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Intracranial tumors are commonly known as brain tumors, which can be life-threatening
in severe cases. Magnetic resonance imaging (MRI) is widely used in diagnosing brain
tumors because of its harmless to the human body and high image resolution. Due
to the heterogeneity of brain tumor height, MRI imaging is exceptionally irregular. How
to accurately and quickly segment brain tumor MRI images is still one of the hottest
topics in the medical image analysis community. However, according to the brain
tumor segmentation algorithms, we could find now, most segmentation algorithms
still stay in two-dimensional (2D) image segmentation, which could not obtain the
spatial dependence between features effectively. In this study, we propose a brain
tumor automatic segmentation method called scSE-NL V-Net. We try to use three-
dimensional (3D) data as the model input and process the data by 3D convolution
to get some relevance between dimensions. Meanwhile, we adopt non-local block as
the self-attention block, which can reduce inherent image noise interference and make
up for the lack of spatial dependence due to convolution. To improve the accuracy of
convolutional neural network (CNN) image recognition, we add the “Spatial and Channel
Squeeze-and-Excitation” Network (scSE-Net) to V-Net. The dataset used in this paper
is from the brain tumor segmentation challenge 2020 database. In the test of the official
BraTS2020 verification set, the Dice similarity coefficient is 0.65, 0.82, and 0.76 for the
enhanced tumor (ET), whole tumor (WT), and tumor core (TC), respectively. Thereby, our
model can make an auxiliary effect on the diagnosis of brain tumors established.

Keywords: automatic segmentation, non-local block, attention mechanism, deep learning, brain tumor

INTRODUCTION

People are used to calling intracranial tumors as brain tumors. It includes primary brain tumors,
that occur from the brain parenchyma, and secondary brain tumors, that metastasize from other
parts of the body to the brain. However, because the brain tumor location is inside the brain,
it can easily cause nervous system dysfunction. Therefore, no matter how benign or malignant
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the brain tumor is, it is exceedingly invasive to the human
body. Once the brain tumor is found, the usual medical
treatment is resection. For example, Gamma Knife is used to treat
different brain lesions, often inaccessible for conventional surgery
(Militello et al., 2015). However, because of the distinctiveness of
brain tumor location, the brain tumor treatment scheme is asked
to protect the surrounding tissues to a great extent during the
treatment. As you can see, the risk of brain tumor resection is
very high, and it can be hard to cut off the tumor completely.
Thus, brain tumor has become one of the most lethal cancers
(He et al., 2016; Gragert et al., 2018). According to the relevant
statistical data in “the Lancet Neurology” in 2019, we can know
that there were 329,673 central nervous system cancer cases
worldwide in 2016; among these data, there were 106,207 cases
and 59,120 deaths in China (Gbd 2016 Brain and Other Cns
Cancer Collaborators, 2019). Besides, these cases are increasing
year by year. How to treat brain tumors effectively and timely is a
hot topic in the medical field of China and even the world.

In diagnosing and treating brain diseases, nuclear magnetic
resonance imaging (MRI) technology is one of the most
popular medical imaging technologies, with spatial coding and
reconstruction technology as its core (Zhao et al., 2017). It is
widely used because its technology is harmless to the human
body, and it has the characteristics of high image resolution.
However, although MRI image has many advantages in the
auxiliary diagnosis of diseases, the manual segmentation of
brain tumors based on MRI image consumes many human
and material resources and has the situation of misdiagnosis
and missed diagnosis due to the influence of the location
of the brain tumor, shape, texture or other features of the
brain tumor, and heavy dependence on experts’ professional
knowledge and experience in artificial segmentation method
(Menze B. et al., 2015). Though MRI image has many
advantages in the auxiliary diagnosis of diseases, the manual
segmentation of brain tumors based on MRI image consumes
many human and material resources and has the situation
of misdiagnosis and missed diagnosis (Menze B. H. et al.,
2015). Thus, it can be seen that using computer vision
based on deep learning to improve the analysis accuracy and
processing efficiency of brain tumor MRI image segmentation
plays an essential role in the timely and effective treatment of
brain tumor patients.

Nowadays, the deep learning algorithm is increasingly popular
in medical image analysis and is gradually applied to brain
tumor segmentation, such as the fully convolutional networks
(FCN) proposed by Long et al. (2015). However, most of the
current segmentation algorithms are for two-dimensional (2D)
image segmentation, which could not effectively obtain the spatial
dependence between features. We put forward a method based on
spatial and channel “Squeeze-and-Excitation” network with the
non-local block to solve the above problem. The scSE-NL V-Net
structure used in this paper is shown in Figure 1.

The improvements of our model include the following: (1)
Efficiently improving the network’s ability to obtain remote
feature dependence. (2) Strengthen the convolutional neural
network (CNN) network’s image recognition ability. (3) Achieve
a higher segmentation effect.

RELATED WORKS

Traditional Machine Learning-Based
Methods
In the case that deep learning algorithms are not very
popular, traditional machine learning algorithms are widely
used in medical image segmentation. Some simple threshold
segmentation algorithms, such as the Potts model proposed by
Doyle et al. (2013), achieved the optimal segmentation results
by constraining the current pixel category according to the
domain pixel category. Jafarpour et al. (2012) used the gray
matrix co-occurrence to describe the edge features of MRI
and used PCA + LDA for feature selection to automatically
classify normal brain and abnormal brain MRI images. Sijbers
et al. (1997) presented a three-dimensional (3D) variant of the
watershed algorithm based on Vincent and Solis immersion,
which applied the 3D adaptive anisotropic diffusion filter to
MR data in advance and improved the shortcomings of the
watershed algorithm about over-segmentation. Furthermore,
Boykov et al. (2002) reduced over-segmentation by incorporating
small volume primitives with similar gray-level distributions.
Militello et al. (2015) proposed an unsupervised semi-automatic
segmentation method based on the fuzzy C-means clustering,
which can assist in segmenting the target and automatically
calculate the lesion volume. Huang et al. (2017) put forward
an SDAE model to stratify the clinical risks of ACS patients.
Others, such as Leibardo et al. (2018), used the GTVcut semi-
automatic seed image segmentation method based on the cellular
automata model; using graph-based segmentation to find local
minima efficiently, and through these two moving methods,
the label value of the pixel can be adjusted arbitrarily, so
that implement classification. Chen et al. (2019) proposed a
novel hybrid model for ITE estimation bridging multi-task
deep learning and K-nearest neighbors (KNN). Zeng et al.
(2020) put forward a dynamic-neighborhood-based switching
particle swarm optimization (PSO) algorithm that hybridized
the differential evolution algorithm with the PSO algorithm
to alleviate premature convergence. For the PSO algorithm,
Luo et al. (2020) also proposed a new segmentation method
based on graphs, widely used in image restoration, stereo, and
motion. An expectation–maximization (EM) algorithm is used
to model the nano-gold immunochromatographic assay, from
which, the model parameters, the actual signal intensities of the
test and control lines as well as the noise intensity are identified
simultaneously (Zeng et al., 2013).

Deep Learning-Based Methods
With computer hardware innovation, the computing power and
data capacity have been improved, and various new algorithms
have been proposed. In artificial intelligence, multiple algorithms
represented by deep learning have made breakthrough in
computer vision one by one. The development of deep neural
networks (DNNs) gives birth to a series of excellent research
results in the same period (Long et al., 2017; Badrinarayanan
et al., 2019). Havaei et al. (2017) used 2D CNNs as the
segmentation method for brain tumor MRI images. They
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FIGURE 1 | Schematic representation of the proposed scSE-NL V-Net architecture.

consciously enhanced the global feature extraction of their
model. Moreover, the convolution implementation of the full
connection layer is used to improve efficiency. However,
they did not pay more attention to the feature association
information on the dimension. Long et al. (2015) improved
CNN by replacing full connection layers with convolution
layers and proposed an end-to-end image semantic segmentation
method named fully convolutional networks (FCN). They were
trying to improve the model’s segmentation performance by
combining semantic and appearance information. Hamghalam
et al. (2020) used the general lateral network (GAN) as a
brain tumor segmentation model. Through the GAN, they
extended to synthesize images with high contrast. As a result,
the actual channel number of MR segmentation can be reduced.
Furthermore, Zhang et al. (2019) proposed the attention-guided
network (AG-Net) model by using filters to detect sensitive
structures. An attention module is also added to the model to
eliminate noise interference. The experimental results proved
that adding a self-attention block could improve segmentation
accuracy to a certain extent. Zeng et al. (2021) put forward
a novel deep belief network (DBN)-based multi-task learning
algorithm to help classify Alzheimer’s disease (AD) and mild
cognitive impairment (MCI). Regarding feature information
extraction and utilization, Zeng et al. (2022) proposed a
method called “the atrous spatial pyramid pooling-balanced-
feature pyramid network” (ABFPN). This enhanced multi-scale
feature fusion method uses the context features by atrous
convolution operators with different expansion rates and is
achieved with skip connection. It can help to improve the target
detection performance.

Our Study on Brain Tumor Segmentation
Fully convolutional neural networks (FCN) have become one of
the most popular image segmentation tools in the field of medical
imaging (Ronneberger et al., 2015; Roy et al., 2017, 2018a) and
computer vision (Noh et al., 2015). Convolution network works

extract image features with ergodic sliding of convolution on
the feature map. Therefore, although the convolution network
can effectively extract the feature information of the image, the
extracted feature information’s receptive field will be limited
by the size of the convolution kernel, and only local feature
information can be obtained. Generally speaking, the size of the
2D convolution kernel used in the 2D model is 3× 3 or 5× 5, so
these CNN-based network structures are complicated to capture
feature dependence in a long range. Similarly, the problem of
the remote feature dependence capture is still not well solved in
the 3D-CNN model.

In this paper, we propose to add a “Spatial and Channel
Squeeze-and-Excitation” Network (scSE-Net) to the V-Net model
to calibrate CNN image feature sampling area, expected to
improve CNN image recognition. We optimize the performance
of the V-Net model in obtaining remote feature information by
adding a non-local block. We adopt volume input instead of
slice input in terms of data input and use 3D convolution to
process MRI images.

The innovations of this paper’s model are as follows:

• The use of a self-attention mechanism to improve the
network’s ability to obtain remote feature dependence.
• Spatial and channel “Squeeze and Excitation” used to

strengthen the CNN network’s image recognition ability.
• Using multi-modal brain tumor segmentation challenge

(BraTS) 2020 dataset and achieve a higher segmentation
effect.

MATERIALS AND METHODS

The MRI image segmentation model used in this paper is 3D
V-Net and is based on scSE-network and combined with non-
local block. In this section, we will introduce the 3D V-Net,
scSE-network, and non-local block. The architecture of scSE-NL
V-Net is shown in Figure 2.
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FIGURE 2 | Schematic representation of proposed scSE-NL V-Net architecture.

FIGURE 3 | Non-local block structure diagram.
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FIGURE 4 | Comparison between non-local block (left) and full connection layer (right).

FIGURE 5 | Introduction of spatial and channel “squeeze-and-exception” block. The scSE-block is composed of cSE-block and sSE-block. In scSE-block, the
cSE-block and sSE-block have the same input. The output is cOutput add to sOutput.

V-Net Framework
With the continuous development of deep learning computer
vision technology, the CNN network is more and more widely
used in the field of medical image analysis. As we all know, CNN
performs well in 2D image processing, but most of the medical
data in clinical use are 3D. Therefore, this paper uses V-Net as
the segmentation model for brain tumor MRI images.

V-Net is a 3D version of U-Net, which is based on fully
convolutional neural networks (FCN). It is a 3D image
segmentation model using end-to-end training mode. As
an improved 3D network architecture of FCN, V-Net also
uses a convolution layer instead of a full connection layer
to achieve end-to-end image semantic segmentation of
3D medical images.
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FIGURE 6 | Comparison between origin images and processed images. The
red boxes are the approximate area of brain tumor framed after
comparing with the mask.

According to Figure 2, the network is composed of left
and right parts. The network’s left side is the encoding path,
which extracts the image features we need from MRI images
by convolution. We add scSE-network to improve the ability
of image recognition and reduce the resolution through a
specific step size at the end of each layer. In the last layer
of the coding path, we add the non-local block to obtain
remote feature information. scSE-network and the non-local
block will be described in detail later. The network’s right
side is the decoding path, which is used to restore the feature
map to its original size. At the end of the network, we use
softmax to classify the images to get the segmentation results
of the enhanced tumor (ET), whole tumor (WT), tumor core
(TC), and background.

Depending on the resolution size of the operation, we divide
the network encoding path into five stages. Each stage consists
of 1–2 convolution layers with 3 × 3 × 3 convolution kernels.
Draw lessons from the residual network (He et al., 2016), at the
end of each stage, we add the original feature map to the feature
map, activated by convolution and activation function point by
point, to learn the residual. After that, downsampling is carried
out. In the research of Fausto et al. (2016), it is shown that such
a structure can obtain a faster convergence effect than the model
without a residual network.

It is mentioned in Springenberg et al. (2014) that using the
pooling layer as the downsampling layer will cause loss of the
feature map features, and the recognition accuracy will reduce.
Thus, we use the convolution layer with the convolution kernel
size of 3 × 3 × 3 and step size of 2 as the downsampling
layer instead of the pooling layer (Fausto et al., 2016). Through
downsampling, the size of the feature map is reduced and
the number of channels is doubled to improve the receptive
field of the feature.

The decoding path is the same as the encoding path. We divide
the decoding path into four stages to recover the feature map’s
size and extract the corresponding features for classification. In
each location, we use deconvolution to enlarge the size of the
feature map first. Then as in Ronneberger et al. (2015), the feature
map in the left network is mapped to the feature map in the
right side horizontally of the corresponding size to facilitate better
feature extraction.

At the end of the network, we use softmax to calculate four
categories with the same size as the original image through
1 × 1 × 1 convolution to the ET, WT, TC, and background in
MRI images of brain tumors.

In the scSE-NL V-Net, ReLU functions are used as all
activation functions (Tanaka, 2018), because it is easy to derive,
and the vanishing gradient problem will not occur.

Non-local Block
The non-local block adopted in this paper refers to the non-local
operation idea put forwarded in “non-local neural networks,”
published by Wang et al. (2018). Non-local is a self-attention
mechanism. From Wu et al. (2022), the non-local mechanisms
can help to extract features effectively. Its core is to capture
long-distance feature dependencies through non-local operations
to make up for the shortcomings of the small receptive field,
low efficiency of long-range feature-dependent capture. A deep
network is needed to achieve dependency capture. The non-local
block structure is shown in Figure 3.

The calculation equation of the non-local block is as follows:

yi =
1

C(X)

∑
∀j

f
(
Xi,Xj

)
g(Xj) (1)

zi = yiW + b (2)

where “X” is the input signal (in this paper, feature map is used
as an input signal) and “i” is the index of output position (in
space, time, or space–time). Its response value is calculated by “j”
enumerating all possible situations. The function “f ” calculates
the similarity relationship between “i” and all “j,” and the unary
function g(x) calculates the representation of the input signal at
position “j.” The final response value is obtained by standardizing
the response factor C(x) (Wang et al., 2018).

Learn from Wang et al. (2018), this paper defines
C(X) =

∑
∀jf (Xi,Xj). So the computing equation we get

for non-local computing is yi = softmax[f
(
Xi,Xj

)
]g(Xj). It

satisfies the self-attention relation in the field of computer vision
(Vaswani et al., 2017). Again in Vaswani et al. (2017), it can be
known that the concrete form of function g(x) and f (Xi,Xj) has
little effect on the final performance of self-attention. In order
to simplify the operation, 1 × 1 × 1 convolution kernel is used
to make linear processing for X. The computing equation is as
follows:

g(x) = xW + b (3)

f (Xi,Xj) = θ(Xi)ϕ(Xj)
T (4)

θ(X) = XWT
θ + bθ (5)

ϕ(X) = XWT
ϕ + bϕ (6)

In our model, we use a feature map as the input signal x of
the non-local block. Note the depth, width, height, and number
of channels of the feature map as D, W, H, and C, respectively.
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FIGURE 7 | View of four sequences (flair, T1, T1ce, and T2) and the mask.

TABLE 1 | The parameters in scSE-NL V-Net.

Model layers Type Filter size/number/layers scSE block Non-local block Active function Input (D × W × H × C)

Layers 0 Conv 3 × 3 × 3/20/1 No No ReLU 64 × 128 × 128 × 4

Layers 1 Conv 3 × 3 × 3/20/1 Yes No ReLU 64 × 128 × 128 × 20

Layers 2 Conv 3 × 3 × 3/40/2 Yes No ReLU 32 × 64 × 64 × 40

Layers 3 Conv 3 × 3 × 3/80/2 Yes No ReLU 16 × 32 × 32 × 80

Layers 4 Conv 3 × 3 × 3/160/2 Yes No ReLU 8 × 16 × 16 × 160

Layers 5 Conv 3 × 3 × 3/320/2 Yes Yes ReLU 4 × 8 × 8 × 320

Layers 6 Conv 3 × 3 × 3/160/2 Yes No ReLU 8 × 16 × 16 × 160

Layers 7 Conv 3 × 3 × 3/80/2 Yes No ReLU 16 × 32 × 32 × 80

Layers 8 Conv 3 × 3 × 3/40/2 Yes No ReLU 32 × 64 × 64 × 40

Layers 9 Conv 3 × 3 × 3/4/2 Yes No ReLU 64 × 128 × 128 × 20

First, we process X by setting the number of convolution kernels
to half of the input feature map channels. So that we can
get the number of channels of C/2, θ(X), ϕ(X), and g(X)
with constant depth, width, and height. The purpose of this
is to reduce the amount of computation without affecting the
performance of the non-local block. After that, we multiply the
θ(X) and ϕ(X) matrices while the shape of θ(X) and ϕ(X) is
changed as [dwh, c/2] and [c/2, dwh] to complete the non-local
self-attention mechanism in this way. The result is multiplied
by g(X), which is also transformed into [DWH, C/2] by the
morphological transformation. It is then convoluted by 1× 1× 1,
whose number of convolution kernels is C, and the output with
the same size as the original feature map is obtained.

Though both non-local and full connection layers need to
compute the entire feature map to get the required features,
it is evident that non-local has more advantages than the
full connection layer in accurate feature extraction. The full
connection layer needs to change its morphology into a list of
neurons with fixed numbers, size, and loss of part of location
information, when the non-local output is the same size with
the original feature map. The comparison between non-local

operation and full connection layer operation is shown in
Figure 4.

scSE-Network
To enhance the model’s perception of feature information in both
spatial and channel directions, we draw on the experience of
the idea of the Squeeze-and-Excitation Networks. This network
proposed a mechanism to let the network learn to use the
importance of global information to highlight features that may
be useful and suppress features that are not so useful (Hu et al.,
2017). We use the spatial and channel “Squeeze-and-Excitation”
network (scSE-Net) (Roy et al., 2018b) to optimize our model.
The frame of the spatial and channel “Squeeze-and-Excitation”
network is shown in Figure 5.

scSE-Net is composed of spatial squeeze and channel
excitation (cSE) block and channel squeeze and spatial excitation
(sSE) block. In scSE-block, the cSE-block and sSE-block have
the same input. The output is cOutput add to sOutput. For the
cSE block, it is the original squeeze-and-excitation networks (SE-
Nets). And the block sSE are changed from SE-Net. In SE-Net, the
most crucial operation is squeeze and excitation (Hu et al., 2017).
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FIGURE 8 | Comparison of visualization results between the original sample, mask, and prediction segmentations is shown in panel (A). Panel (B) shows the 3D
segmentation effect of our model.

Squeeze in Squeeze-and-Excitation Network
First, in order to solve the local dependence of features, we use
global average pooling (Shen et al., 2015) as the squeeze operation
in order to compress the input feature map according to the
spatial dimension, and change the size of the feature map from
D×W ×H × C to 1× 1× 1× C. The calculation equation of
squeeze operation is as follows:

sc = Fs (Xc) =
1

D×W ×H

D∑
i=1

W∑
j=1

H∑
k=1

Xc(i, j, k) (7)

Excitation in Squeeze-and-Excitation Network
After squeezing operation, all the network get is the global
information on the channel, which cannot explain the channel’s
weight well. To get the channel’s level dependency better, we
need to do the excitation operation. The excitation operation
needs to be flexible enough to learn the non-linear interaction
and non-mutex relationship between channels to allow multiple
channels to be activated simultaneously (Hu et al., 2017). For
this reason, we use two fully connected layers. The first fully

connected layer is started by the ReLU function, and the second
fully connected layer is activated by the sigmoid function. The
calculation equation of excitation operation is as follows:

sec = Fe(sc,W) = Relu(g(sc,W)) = Relu(W2Sig(W1sc)) (8)

In the calculation Equation 8, W2 ∈ RC× C
r , W1 ∈ R

C
r ×C, C

means the number of channels, r means scaling parameters,
which is mainly used to reduce the computational complexity and
parameters of the network. In this paper, the r is set to 4.

The final step of SE-Net is to fuse the obtained feature map
with the original feature map to let the output with the same size
as the original feature map. The cSE block flow chart is shown in
Figure 5. The fusion equation is as follows:

X̂ = FSE(Xc, sec) = sec × Xc (9)

Channel Squeeze and Spatial Excitation
Through the cognition of SE-Net, we know that SE-Net
compresses the space along the channel’s direction and then
excites each other with the channel as the unit. The sSE

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 916818

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-916818 May 27, 2022 Time: 10:40 # 9

Zhou et al. scSE-NL for Brain Tumor Segmentation

FIGURE 9 | Comparison of visualization results between the original sample, and prediction segmentations is shown in panel (A). Panel (B) shows the 3D
segmentation effect of our model.

block assume that mutual excitation between spaces is equally
important. Therefore, we need to compress the input feature
map. Then, the obtained spatial information is activated by the
sigmoid function. Finally, we fuse the acquired feature map with
the original feature map to complete the sSE block. The sSE block
flow chart is shown in Figure 5. The calculation equation of the
sSE block is as follows:

X̃ = FsSE(Xv, ses) = ses × Xv = Sig(Ws,Xv)× Xv (10)

In Equation 10, ses ∈ RD×W×H×1 and Ws ∈ R1×1×1×C, X̃
means the final output for sSE block.

Spatial and Channel “Squeeze-and-Excitation” Block
scSE block is a combination of cSE block and sSE block. The
function is XscSE = X̂ + X̃. The purpose is to obtain the weight of
the importance of spatial information and channel information
to optimize the model and realize the perception of feature
information in both spatial and channel directions.

EXPERIMENTAL SETUP

Database and Training Environment
To verify the feasibility of the proposed method, we use the
BraTS2020 database to test our model (Bakas et al., 2017,
2018). In the BraTS2020 database, all the data are MRI image
stored in NIFTI format. There are four sequences available for
each patient data in BraTS2020: T1-weighted (T1), T1 with
gadolinium-enhancing contrast (T1ce), T2-weighted (T2), and
fluid-attenuated inversion recovery (Flair). And correspondingly,
each patient data have a mask.nii file to store correct results which
were segmented and marked manually.

In the BraTS2020 dataset, all the MRI images were
processed co-registered, skull-stripped, and interpolated. All the
dimensions of the MRI images have 240 × 240 × 155 voxels
(Zhou et al., 2020), and the size of spacing is 1× 1× 1. The same
as the training data, the dimensions of the mask data we get are
240 × 240 × 155 voxels. Mask data have four labels totally: “0”
implies background, “1” implies TC area, “2” implies ET area, and
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FIGURE 10 | Statistics of performance for brain tumor region segmentation of the training set.

“4” means WT area. The challenge’s official data are divided into
two subsets: a training set and a verification set. In the training
set, we have 369 samples, and in the verification set, we have
125 samples. However, we do not have official mask data for
the validation set. Consequently, we could not use those sets to
test our model. In order to adjust and verify our model better,
we randomly selected 15 samples from the 369 samples in the
training set as the test set to test our model. The samples which
are in the test set do not participate in model training but are used
to test the trained model.

The experimental environment is based on TensorFlow 1.13.1,
Python 3.6.5, and PyCharm, with the processor of Inter(R)
Xeon(R) Silver 4210 CPU at 2.20 GHz, operating system of 64-
bit Windows 10, 32 GB RAM, and graphics card of ASPEED
Graphics Family (WDDM) and NVIDIA TITAN RTX.

Data Preprocessing
As the preparation work before model training, the quality of
data preprocessing will significantly affect the final accuracy of
the model. Influenced by the inhomogeneity of intensity, the
change of range and contrast, as well as the noise, the automatic
segmentation of MRI brain tumor datasets is a great challenge.
Thereby, before inputting the dataset into the model, we need

to preprocess the dataset. Generally speaking (Akkus et al.,
2017), the preprocessing for the MRI image dataset includes
image registration, skull stripping, bias field correction, intensity
normalization, and noise reduction.

This paper has already introduced that each data in the
training set have four MRI successions of different modalities
and a mask file used to store manual mark segmentation results.
Since the BraTS2020 dataset provided by the official challenge has
already been processed by image registration and skull stripping,
we just need to do the remaining operations. After researching,
we decided to use the Z-score method to standardize each model
image for MRI dataset’s preprocessing. The Z-score method can
make the gray value of the image conform to the standard normal
distribution and change the standard deviation to 1, so as to
improve the data comparability and weaken the noise influence
on the image features. The calculation equation of the Z-score is
as follows:

zs=
x− µ

σ
=

x− µ√
1
N
∑N

i=1(xi − µ)2
(11)

In Equation 11, “zs” means Z-score values, “µ” means the
mean of image gray value, and “σ” means the standard deviation
of image gray value.
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FIGURE 11 | Statistics of performance for brain tumor region segmentation of the validation set.

TABLE 2 | Comparison between the proposed method and other
classical algorithms.

Team name Dice

ET WT TC

Proposed model bold 0.65 0.82 0.76

Havaei et al. (2017) 0.57 0.79 0.68

Pereira et al. (2016) 0.75 0.78 0.65

Kamnitsas et al. (2016) 0.63 0.84 0.67

Zhou et al. (2020) 0.65 0.87 0.64

Bold terms and values represent the best data in the tables.

The comparison results between the preprocessing and the
original image are shown in Figure 6.

The image features become more evident after processing,
and the features of images can be learned for the model more
easily. We sample each MRI image and process them into
several MRI images with the width, height, and depth of 128,
128, and 64. With this, we can use those data as model input
more efficiently.

First, as the MRI images were too big and difficult for our
machine to learn the feature, we need to segment the MRI
images to proper size. By calculation, we decided to make a
patch of every 25 pixel width, 25 pixel height, and 15 pixel
depth on MRI images. The method aims to reduce the number
of samples and make sure to keep the integrity of features
in MRI images. Moreover, more data would be acquired for
better model training.

Second, we pack the MRI images we got by sampling. We
pack the MRI images with flair, T1, T1ce, and T2 sequences
into four channels and 3D images with the shape of 64, 128,
128, and 4, and they are saved in npy format. In order to
label the mapping relationship of data in training, we give each
of our sample a unique sequence number. We guarantee that
each sample image corresponds to a mask image with the same
sampling sequence number whose shape is 64, 128, and 128.
We save mask images in npy format too. The view of the four
sequences and mask is shown in Figure 7. In order to make
the area occupied by each part of the mask more clearly, we
restore the mask and predict result to the brain tumor image and
represent the WT, the ET, and the TC with green, blue, and red
colors, respectively.
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TABLE 3 | BraTS2020 validation dataset accuracy comparison table.

Dice Sensitivity Specificity Hausdorff95

Team name ET WT TC ET WT TC ET WT TC ET WT TC

Proposed 0.647 0.818 0.759 0.795 0.971 0.795 0.999 0.998 0.999 44.4 10.0 14.6

Unet3d-test-sz 0.704 0.836 0.725 0.712 0.867 0.785 0.999 0.999 0.999 42.1 10.5 12.3

Ovgu_seg 0.602 0.794 0.681 0.664 0.785 0.674 0.999 0.999 0.999 54.1 12.1 19.1

Mpstanford 0.491 0.717 0.622 0.493 0.813 0.688 0.997 0.988 0.994 61.9 26.0 28.0

AI-Strollers 0.578 0.737 0.615 0.523 0.770 0.623 0.999 0.997 0.998 47.2 24.0 31.5

Uran 0.400 0.779 0.580 0.379 0.755 0.574 0.999 0.999 0.999 51.6 12.2 20.2

LMB 0.716 0.825 0.765 0.695 0.766 0.722 0.999 0.999 0.999 37.4 12.3 13.1

Agussa 0.684 0.889 0.776 0.704 0.907 0.818 0.999 0.999 0.999 36.4 8.1 12.9

IIITV 0.210 0.383 0.275 0.263 0.469 0.353 0.997 0.991 0.995 99.0 60.1 66.2

NUUEE410Lab 0.572 0.815 0.707 0.574 0.811 0.710 0.999 0.999 0.999 49.9 17.2 22.9

Iris 0.678 0.863 0.733 0.672 0.902 0.704 0.999 0.999 0.999 44.1 23.9 20.0

Alone 0.608 0.809 0.644 0.639 0.767 0.595 0.999 0.999 0.999 49.1 13.3 18.6

Bold terms and values represent the best data in the table.

Loss Function
In this paper, we choose the Dice coefficient as the loss function
of our model. The Dice coefficient is a function to calculate the
similarity of sets, and its range is 0, 1. Its definition equation is as
follows:

Dice=
2×
∣∣∣Ypred⋂Ygt

∣∣∣∣∣∣Ypred ∣∣∣+|Ygt|
(12)

According to the equation definition, we can get the prediction
effect of the model for MRI image segmentation. The equation
is gained by the ratio of the area of the coincidence area
between the model’s predicted value and the real value of
the data and the sum of the area of the predicted value and
the data’s actual value. The closer the Dice coefficient is to 0, the
worse the segmentation effect is; the closer to 1, the better the
segmentation effect is.

Training Process
In Wang et al. (2018), we learned that the location of the
non-local block has little effect on the final segmentation or
classification result of the network. Considering the computing
power of the computer and the amount of computation of the
model, we decide to place the non-local block on the last layer
of the model coding path. To better explain the architecture of
scSE-NL V-Net, which we used in this paper, we list relevant
parameters of the network, as shown in Table 1.

EXPERIMENTAL RESULTS

After 420,000 steps of training, we use the trained model to
test the actual prediction effect. As mentioned above, since
the official verification set does not mask target information,
we randomly selected 15 samples in the training set, which
are not used for training, but only for testing and evaluating
the performance of the models as well as using for following
visualization effect displaying.

In Figure 8, we show the visualization result of two random
samples, including the comparison of visualization results
between the original sample, standard manual segmentation,
and prediction segmentation. To observe the effects of brain
tumor segmentation more clearly and intuitively, we restore the
mask and predict result to brain tumor image and represent
the WT, the ET, and the TC, with green, blue, and red
colors, respectively.

After training, we use the model to segment the tumor region
from the official verification set and send the segmentation results
to the official platform to verify the model’s effectiveness. In the
verification set, we also randomly select two samples to show the
visualization results. The visualization result of the validation set
is shown in Figure 9. Since the official verification set has no mask
tag, we did not show the comparison between the target and the
prediction in the visualization results.

In Figure 9, we use the same approach as in Figure 8. From
Figures 8, 9, in the random sampling prediction, the results
obtained by our model are very similar to the given labels in terms
of overall and details. The model can help medical diagnosis to a
certain extent and save a lot of human and material resources.

We use the trained model to segment the data in the
brain tumor challenge training dataset and validation dataset
and upload the segmented results to the data evaluation
path given by the challenge official, so as to obtain the
statistical data including four evaluation indicators. In
Figures 10, 11, we show the performance of scSE-NL
V-Net in the segmentation of tumor regions in the training
dataset and the validation dataset with the form of violin
statistical chart, respectively. In the graph, we set the
evaluating indicators as X-axis and set their coefficient
values as Y-axis. The performance of our model is shown
in Figures 10, 11.

There are four official evaluation indexes for brain tumor
segmentation. Dice coefficient focuses more on the difference
between the predict outcomes and the mask labels. Sensitivity
describes the proportion of positive cases correctly identified by
the model to all positive cases identified by the model. Specificity
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describes the proportion of negative cases correctly identified by
the model to all negative cases identified by the model. The higher
the Dice coefficient, sensitivity, and specificity are, the better the
performance is. The Hausdorff95 distance measures the distance
between true subsets in the metric space.

Comparatively speaking, we pay more attention to the analysis
of the Dice coefficient. It can be seen that our model is most
sensitive to the WT from the figure. Its Dice coefficient is stable
at around 0.9. However, ET and TC are relatively weak, and even
the Dice coefficient is 0. We can get similar conclusion from the
numerical analysis of other evaluation indexes.

Through dataset analysis, we find that many samples with
a Dice coefficient of 0 do not have ET or TC. There is no
doubt that it will reduce the evaluation of Dice coefficient on
the whole model.

DISCUSSION

To verify the effectiveness of our model, we compare it with some
classical segmentation algorithms. Havaei et al. (2017), proposed
a brain tumor segmentation method that was based on DNNs.
Stacking 2D convolutions were used in their model to extract
global features. They tested it in BraTS2013 challenge. Pereira
et al. (2016) used CNNs to segment brain tumor images. By
exploring a small 3 × 3 kernel, the model could work against
overfitting. Thus, they could support deeper architectures. By
using this method in BraTS2015 challenge, they won second
place. Kamnitsas et al. (2016) put forward a 3D-CNN with
fully connected CRF to segment brain tumor images. In the
method, they use a dual-channel structure to support multi-
scale input image processing simultaneously. Zhou et al. (2020)
achieved a one-pass multi-task network (OM-Net) with a cross-
task guided attention (CGA) module. And on this basis, they
could integrate segmentation tasks into a depth model. They
took part in the BraTS2018 challenge and win second place. In
Table 2, we show the comparison between our method with other
classical algorithms.

Finally, we compare the Dice coefficient of brain tumor
segmentation with the results of some competitors on the official
website of the BraTS2020 challenge. The comparison parameters
we selected are the mean Dice coefficients of the ET, WT, and
TC. Table 3 shows the comparison of the prediction results of
the verification set:

Since we do not know the model selected by other competitors,
we can only compare it with the data information of each team’s
submitted result given by the official BraTS2020 competition.
It has to be said that this is a pity. From data analysis of
the table, the performance of our model is better than those
of other competitors’ models in some cases. It shows that our
method is effective in improving the accuracy of brain tumor
segmentation. As we can see, the study of necrotic substances
in the WT has important clinical value in treatment planning
and cancer progression evaluation. In Rundo et al. (2018), we
know that WT contains pathological necrotic areas, which are
usually characterized by hypoxia. There is no doubt that special
attention must be paid to these hypoxic areas. These pathological
necrotic areas are elated to several aspects of tumor development

and growth, which may lead to tumor recurrence and resistance
to therapeutic damage (Rundo et al., 2018). So, our method can
help segment the tumor area effectively.

CONCLUSION

In summary, we put forward a method of brain tumor
segmentation based on 3D V-Net. In our network, scSE block
is used to excitation our model from channel and space two
aspects to calibrate the image feature sampling area of CNN to
improve the CNN image’s recognition ability. Simultaneously, as
a self-attention module, the non-local block is used to obtain
the long-distance feature dependency of the image to optimize
the performance of the model. The non-local block not only
accelerates the convergence speed of the model but also effectively
improves the segmentation accuracy of the model.

By comparing the segmentation results of our model on
the official verification set with the quantitative test results
on the platform given by the official BraTS2020 challenge,
from the visual outcomes and quantitative Dice indicators,
our network has achieved better results. The mean of the
Dice (ET), Dice (WT), Dice (CT) is 0.647, 0.818, and 0.759,
respectively. In contrast, our model has relatively higher accuracy
on the WT. However, there are some deficiencies in the
ET segmentation.

This paper proves the feasibility of the channel and
space squeeze-and-excitation mechanism and the self-attention
mechanism of the non-local block in model optimization. It
can be further verified in the visualization results of our model.
From the visualization of segmentation results, we can see that
the quantitative data are not enough to evaluate the model’s
segmentation effect completely, but we can get enlighten from it
and try to optimize it.

Brain tumor segmentation in the medical field has been a
long-term research problem. Therefore, we need to continue to
encourage ourselves to do more in-depth research on brain tumor
segmentation and contribute to the medical community.
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