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Acupuncture modulates the
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Meng-Hua Su1, Lu Yang1, Si-Yi Yu1* and Jie Yang4,1*
1Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu,
China, 2Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China, 3Department
of Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, China,
4Chengdu Xinan Gynecological Hospital, Chengdu, China

Background: The study aimed to investigate how acupuncture modulates

brain activities across multiple frequency bands to achieve therapeutic effects

in PDM.

Methods: A total of 47 patients with PDM were randomly assigned to the

verum acupuncture group and sham acupuncture group with three menstrual

cycles of the acupuncture course. The fMRI scans, visual analog scale (VAS)

scores, and other clinical evaluations were assessed at baseline and after

three menstrual-cycles treatments. The global functional connectivity density

(gFCD) analyses were performed between the pre-and post-acupuncture

course of two groups at full-low frequency band, Slow-3 band, Slow-4 band,

and Slow-5 band.

Results: After the acupuncture treatments, the patients with PDM in

the verum acupuncture group showed significantly decreased VAS

scores (p < 0.05). The frequency-dependent gFCD alternations were

found in the verum acupuncture group, altered regions including

DLPFC, somatosensory cortex, anterior cingulate cortex (ACC), middle

cingulate cortex (MCC), precuneus, hippocampus, and insula. The

sham acupuncture modulated regions including angular gyrus, inferior

frontal gyrus, and hippocampus. The gFCD alternation in DLPFC at the

Slow-5 band was negatively in the patients with PDM following verum

acupuncture, and S2 at the Slow-4 band was positively correlated with VAS

scores.

Conclusion: These findings supported that verum acupuncture could

effectively modulate frequency-dependent gFCD in PDM by influencing
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abnormal DLPFC at Slow-5 band and hippocampus at the Slow-3 band.

The outcome of this study may shed light on enhancing the potency of

acupuncture in clinical practice.

KEYWORDS

primary dysmenorrhea, acupuncture, resting-state fMRI, functional connectivity
density, frequency band

Introduction

Primary dysmenorrhea (PDM), characterized by persistent
menstrual discomfort in the absence of pelvic abnormalities, is
a common gynecological condition affecting between 17 and
90% of females of reproductive age. However, the pathogenesis
of PDM is not fully understood. Recently, neuroimaging
studies showed that the prolonged PDM alternates brain
structure and function, providing a new viewpoint on PDM
diagnosis and treatment.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a non-invasive imaging technique that provides a
reliable representation of the brain’s spontaneous functional
activity (Fox and Raichle, 2007; Baliki et al., 2011a). It offers
new insights into the underlying spontaneous brain activity
associated with chronic pain. The previous studies identified
the activation of primary (S1) and second somatosensory
cortex (S2), anterior cingulate cortex (ACC), insula (INS),
dorsolateral prefrontal cortex (DLPFC), and hippocampus in
patients with chronic pain (Liu and Chen, 2009; Fomberstein
et al., 2013; Schmidt-Wilcke, 2015; Schmidt-Wilcke and Diers,
2017). Furthermore, the frequency-dependent alternations of
brain activities in chronic pain were also demonstrated (Baliki
et al., 2011a; Kilpatrick et al., 2014; Alshelh et al., 2016).

With the global functional connectivity density (gFCD)
analysis, a graph-based and data-driven approach that quantifies
the number of whole-brain connections over the whole-brain
(Tomasi et al., 2016), our previous study first confirmed that the

Abbreviations: AG, angular gyrus; ACC, anterior cingulate cortex; aIFG,
anterior inferior frontal gyrus; CAU, caudate nucleus; CEN, central
executive network; CMSS, Cox Menstrual Symptom Scale; CMSS-
s, Cox Menstrual Symptom Scale-severity; CMSS-t, Cox Menstrual
Symptom Scale-time; DMN, default mode network; DLPFC, dorsolateral
prefrontal cortex; TE, echo time; FOV, field of view; FLF, full low
frequency; FCD, functional connectivity density; gFCD, global functional
connectivity density; PHG, hippocampal gyrus; mPFC, medial prefrontal
cortex; MCC, middle cingulate cortex; MNI, Montreal Neurological
Institute; NAC, nucleus accumbens; PCU, precuneus; PDM, primary
dysmenorrhea; S1, primary somatosensory cortex; RMANOVA, repeated
measurement of analysis of variance; TR, repetition time; rTMS, repetitive
transcranial magnetic stimulation; rs-fMRI, resting-state functional
magnetic resonance imaging; S2, second somatosensory cortex; SMN,
sensorimotor network; SA, sham acupuncture; SMA, supplementary
motor area; SAS, the Zung Self-Rating Anxiety Scale; SDS, the Zung
Self-Rating Depression Scale; VA, verum acupuncture; VAS, visual analog
scale.

patients with PDM exhibited frequency-dependent distribution
patterns of brain activity. Specifically, these altered brain areas,
especially in the central executive network (CEN), default
mode network (DMN), sensorimotor network (SMN), and the
hippocampus (Yu et al., 2021). Notably, we observed a decreased
gFCD in DLPFC at the Slow-5 band and an increased gFCD
in the hippocampus at the Slow-3 band, indicating that the
patients with PDM showed aberrant pain processing. As a
result, we confirmed that the patients with PDM showed distinct
functional brain activity frequency specific.

Acupuncture is a non-pharmacological intervention for
analgesia that has been recognized (Berman et al., 2004;
Witt et al., 2008; Hinman et al., 2014; Hershman et al.,
2018). Over the last two decades, fMRI has been utilized to
investigate the underlying brain mechanism of acupuncture, and
studies have revealed that acupuncture significantly modulates
cortical/subcortical brain areas involved in pain processing,
cognition, and emotional processing (Bai and Lao, 2013; Cai
et al., 2018; Zhang et al., 2020). Consequently, it is a reliable
method to use fMRI to reveal the imaging mechanism of
acupuncture for PDM.

In this study, we hypothesized that acupuncture might
normalize the brain regions previously identified (Yu et al.,
2021) as aberrant in PDM for therapeutic purposes, and this
modulation was of frequency specific. First, we investigated
how acupuncture modulates brain activity by analyzing
gFCD changes across multiple frequency bands before and
after treatment. Second, we evaluated the differences in
brain regions modulated by verum acupuncture (VA) vs.
sham acupuncture (SA) to determine if modulation of
acupuncture on brain activity in PDM is a therapeutic effect. In
addition, we performed a correlation analysis to determine the
relationship between acupuncture-induced gFCD changes and
clinical results.

Material and methods

Study design

This was a two-arm, randomized rs-fMRI clinical trial. The
patients with PDM were randomized to VA and SA groups
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using a random number table. The patients with PDM were
required to fulfill the dysmenorrhea diary to characterize their
PDM symptoms in altogether 6 months.

Participants

The inclusion and exclusion criteria in this study were
similar to our previous study (Yu et al., 2021). The patients
with PDM were recruited primarily through the gynecology
outpatient and inpatient sections at the Affiliated Hospital of
Chengdu University of Traditional Chinese Medicine, Chengdu
University of Traditional Chinese Medicine, Sichuan University,
Southwest University of Finance and Economics, Southwest
Jiaotong University, and Southwest University for Nationalities.
The recruitment period was from December 2015 to July
2018. Well-informed consent was obtained from all involved
participants. The study protocol was approved by the medical
ethics review of the Sichuan Regional Ethics Review Committee
of Traditional Chinese Medicine (No. 2013KL-033).

The patients with PDM were enrolled fulfilling the following
inclusion criteria: (1) Women aged 18–30 years, right-handed;
(2) those with PDM diagnosed using the Society of Obstetricians
and Gynecologists of Canada’s diagnostic criteria (Lefebvre et al.,
2005); (3) patients with regular menstrual cycle (27–32 days);
(4) patients with at least 1-year history of PDM; and (5)
no exogenous hormones or centrally acting medicine in the
previous 6 months; (6) pain assessed by visual analog scale (VAS)
averaged over four points in the last 3 months. The exclusion
criteria were as follows: Patients with (1) diagnosis of secondary
dysmenorrhea due to organic pathology by ultrasound or
gynecological examination; (2) suffering from other chronic
pain conditions; (3) severe basic disorders; (4) mental illness,
or with severe psychiatric disorders; (5) pregnant, preparing for
pregnancy or breastfeeding; (6) treated with acupuncture in the
past 3 months or have been taking analgesic medication for
a long period; (7) contraindications to MRI examination; and
(8) severe cranial anatomical asymmetry or well-defined lesions
found on MRI scans.

Acupuncture manipulations

Acupuncture treatments were performed by qualified
practitioners who had undergone extensive clinical and
operational training. The selection of the VA and SA was
identical to the previous study (Wang et al., 2021). The VA
acupoints were bilateral SP6, which were known to alleviate
PDM well (Abaraogu et al., 2016; Yu et al., 2017). The SA
acupoints were located bilaterally at the midpoint between
SP6 and the Bladder meridian without known clinical effects.
The location of the acupoints is shown in Supplementary
Figure 1. The patients with PDM in the VA group were required
to obtain deqi sensation (a complex phenomenon including

soreness, numbness, heaviness, swelling, or dull pain achieved
by pricking the needle 5–15 mm subcutaneously and gently
manipulating) (Kong et al., 2007). The duration of the VA or
SA was 30 min, once a day, during which the needles were
retained without any manipulation. All patients received three
menstrual cycles of acupuncture treatment, beginning 5–7 days
before menstruation and ending until the onset of menstruation.

Clinical outcomes

All clinical outcomes were assessed at Month 0 (baseline)
and Month 3 (post-treatment). The primary outcome was VAS
(McCormack et al., 1988) scores, in which the score from 0 to
10 indicates the pain level from low to high. In addition, Cox
Menstrual Symptom Scale (CMSS) (Cox and Meyer, 1978) was
utilized to assess the severity (CMSS-s) and time (CMSS-t) of
PDM symptoms on 18 items. To assess anxiety and depressive
symptoms, the Zung Self-Rating Anxiety Scale (SAS) (Zung,
1971) and the Zung Self-Rating Depression Scale (SDS) (Zung
et al., 1965) were employed. Noteworthy, retrospective scoring
(VAS, CMSS, SAS, and SDS) of 3 months before the enrollment
was used as the baseline.

Functional magnetic resonance
imaging acquisition

This study used a 3.0-tesla magnetic resonance scanner
(Discovery MR750, General Electric, Milwaukee, WI,
United States) to perform scans. The participants were
instructed to keep their eyes closed and awake during the scan.
All subjects underwent MRI scans within 72 h of menstruation,
with a total of two scans (including three scans in the baseline
period and three scans in the treatment period).

First, a conventional three-plane localization was
performed. The T1-weighted fast spoiled gradient–echo
sequence was applied with the following parameters: Repetition
time (TR) = 2.53 ms, echo time (TE) = 3.39 ms, field of
view (FOV) = 256 mm × 256 mm, flip angle = 7◦, slice
thickness = 1 mm, and resolution = 256 × 256 × 188. The
gradient–echo T2-weighted echo–planar imaging sequence was
applied for resting-state fMRI, with parameters: TR = 2,000 ms,
TE = 30 ms, FOV = 240 mm × 240 mm, flip angle = 90◦, intra-
layer resolution = 64 × 64, layer thickness = 4 mm, and number
of slices = 32. Totally 250 scan time point were obtained.

Data analysis

Clinical outcomes
Statistics analyses were performed using the SPSS 20.0

statistical software (SPSS Inc., Chicago, IL). Comparison
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of baseline characteristics (continuous variables) between
the VA and SA group was statistically performed by the
independent sample t-test. The variations of clinical outcomes
(VAS scores, CMSS-t scores, CMSS-s scores, SAS scores,
and SDS scores) before and after the treatment in the two
groups were statistically determined by paired samples t-test.
A repeated measurement of analysis of variance (RMANOVA)
was performed on the values of changes in clinical outcomes
before and after VA compared to SA. The significance level
for statistical analysis of two-tailed testing was p < 0.05. The
Pearson correlation analysis was applied to correlate the changes
in VAS scores, CMSS-t scores, CMSS-s scores, SAS scores, and
SDS scores before and after the treatment within the group. The
significance level for statistical analysis of two-tailed testing was
p < 0.05.

Functional magnetic resonance imaging data
preprocessing

The data preprocessing for resting-state fMRI was
performed by the Statistical Parametric Mapping (SPM12)1 in
MATLAB 2014a (Mathworks, Inc., Natick, MA, United States).
The first 10-time points were discarded, slice-timing correction,
head motion estimation, normalization to standard Montreal
Neurological Institute (MNI) EPI template and spatial
smoothing with a 6-mm, and full-width-at-half-maximum
Gaussian kernel were performed for the remaining 240-time
points. Nuisance covariates regression was applied including
six-direction head motion parameters, white matter, and
cerebrospinal fluid (Ciric et al., 2017; Tu et al., 2019). The
full low frequency (FLF) of 0.01–0.08 Hz was performed
for functional connectivity analysis. Based on the study of
Rogachov et al. (2018) and our previous study (Yu et al., 2021)
on frequency-related neuroimaging studies of chronic pain,
three different frequency band-based filters were selected for
analysis, including Slow-5 band (0.01–0.027 HZ), Slow-4 band
(0.027–0.073 Hz), and Slow-3 band (0.073–0.198 Hz).

Global functional connectivity density
calculation

The FCD was calculated by the BRANT toolkit2 in MATLAB
2014a. The FCD of each voxel was calculated according to
the method described by Tomasi and Volkow (Tomasi and
Volkow, 2010, 2011, 2014). The gFCD value for a given voxel
is the total number of active functional connections possessed
by the voxel. Fisher Z-transformed version of correlation
coefficient was the normalization method for FCD matrix.
Pearson linear correlation analysis was performed to calculate
the linear correlation between a given voxel (i) and all other
voxels in the whole-brain as the number of global functional
connections k (i), at a given voxel (i). Voxel pairs with a

1 http://www.fil.ion.ucl.ac.uk/spm

2 http://www.brainnetome.org/toolkit/bf/

correlation coefficient of r0 > 0.6 were considered a significant
connection. The gFCD calculations were limited to the cerebral
gray matter mask (Nvoxels) region, setting a signal-to-noise
ratio greater than 50% to minimize the adverse effects of
signal loss and artifacts associated with magnetic sensitivity
(Tomasi and Volkow, 2010).

Group analysis was applied using a random-effects model at
different frequency bands. First, a voxel-based paired t-test was
performed to measure the change in gFCD before and after the
treatment in the VA or SA groups. Second, the brain regions
that decreased or increased significantly after the treatment
in the VA group compared with the SA group were explored
by RMANOVA. Age was considered as a covariate in the
statistics. For brain regions explicitly associated with pain in the
previous studies that could not be corrected by family-wise error
(FWE), a small-volume (anatomical structure) correction based
3dClustSim was taken by AFNI version 18.0.25 (Worsley et al.,
1996).3 The threshold of voxel-wise p< 0.005 and p< 0.05 FWE
corrected at cluster level (more than 20 consecutive voxels) was
applied for all the analyses.

Correlation analysis
We conducted a Pearson linear correlation analysis to

explore the clinical relevance of gFCD changes in brain
regions identified in the previous study (Yu et al., 2021) by
extracting the average Z-score values of the significantly altered
gFCD clusters. The SPSS 20.0 statistical software was used to
conduct the analysis.

Results

A total of 58 patients with PDM were recruited in the study.
Among the 47 patients with PDM who completed baseline
clinical observations and fMRI scans, 41 patients (22 in the VA
group, 19 in the SA group) completed 3-month treatment. Seven
patients were excluded from the data processing for incomplete
fMRI data (1 in the SA group and 2 in the VA group) and head
movement exceeding 1.5 mm (1 in the VA group and 3 in the SA
group). The flow chart was shown in Supplementary Figure 2.

Clinical outcomes

Baseline characteristics
Table 1 showed the baseline and clinical characteristics

in the statistics. Twenty patients with PDM (aged
24.70 ± 2.11 years) in the VA group and 14 patients with
PDM (aged 24.29 ± 1.90 years) in the SA group were ultimately
included in the statistical analysis. Of note, a moderate

3 https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.
html
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TABLE 1 Demographic and pain assessment of baseline and after treatment.

Items Conditions Verum acupuncture group
(n = 20)

Sham acupuncture group
(n = 14)

T p*

Age (years) 24.70 ± 2.11 24.29 ± 1.90 0.59 0.56

Duration of PDM
(years)

7.59 ± 2.91 7.84 ± 2.73 –0.26 0.80

Height (cm) 161.45 ± 4.06 160.71 ± 4.29 0.51 0.62

Weight (kg) 50.95 ± 3.81 49.75 ± 4.10 0.88 0.39

VAS scores Pre-treatment 6.18 ± 0.99 5.93 ± 1.21 0.65 0.52

Post-treatment 3.35 ± 1.50 5.39 ± 1.39 – –

Post-pre –2.83 ± 1.57 –0.54 ± 1.55 –4.21 <0.001

CMSS-t scores Pre-treatment 17.85 ± 8.36 18.50 ± 5.24 –0.26 0.80

Post-treatment 13.20 ± 7.05 15.21 ± 5.28 – –

Post-pre –4.65 ± 6.68 –3.29 ± 4.29 –0.67 0.51

CMSS-s scores Pre-treatment 18.50 ± 7.74 14.43 ± 3.34 1.84 0.07

Post-treatment 12.88 ± 7.19 14.50 ± 6.37 – –

Post-pre –5.63 ± 7.80 0.07 ± 6.49 –2.24 0.03

SAS scores Pre-treatment 41.88 ± 4.77 40.68 ± 8.08 0.54 0.59

Post-treatment 35.44 ± 4.12 37.38 ± 5.48 – –

Post-pre –6.44 ± 4.65 –3.30 ± 6.57 –1.63 0.11

SDS scores Pre-treatment 40.36 ± 6.61 44.20 ± 9.97 –1.35 0.19

Post-treatment 31.75 ± 5.34 39.91 ± 7.26 – –

Post-pre –14.96 ± 4.27 –12.27 ± 7.30 –1.36 0.18

Values are mean ± standard deviation (SD); “post-pre” means changes in clinical outcomes before and after treatment; *p < 0.05 is considered statistically significant. PDM, primary
dysmenorrhea; VAS, visual analog scale; SAS, self-anxiety scale; SDS, self-depression scale; CMSS-t, Cox Menstruation Symptom Scale-time subscale; CMSS-s, Cox Menstruation Symptom
Scale-severity subscale.

menstrual pain was experienced with VAS scores of 6.18 ± 0.99
in the VA group, and 5.93 ± 1.21 in the SA group. There was no
significant difference in age, duration of PDM, and the height
and weight between the two groups (p > 0.05). No significant
differences were found between the two groups in VAS scores,
CMSS-t scores, CMSS-s scores, SAS, or SDS scores for the three
menstrual cycles at baseline (p > 0.05).

Clinical outcomes
The VA group showed a significant decrease in VAS scores,

CMSS-t scores, CMSS-s scores, SAS scores, and SDS scores after
the treatment (p < 0.05). In contrast, paired t-sample tests
revealed no significant changes in VAS scores, SAS scores, and
CMSS-s scores (p < 0.05), a significant decrease in CMSS-t
scores (p < 0.05) and an approach significant change in SDS
(p = 0.05) after manipulating SA. RMANOVA suggested that the
changes in VAS scores and CMSS-s scores were more significant
in the VA group compared with the SA group; there were no
significant differences in the changes in SAS, SDS, and CMSS-t
scores between the two groups (see Table 1).

Frequency-specific global functional
connectivity density alternation

Post-pre-global functional connectivity density
alternations

The more pronounced frequency-specific gFCD changes
were observed in VA compared to SA after the treatment.
The VA group showed significant gFCD decreases in the

bilateral hippocampus at FLF. At Slow-5 band, the gFCD
reduced in the hippocampus and right middle cingulate
cortex (MCC)/supplementary motor area (SMA) bilaterally and
increased in the right ACC, right DLPFC and right anterior
inferior frontal gyrus (aIFG). An increased gFCD was seen
in the S2 bilaterally within Slow-4 band. The Slow-3 band
resulted in a decreased gFCD in the left precuneus (PCU)
and an increased gFCD in the bilateral INS (see Figure 1 and
Table 2).

The SA group showed a decreased gFCD in the left angular
gyrus (AG) and an increased gFCD in the right IFG at FLF.
Also, a decreased gFCD was located in the left hippocampus
at Slow-5 band. The gFCD in the bilateral medial prefrontal
cortex (mPFC) reduced within the Slow-3 band (see Figure 2
and Table 3).

Comparison of global functional connectivity
density within groups

The RMANOVA explored the more significant-altered
brain regions at different frequency bands in VA compared
with SA. The VA increased more gFCD in the left DLPFC
at Slow-5 band and in the left MCC at Slow-4 band
(Supplementary Figure 3 and Supplementary Table 1).
Compared with SA, VA decreased more gFCD in the
left caudate nucleus (CAU), nucleus accumbens (NAC),
the right hippocampus and hippocampal gyrus (PHG) by
VA at FLF; in the left CAU, NAC, and the aIFG was
significant at Slow-4 band; on the left hippocampus and
right SMA at Slow-3 band (Supplementary Figure 3 and
Supplementary Table 1).
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FIGURE 1

The gFCD distribution patterns at multiple frequency-bands following verum acupuncture (voxel-level p < 0.005, cluster-level p < 0.05, cluster
size > 20 voxels, the small volume corrected and FWE corrected). (A) A decreased gFCD in HIP/PHG at FLF; (B) A decreased gFCD in HIP,
MCC/SMA and an increased gFCD in ACC, DLPFC, and aIFG at Slow-5 band; (C) An increased gFCD in S2 at Slow-4 band. (D) A decreased gFCD
in the PCU, and an increased gFCD in INS. gFCD, global functional connectivity density; HIP, hippocampus; PHG, parahippocampal gyrus; SMA,
supplementary motor area; MCC, middle cingulate cortex; DLPFC, dorsolateral prefrontal cortex; S2, second somatosensory cortex; aINS,
anterior INS; pINS, posterior INS; PCU, precuneus.

Correlation analysis results
We investigated the clinical significance of gFCD alterations

with acupuncture in the VA group only. The change in gFCD
values at Slow-5 band of the left DLPFC in patients with PDM
treated by VA was negatively correlated with the change in VAS
scores (r = –0.508, p = 0.022). Moreover, the gFCD changes at
Slow-4 band of the S2 was positively correlated with the change
in VAS scores (r = 0.587, p = 0.006) (see Figure 3).

Discussion

This study investigated the frequency-dependent gFCD
alternations before and after VA and SA treatment. Generally,
the Slow-5 band and Slow-4 band indicated gray-matter-related
brain function changes (Zuo et al., 2010), whereas a spontaneous
brain activity at the Slow-3 band can predict the lower frequency
node activity (Bajaj et al., 2013). The VA group demonstrated
a substantial reduction in pain intensity and improvement in

PDM symptoms when compared to the SA group. Remarkably,
the VA group raised gFCD in the DLPFC at the Slow-5 band and
decreased gFCD in the hippocampus at the Slow-3 band, which
was in contrast to the direction of pathological gFCD brain
function changes in the DLPFC and hippocampus observed in
our earlier study (Yu et al., 2021). The results also indicated
that VA modulated a more comprehensive range of brain
regions than SA. The correlation analysis showed gFCD change
in DLPFC at Slow-5 band was negatively correlated with the
change of VAS scores in patients with PDM following VA. As a
result, the DLPFC and hippocampus may be therapeutic targets
for re-establishing normal brain activity in patients with PDM.

The result showed an altered gFCD in the VA group located
in S2, CEN (including the DLPFC, ACC, MCC, and aIFG),
DMN (including PCU), INS, hippocampus, and PHG. The
result is consistent with the previously reported brain responses
to VA, down-regulating hippocampus, SMA, and PCU and up-
regulating S2, INS, ACC, and DLPFC were observed (Ming-Ting
et al., 1999; Bai and Lao, 2013). As a result, brain adaption to VA
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TABLE 2 Frequency-specific gFCD alternations in the VA group.

Frequency
band

Contrast Cluster regions L/R Cluster size MNI coordinates Z-score

x y z
Full low frequency Post > Pre –

Pre > Post HIP L 20 0 –63 48 3.63

HIP/PHG R 36 27 –30 –18 3.44

Slow-5 Post > Pre ACC R 26 9 42 9 3.36

DLPFC R 20 33 24 45 3.73

aIFG R 32 51 39 9 3.63

Pre > Post HIP L 43 –15 –33 –6 3.52

HIP R 30 36 –27 –15 3.22

SMA/MCC R 26 12 –12 48 3.54

Slow-4 Post > Pre S2 L 59 –54 –6 39 3.46

S2 R 58 63 3 18 3.30

Pre > Post –

Slow-3 Post > Pre aINS L 37 –39 12 3 4.07

aINS R 22 39 30 –3 3.05

pINS L 148 –51 –6 3 4.09

pINS R 162 69 –3 9 3.76

Pre > Post PCU L 34 –9 –66 51 3.52

Voxel level, p < 0.005, cluster level, p < 0.05, cluster size > 20 voxels; the small volume correction was applied in case the pain-related brain regions (cluster size less than or equal to 20)
were not significant by FWE test. HIP, Hippocampus; PHG, Parahippocampal Gyrus; ACC, Anterior Cingulate Cortex; DLPFC, Dorsolateral Prefrontal Cortex; aIFG, Anterior Inferior
Frontal Gyrus; SMA, Supplementary Motor Area; MCC, Middle Cingulate Cortex; S2, Second Somatosensory Cortex; aINS, Anterior Insula; pINS, Posterior insula; PCU, Precuneus.

overlapped with several core networks, involving sensory and
cognitive function in pain processing progress, which indicated
the non-specific modulation mechanism of acupuncture.

The hippocampus and DLPFC were identified as frequency-
specific therapeutic targets for specific acupuncture-based PDM
modulation. Our prior study showed a decreased gFCD in
DLPFC at Slow-5 band and an increased gFCD in hippocampus
at Slow-3 band in patients with PDM when compared
with healthy controls (Yu et al., 2021). In contrast, the
current findings indicated ascending DLPFC at Slow-5 band
and descending hippocampus at Slow-3 band following VA.
Both DLPFC and hippocampus are crucial nodes of pain
processing. The DLPFC regulates top–down pain pathways
in the human brain, which is intimately connected to the
individual’s executive function (Eippert et al., 2009; Kong
et al., 2013). As a result, DLPFC is capable of exerting
cognitive control over the perception of pain. Fierro et al.
(2010) performed a non-invasive short-duration high-frequency
repetitive transcranial magnetic stimulation (rTMS) of the left
DLPFC considerably diminish the pain perception generated
by capsaicin stimulation. Additionally, studies have revealed a
link between pain self-control and DLPFC downregulation in
patients with PDM (Lorenz et al., 2003). Therefore, the overlap
of DLPFC in this study implied that acupuncture could alleviate
pain by modulating cognition to reach individual pain control
in PDM. The deficits in hippocampus volume, neurogenesis,
and synaptic plasticity are connected with abnormal emotional

functioning associated with various types of chronic pain
(Mutso et al., 2012; Grilli, 2017). These findings suggested
that the hippocampus may regulate pain by modulating pain
perception and emotional memory (Rolls, 2015). The PDM
has been exacerbated by increased emotional stress caused by
aberrant feedback from the hippocampus to the hypothalamus
(Jacobson and Sapolsky, 1991; Wang et al., 2004; Ulrich-Lai
et al., 2006).

Consistent with the results of the previous studies, we found
that acupuncture could down-regulate the hippocampus (Gao
et al., 2021; Pang et al., 2021). We speculated that acupuncture
could help diminish hippocampal sensitivity and reduce
unpleasant memories of pain in PDM (Egorova et al., 2015).

Moreover, S2 is involved in the regulation of nociception
and the encoding of painful experiences (Schreckenberger et al.,
2005). Consistent with prior research, VA activated S2 (Maeda
et al., 2013). Additionally, VA was consistently demonstrated
resting-state down-regulation of the DMN subregion (Jung
et al., 2015; Makary et al., 2018). Intriguingly, we discovered
that PCU was deactivated following VA in our investigation.
The PCU is recognized as the hub of the DMN, modulating a
broad range of highly interconnected functions and regulating
pain, affection, and empathy (Cavanna and Trimble, 2006). The
consistent down-regulation in DMN was also shown in the
study of Zou et al. (2019) that FC within the DMN (between
left superior prefrontal cortex and left PCU) after acupuncture
decreased to HC levels. The INS plays an essential role in pain
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FIGURE 2

The gFCD distribution patterns at multiple frequency-bands following sham acupuncture (voxel-level p < 0.005, cluster-level p < 0.05, cluster
size > 20 voxels, the small volume corrected and FWE corrected). (A) A decreased gFCD in AG, and an increased gFCD in IFG at FLF; (B) A
decreased gFCD in HIP at Slow-5 band; (C) No significant change at Slow-4 band; (D) A decreased gFCD in mPFC at Slow-3 band. gFCD, global
functional connectivity density; AG, angular gyrus; IFG, frontal inferior gyrus; HIP, hippocampus; mPFC, medial prefrontal cortex.

intensity coding. Studies have revealed a decreased gray matter
density in the INS of patients with PDM (Tan et al., 2017).
Spontaneous brain activity at the Slow-3 band is associated
with structural correlation (Bajaj et al., 2013). Our study up-
regulated INS in Slow-3, suggesting that VA may modulate
INS structure. Although the current research has confirmed the
modulation of INS function by acupuncture, the modulation of
INS structure by acupuncture requires more investigation (Jung
et al., 2015; Dun et al., 2017; Guo et al., 2019; Duan et al., 2021).
In addition, the modulation of the cingulate cortex (ACC, MCC)
and IFG by acupuncture are associated with modulation of pain
perception (Fuchs et al., 2014) and empathic processing of pain
(Li et al., 2021).

The results showed that VA and SA had distinct effects on
the brain responses of patients with PDM. The prior studies have
identified the distinctions and consistency in the brain response
to VA compared to SA (Fang et al., 2009; Harris et al., 2009;
Chae et al., 2013; Maeda et al., 2017). As with VA on brain
modulation, SA down-regulates gFCD in the left hippocampus

and up-regulates gFCD in the right IFG. The result also showed
that SA reduced gFCD in the anterior DMN. The result implied
that SA, similar to VA, could modulate pain emotions in patients
with PDM. The studies on SA or phantom acupuncture have
concluded that SA can specifically activate DLPFC to provide
the placebo effect (Makary et al., 2018; Shi et al., 2021). However,
this study suggested that SA did not exhibit a placebo effect
associated with self-control in pain. The medial prefrontal lobe
is primarily involved in the modulation of visceral motor output
of the individual’s internal experience and is associated with
pain rumination (Kucyi et al., 2014). The SA modulation of the
medial prefrontal cortex suggests that the placebo effect of SA
may be mediated by improving individual pain rumination.

We preliminarily investigated the modulation of
acupuncture on PDM at different frequency bands. The
gFCD provided a mapping of the functional connectivity
between the brain regions throughout the brain and is
more sensitive to identifying the individual differences
(Tomasi and Volkow, 2010, 2011). The result showed
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TABLE 3 Frequency-specific gFCD alternations in the SA group.

Frequency
band

Contrast Cluster regions L/R Cluster size MNI coordinates Z-score

x y z
Full low frequency Post > Pre IFG R 26 54 27 24 3.66

Pre > Post AG L 26 –51 –69 24 3.33

Slow-5 Post > Pre –

Pre > Post HIP L 34 –24 –30 –18 3.27

Slow-4 Post > Pre –

Pre > Post –

Slow-3 Post > Pre –

Pre > Post mPFC L/R 95 –3 51 39 3.66

Voxel level, p < 0.005, cluster level, p < 0.05, cluster size > 20 voxels; the small volume correction was applied in case the pain-related brain regions (cluster size less than or equal to 20)
were not significant by FWE test. Abbreviations: IFG, Inferior Frontal Gyrus; AG, Angular Gyrus; HIP, Hippocampus; mPFC, Medial Prefrontal Cortex.

FIGURE 3

Correlation analysis following verum acupuncture and VAS scores of PDM. (A) The gFCD changes at Slow-5 band of the left DLPFC in patients
with PDM was negatively correlated with the change in VAS scores (r = –0.508, p = 0.022). (B) The gFCD changes at Slow-4 band of the right S2
in patients with PDM was positively correlated with the change in VAS scores (r = –0.587, p = 0.006). gFCD, global functional connectivity
density; VAS, visual analog scale; S2, second somatosensory cortex; DLPFC, dorsolateral prefrontal cortex; pINS, posterior INS; aINS, anterior
INS; ACC, anterior cingulate gyrus.

that VA modulated more comprehensive frequency
than SA. At the Slow-5 band, VA on the left DLPFC
increased significantly compared to SA. Similar to a
previous longitudinal study, reduced amplitude of low-
frequency fluctuation (ALFF)/fALFF in DLPFC patients
with trigeminal neuralgia was observed exclusively at
the Slow-5 band (Zhang et al., 2019). At FLF and
Slow-3 band, decreased gFCD was more significant in
the hippocampus in VA rather than SA. Above results
suggested that modulation in different frequency bands
is more significant in VA than in SA, and there is a
frequency-specific sensitivity of the same modulated brain
regions. Notably, abnormal BOLD signal fluctuations
occur in different frequency bands ranging from 0.1
to 0.25 Hz under different chronic pain conditions
(Baliki et al., 2011b; Alshelh et al., 2016). However, the

neurophysiological mechanisms behind the different frequency
bands are largely unknown, which needs further exploration
(Buzsaki and Draguhn, 2004).

This study found that the gFCD changes of left DLPFC
at Slow-5 band were negatively correlated with the change
in pain VAS scores, suggesting that VA could increase the
cognitive modulation of DLPFC to improve the control of pain
in individuals (Lorenz et al., 2003). Our study found that more
gFCD changes in DLPFC correspond to more reduction in VAS
scores. This suggests that the changes in gFCD of DLPFC are
consistent with improvements in VAS and that VA may increase
individual control in pain intensity by improving the cognitive
modulation of DLPFC. The increased gFCD of S2 after VA also
associated with the pain relief of PDM. Therefore, the response
of DLPFC and S2 after VA may be an objective biomarker that
can predict the efficacy of acupuncture in the treatment of PDM.
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Limitations

There are still limitations to the study. First, the study
design was small sample size, and patient compliance
was influenced by the schedule of the MRI scan (3 days
before the onset of menstruation). Second, this study
focused exclusively on the altered FCD of the PDM brain
network, and more substantial structural and metabolic
brain changes need to be investigated. Third, the results
showed that acupuncture normalized the brain activity of
DLPFC in PDM. However, no relevant behavioral scales
in this study were designed to assess individual executive
function in this study.

Conclusion

In summary, we re-verified that VA is significantly more
effective than SA in treating PDM. The findings supported
the hypothesis that acupuncture can restore normalcy to the
DLPFC and hippocampus, which had previously been identified
as abnormal in PDM. The results elucidated the brain targets
of acupuncture for PDM and may facilitate the development
of brain stimulation methods to facilitate the therapeutic
response to acupuncture.
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