induces increased network
activity or when stimulated electrically or optogenetically (Rafiq
et al., 2003; Codadu et al., 2019b; Cela and Sjostrom, 2020).
While we now have the recording platforms to facilitate these
research needs, we are still limited by analysis tools. Here we
directly address some of these needs in our GUI and set important
groundwork for further developments within this platform.
We also perceive that this GUI will be useful in other large-
scale electrophysiological recording systems where the researcher
wants to understand interactions between LFP activity at different
recording sites over space and time. For example, it would be
particularly interesting to visualize multichannel human EEG
recordings within the framework of this GUI, which could
provide easy and efficient visualization of channel recruitment
during various behavioral states with the current built-in features
and custom additions.

Overall, the Xenon LFP Analysis Platform introduces a
standard approach to analyze large HD-MEA recordings,
using high-quality visualization rendered on a browser, simple
algorithms, and metrics, with many customizable features and
options for researchers. We demonstrate the utility of this new
analysis platform with ex vivo data and demonstrate a novel
finding in a low Mg2+ model of epilepsy from Scn1aHet animals.
Brain slices from the Scn1aHet animals display an increased rate
of seizure propagation compared to slices from WT littermates.
Using hundreds of channels to map spreading activity, such
as seizures, adds another important tool in the hands of
neuroscientists and will complement low-resolution traditional
imaging techniques, such as Ca2+ imaging and dye-based voltage

imaging. We hope this GUI will serve as a tool for collaborative
work between research labs to contribute add-ons and share
results and findings.
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