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This article discusses recent developments and advances in the neuroscience

of music to understand the nature of musical emotion. In particular, it

highlights how system identification techniques and computational models

of music have advanced our understanding of how the human brain

processes the textures and structures of music and how the processed

information evokes emotions. Musical models relate physical properties of

stimuli to internal representations called features, and predictive models relate

features to neural or behavioral responses and test their predictions against

independent unseen data. The new frameworks do not require orthogonalized

stimuli in controlled experiments to establish reproducible knowledge, which

has opened up a new wave of naturalistic neuroscience. The current review

focuses on how this trend has transformed the domain of the neuroscience

of music.
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Introduction

Music is believed to have been a crucial part of all known societies from the very
early days of the human species (Zatorre and Salimpoor, 2013). Bone flutes found near
the Danube River in Germany suggest that the origin of music can be dated to about
40,000 years ago or more (Conard et al., 2009). Given that the emergence of Homo
sapiens is believed to have emerged in Africa about 300,000 years ago (Hublin et al.,
2017) and to have migrated from Africa to Eurasia around 60,000 years ago (Armitage
et al., 2011), even earlier evidence of the musical traditions of humans may exist in
Africa that is yet undiscovered (d’Errico et al., 2003). Furthermore, cross-cultural studies
based on ethnographic texts and audio recordings provide empirical evidence that music
appears in every society observed (e.g., Mehr et al., 2019); and this ubiquitous presence
of music in human societies indicates music’s significant functions for humans. Zatorre
and Salimpoor (2013) suggested the reason for music’s existence is that it allows for
the expression and regulation of emotion and elicits pleasure. But the central question
remains unsolved: How does music, a structured collection of abstract sounds, evoke
such intensive emotions?
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As neuroscientists understand it (Zatorre, 2005), music
is processed by way of hierarchical pathways, potentially
with feedbacks (Vuust et al., 2022), evoking emotions on
multiple levels at different time scales (Juslin et al., 2013).
According to the current understanding, waveforms of music
are first transduced into neural activity throughout the auditory
peripheral and central pathways, where spectral and temporal
decompositions take place. The acoustic information is then
believed to be transformed into musical events (e.g., notes,
chords, beats). Musical structures (spectral and temporal
relationships of musical events in the short and long terms; e.g.,
motifs, themes, tonalities, rhythms, tempi) can be recognized
as statistical patterns depending on a listener’s prior experience
(e.g., enculturation, training) or concepts based on explicit
knowledge. While explanations based on predictive processing
have suggested important mechanisms (Zatorre and Salimpoor,
2013; Vuust et al., 2022), how other kinds of information of
music transform into emotions remains largely to be discovered.

In many neuroscientific studies, stimuli were created as
simple “models” (or approximations) of complex stimulations
in real-world environments while parametrizing variables
of interest and orthogonalizing nuisance variables. The
orthogonalization of stimuli provides a simple model of the
world and linearizes the assumed effects of the variable of
interest. For instance, in our own previous study (Kim et al.,
2017), we investigated the effect of dissonant harmony on
evoked emotional responses and individual preferences using
functional magnetic resonance imaging (fMRI). To this end, we
created “dissonant versions” of 30-s excerpts taken from various
instrumental musical pieces by transposing the original excerpts
by dissonant intervals (major second upward, and diminished
fifth downward) and mixing them all down. These “dissonant
versions” constantly produced dissonant harmony regardless of
the tonal structures in the original pieces. The altered audio
clips certainly evoked “unpleasantness” (i.e., all participants
rated the Pleasantness Scale lower) and decreased blood oxygen
level-dependent (BOLD) responses in the auditory pathway
and other brain regions as compared with the responses to
the original pieces. Because the dissonant stimuli were created
without altering other acoustic aspects such as loudness, beats,
rhythms, phrases, and so on, the design was optimal for
investigating the linear effect of consonance (or dissonance)
without concerns about the multicollinearity of acoustics. One
problem, however, was that the observed effect (i.e., “people
disliked the dissonant versions”) could not be generalized
(i.e., “people dislike dissonant harmony”), because in real-
world music such a dissonant harmony could nevertheless be
perceived as “yet pleasant” when it is presented in different
musical styles (Popescu et al., 2019). That is, although the
effect of dissonant harmony was successfully found using
the orthogonalized stimuli within the experiment, it remains
unclear, unfortunately, how relevant the results are to our
understanding of how harmony evokes various emotions

beyond the experiment settings. Experimental approaches
contrasting music vs. non-music stimuli can be seen as a “music-
as-fixed-effect” fallacy, following the “language-as-fixed-effect”
fallacy proposed by Clark (1973), who criticized the limited
generalizability of simplistic, contrastive approaches in certain
psycholinguistic research.

While not all controlled experiments suffer from limited
validity, there might be difficulties stemming from their
assumption that the human brain (or its behavior on average) is
governed by simple, interpretable rules that can be discovered by
cleverly isolated manipulations and can extrapolate to complex
human behaviors (Nastase et al., 2020a). This misconception
(or an arbitrary approximation) has been elegantly termed
by Jolly and Chang (2019) as the “Flatland fallacy,” after
Edwin Abbot’s famous short story (1884), which refers to a
problem prevalent in psychology (and other cognitive sciences),
wherein researchers misbelieve that “the parsimony offered by
our low-dimensional theories reflects the reality of a much
higher-dimensional problem” (Jolly and Chang (2019), p. 433).
Whereas dimensionality reduction can be an efficient tool for
many computational problems (i.e., “all models are wrong but
some are useful” (Box, 1979), Jolly and Chang (2019) pointed
out that the low-dimensional bias in cognitive sciences may be
effected by “human” reasons (e.g., feelings of understanding,
limitations of human cognitive capacity, cultural norms,
communicating complexity) rather than computational reasons
(e.g., predictive performance, computational cost). However,
caution should also be taken against the humanly motivated
high-dimensional bias (e.g., feelings of awe and excitement
when met with an unprecedentedly large-scale artificial neural
network, regardless of its efficiency).

To approach the complexity of real-world cognition and
perception, naturalistic experiments are essential. The criticism
against reductionism inherent in controlled experiments has
a history in psychology (Brunswik, 1943; Gibson, 1978).
In fact, even in neuroscience, the argument for naturalistic
stimuli is not new (Barlow, 1961). One of the methodological
arguments that has been discussed with regard to animal
electrophysiological data (Rieke et al., 1995; Theunissen et al.,
2000) has a striking resemblance to an assertion occurring in
the recent discussions on human “naturalistic neuroimaging”
(Sonkusare et al., 2019; Hamilton and Huth, 2020; Nastase
et al., 2020a; Jääskeläinen et al., 2021): the controlled stimulus
may be too uninteresting for living animals, even for sensory
neurons. Moreover, the presumed linearity in sensory neurons
may not hold given the non-linear responses to biologically
salient stimuli (i.e., the sum of responses to subcomponents of
a conspecific vocalization is smaller than the response to the
whole vocalization in non-primary sensory neurons; Theunissen
et al., 2000). Components that are uniquely responsive to speech
and music (or their unique acoustic structures) found in human
fMRI, electrocorticogram (ECoG), and electroencephalogram
(EEG) data (Norman-Haignere et al., 2015, 2022; Zuk et al.,
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2020) also suggest a strong degree of non-linearity even in the
human auditory cortex1.

The current review focuses on one of the distinguished
recent advances in human neuroscience: the use of naturalistic
stimuli supported by advanced computational models.
Computational models provide us with not only physical
descriptors but also information related to the underlying
structures of natural images (Kay et al., 2008; Naselaris et al.,
2009; Vu et al., 2011), natural videos (Nishimoto et al., 2011;
Han et al., 2019), natural movies (Hasson et al., 2004, 2010;
Hanke et al., 2014; Vodrahalli et al., 2018), and natural speech
(Huth et al., 2012, 2016; Stephens et al., 2013; Mesgarani et al.,
2014; Broderick et al., 2018; Nastase et al., 2020b), to name a few.
In particular, this article attends to the recent investigations into
the neural representation of natural music using computational
models with a specific interest in musical emotion. For readers
who are unfamiliar with model-based analyses, first predictive
models, with mathematical descriptions, will be introduced
in Section “Predictive modeling: From features to responses.”
Then, along with application examples, music models will be
reviewed in Section “Music modeling: From stimuli to features.”
Finally, challenges and perspectives will be discussed in Section
“Challenges and perspectives.”

Predictive modeling: From
features to responses

This section will guide readers from traditional linear
models to non-linear models, highlighting how they relate to
each other, in the context of predictive modeling. Please note
that, in this section, we do not assume a specific neuroimaging
modality. For the sake of discussion, let us assume that we have
sufficient degrees of freedom in the temporal dimension given
their respective inherent temporal dependencies and sampling
rates. Exemplary applications to M/EEG and fMRI data, as will
be provided throughout this section, demonstrate that a similar
method can reveal different temporal scales of the brain activity
of interest when applied to different data.

A model that predicts a response for a given stimulus based
on an estimation how a stimulus is encoded in a system is called
an encoding model. That is, the goal of an encoding model (see,
e.g., Kay et al., 2008) can be understood as an identification of
a transfer function that maps a given event (or a stimulus) in a
physical space (e.g., time-points in audio signals) onto an evoked
response in a measurement space (e.g., voxels in fMRI data or
channels in M/EEG data). For instance,

y = J (X) + ε (1)

1 There is a “third way” proposing controlled but naturalistic stimuli
generated by sophisticated generative models such as generative
adversarial networks (GANs). See Goetschalckx et al. (2021).

where y is a vector of evoked physiological responses (as
a function of either stimuli or time-points) of a certain
measurement unit (e.g., a voxel or a channel); X is a matrix that
describes physical properties of stimuli in the same time scale
as y; and J ( · ) is a transfer function (or a response function
in the temporal domain) from stimuli to responses, which can
be either linear or non-linear. The problem of estimating such
transfer functions is traditionally known as system identification
in various domains in engineering fields, including automatic
control and signal processing (Zadeh, 1956; Keesman, 2011;
Ljung et al., 2020). A popular approach to non-linearity in
system identification, especially for naturalistic stimuli, is to
approximate the system as a sequence of non-linear and linear
transformations (Naselaris et al., 2011). That is, Equation 1 can
be decomposed into a non-linear transform followed by a linear
transform as:

y = J ∗ (X)w + ε (2)

where J ∗( · ) is a non-linear function that maps stimuli
(or time-points) from a physical space to a representational
(or “feature”) space and w is a vector of weights for a
linear transform that maps stimuli (or time-points) from a
representational space onto a neural measurement space. The
non-linear function J ∗( · ), which afterwards enables a linear
mapping, is known as linearization (for a general overview, see
Wu et al., 2006). That is, a linearized encoding model can still
capture non-linearity while using a linear mapping between
the assumed (or hypothesized) features and evoked neural
responses. Figure 1 illustrates a linearized encoding model.

For completeness, decoding models can also be seen as:

x = K∗(YV) + ε (3)

where x is a vector of the properties of stimuli with respect to a
certain physical property; Y is a matrix of evoked physiological
responses, with each column corresponds to a measurement
unit; V is a matrix of linear decoding weights that maps neural
responses to features (each column corresponds to a feature);
and K∗( · ) is a non-linear function that maps features back
to physical properties. Note that a decoding model can be
converted from an encoding model based on Bayes’ theorem,
reflecting the prior of features (i.e., occurrence probability) in
naturalistic stimuli (Naselaris et al., 2009). This is useful when
the linearization function J ∗ (·) is non-invertible (i.e., K∗ (·)
cannot be found by the inverse of J ∗ (·); e.g., the real absolute
value function). See Naselaris et al. (2011) for a review of
model-based decoding.

While the models need to be sufficiently flexible to capture
the underlying transforms, the fitting (or learning) process is
agonistic to the nature of variance (whether it is due to the
underlying transforms or to independent noise). Therefore, a
validation of an estimated model with unseen data is a crucial
part of the system identification (Ljung, 2010). There are various
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FIGURE 1

A schematic of a linearized encoding model. A hypothesized neural representation in the brain of music (X) is modeled by a computation model
[i.e., a linearization function J ∗ (·)] resulting in feature time-series (z). A linear relationship, described by a response function (w), between the
delayed features (Z) and measured neural responses (y) is estimated using stimuli (e.g., music #1) in the training set. For independent stimuli
(e.g., music #2) in the test set, the same computational model extracts features. Using them, the predictive performance of the hypothesized
representation can be evaluated.

schemes of validation (Hastie et al., 2009), but the common idea
is to test the generalizability of an estimated model, which is
based on one set of data (training set), with another set of unseen
data (test set) with independent and identically distributed
noise (i.e., the i.i.d. assumption). In practice, the “unseen data”
can be created by holding out some part of the data from
the model estimation (i.e., cross-validation). The partitions of
training sets vs. test sets can be half vs. half (split-half), k-1
parts vs. 1 part (k-fold), or all samples but one vs. the held-
out one (leave-one-out). For hyperparameter optimization, the
whole dataset can be divided into three parts: a training set, a
validation set, and a test set that respectively comprise roughly
50, 25, and 25% of the whole set (Hastie et al., 2009). The
validation set is so named because it is used to validate the
hyperparameters2. In some cases, the training set can be split
into two parts: an inner-training set and a hyperparameter
validation set (nested cross-validation). Taking a larger training
set (i.e., k > 1) would make a test set smaller for a given
dataset, which would increase the sample variance in the test
set. Therefore, selecting the CV scheme (i.e., determining k) is
also a matter of bias-variance tradeoff. In general, 5–10-folds
could result in more stable test accuracies than the leave-one-out
scheme (Varoquaux et al., 2017). Critically, the partitions should
be carefully designed to avoid information leakage between
the training sets and test sets (Kaufman et al., 2012; Glaser
et al., 2020). In particular, functional time series in neuroscience
typically exhibits strong spatial and temporal dependencies at

2 In other literature (e.g., Varoquaux et al., 2017)„ a “validation set” can
refer to what we call a “test set” inasmuch as it validates model weights.

different scales. Moreover, intra-/inter-subject repetitions of
stimuli are highly prevalent in many experiment designs, which
could allow the repeated stimuli to introduce high similarity
between seemingly independent time points or subjects. For
example, if one randomly assigns the individual samples of EEG
data to training sets or test sets, autocorrelated noise would leak
into other partitions. Cross-validation is a method to test the
reproducibility of a given model. Therefore, it has been argued
that a statistical inference should be focused on predictive
performance rather than on observed sample statistics for a
reproducible science (Yarkoni and Westfall, 2017; Varoquaux
and Poldrack, 2019).

Linear model

Many readers will be familiar with a multiple linear
regression that models linear effects of experimental factors
such as:

y = Xβ + Zγ + ε (4)

where y is a n × 1 vector of neural responses (of a certain
measurement unit; e.g., a voxel) to a given set of stimuli, a n × p
matrix X describes the variables (or properties) of interest of the
stimuli over columns, a n × q matrix Z describes the nuisance
variables over columns, and are p × 1 and q × 1 vectors of
unknown coefficients, respectively, and ε is a n × 1 vector of
Gaussian noise. Equation 4 can be solved using the ordinary
least squares (OLS) method when the X and Z are orthogonally
created by experimenters. If we replace y with a matrix of
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multiple units (e.g., channels, voxels) and ε with a matrix of
uncorrelated Gaussian noise (i.e., without modeling inter-unit
dependency), the linear model is called the general linear model
(GLM), which is simply a set of identical univariate models
applied to multiple units (i.e., “massive univariate testing”
for large-scale units; Friston et al., 1994a). For the sake of
simplicity, response variables in the following are written as
vectors (i.e., univariate models). However, note that they can
be easily extended to their massive-univariate equivalences by
concatenating response and error terms.

In case sample-wise physiological measures are directly
related to time-varying stimulus properties, a proper transfer
function (or a response function in the temporal domain)
from neural activity to physiological measurements needs to
be determined. While such a function is known to spatially
and temporally vary in non-trivial ways (Aguirre et al., 1998;
Handwerker et al., 2004; Badillo et al., 2013; Taylor et al., 2018),
if we assume such a transfer function h, Equation 4 can be
rewritten (Friston et al., 1994b) as:

y = h ∗ [Xβ Zγ ] + ε (5)

where ∗ denotes a convolution in the temporal domain and ε is
a Gaussian noise with serial-correlation, which is typically non-
zero in most of non-invasive measures. Note that all vectors and
matrices are now defined for each sample (i.e., time-point) of
the physiological measurement (i.e., the number of rows is the
number of samples, t). Also, note that both X and Z describe
stimulus properties so that they can be concatenated to apply the
same convolution. Equation 5 can be solved using a variant (due
to the serial-correlation) of OLS such as weighted least squares
(WLS) (Friston et al., 2006; Poldrack et al., 2011).

Note that a linear model with OLS can also be used as a
predictive model and be cross-validated. As long as the variables
are orthogonal (or minimally intercorrelated), the OLS is an
unbiased estimator for the training set. However, the estimates
may not apply to the test set because the OLS will also fit the
noise, together with the signal, in the training set. Regularization
(see Section “Regularized linear methods”) can be useful in
such cases. When a linear model is used as a predictive model,
the inference will be on whether the prediction accuracy (e.g.,
Pearson correlation between prediction and observation) is
above chance level as opposed to whether the estimated contrast
(e.g., a difference between condition A vs. condition B) is
above chance level.

Reverse correlation

While Equation 5 can still model delayed processes between
neural activity and measurement by a fixed physiological
transfer function h, it cannot flexibly model delayed
processes between stimulus and neural activity. A system
identification method—also known as reverse correlation

or triggered correlation, for the analysis averages stimuli
based on response as opposed to averaging responses based
on stimuli)—uses autocorrelation (or autocovariance) of
the stimuli and the cross-correlation (or cross-covariance)
between the stimuli and responses to capture the delayed
responses in a response function (i.e., a linear filter) under
the assumption of the system (i.e., a linear time-invariant
[LTI] system). This was introduced in electrophysiology as
a receptive field mapping technique by presenting white
noise (instead of many narrow-band filtered signals) and
estimating the frequency selectivity of individual neurons
(Boer and Kuyper, 1968).

When we assume that a set of physical properties of stimuli
that are relevant to the neural system of interest (i.e., often called
features)

{
f 1,f 2,...,f p

}
are given—such as, e.g., narrow-band

filtered acoustic energy of the presented white noise)—then
Equation 5 can be rewritten as:

y =
[

h1 ∗ f 1β1 h2 ∗ f 2β2 · · · hp ∗ f pβp

]
+ ε

where hi is a feature-specific convolutional kernel, or a transfer
function, for the i-th feature; f i is a n × 1 vector of the i-th
feature; and the effect size βi is now simply a signed amplitude
of the hi, which is in fact redundant. Therefore, we can further
simplify:

y =
[

h1 ∗ f 1 h2 ∗ f 2 · · · hp ∗ f p

]
+ ε (6)

In the case of discrete signals, the convolution above
(Equation 6) can be rewritten as a multiplication of delayed
features G and finite impulse response (FIR) functions w defined
over finite delays

{
l1, l2, ..., ld

}
as:

y = Gw + ε (7)

where

G =
[
F1 F2 . . . Fp

]
∈ Rn × pd,

Fi =


fi(t1 − l1) · · · fi(t1 − ld)

...
. . .

...

fi(tn − l1) · · · fi(tn − ld)

 ∈ Rn × d,

i.e., [Fi]j,k = fi(tj − lk), fi(t) is the element of the i-th feature
vector at the timepoint t, y is a n × 1 vector of neural responses

from the timepoint t1 to tn, w =
[
u1 u2 · · · up

]T
∈ Rpd × 1,

and ui is a d × 1 vector of a discrete response function
to estimate. If the delays

{
l1, l2, ..., ld

}
are adjacent to each

other in the sample space (i.e., lj + 1 − lj = ti + 1 − ti), Fi is a
n × d rectangular Toeplitz matrix (i.e., ti − lj = ti + 1 − lj + 1).
Note that the FIR model (Equation 7) has been used to fit a
physiological response function (e.g., a hemodynamic function)
to the data in controlled experiments (Henson et al., 2001). In
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reverse correlation, the FIR function is used to further include
the transform from stimulus to neural activity in addition to
the transform from neural activity to non-invasive measurement
(e.g., fMRI image intensity or scalp-EEG potential).

If G is fully ranked—i.e., features are not correlated, such as
white noise—then we can use the OLS to estimate w:

ŵ =
(
GTG

)−1
GTy = G + y (8)

where the hat operator ·̂ denotes an estimation; ·T denotes a
matrix transposition; ·−1 denotes a matrix inversion; and ·+

denotes Moore-Penrose pseudoinversion3. Note that the OLS
solution minimizes the prediction error (i.e., loss function) on
the training set itself given as:

L
(
w; y

)
= ‖ (y−Gw)T(y−Gw) ‖2 = ‖ y−Gw ‖

2
2

For a discrete timeseries a ∈ Rn, an autocovariance matrix
for d lags is given by ATA ∈ Rd × d where A is a n × d Toeplitz
matrix. With another timeseries b ∈ Rn, a cross-covariance
matrix of a and b is given by ATB ∈ Rd × p where A and B are
m × d and m × p Toeplitz matrices, respectively. Therefore,
Equation 8 can be rewritten as:

ŵ =
(
GTG

)−1
GTy = CGG

−1cGy (9)

where CGG is a pd × pd autocovariance matrix and cGy
is a pd × 1 cross-covariance vector since y is not delayed.
Note that this expression highlights the fact that the method
decorrelates the stimulus-response cross-covariance with the
autocovariance of the stimulus itself. If the features do not have
any autocovariance structures—for example, if a single predictor
is given by white noise—then the sample autocovariance
matrix of the predictors can be very close to the identity
matrix: CGG ≈ I.

Note that the reverse correlation method itself does not
require regularization when the stimulus is well-behaving
Gaussian. Therefore, for linear systems, or for systems that can
be well approximated by linear models, the OLS solution is
sufficient. However, this is not the case in many real-world
systems including the human brain (and even the auditory
neurons as discussed earlier).

Regularized linear methods

In general, regularization serves two purposes: one is to
avoid overfitting, even for a model with a single predictor, by

3 In Penrose (1955), Corollary 1 states that the general solution of
a linear model y = Xb is b̂ = X+y+

(
I− X+X

)
a where a is arbitrary

(notations are rewritten for consistency with the current article). For
real-valued, full-ranked X, X+ = (XTX)−1XT. Thus, X+X = (XTX)−1XTX = I,
leaving only the first term of the solution: b̂ = X+y.

penalizing overly complex models; and the other is to deal
with strong multicollinearity present in the predictors (i.e.,
an ill-posed inverse problem). Note that even for a single-
feature model (i.e., p = 1 in Equation 6), multicollinearity may
exist across delayed features (i.e., columns of G in Equation
7) if serial-correlation is present in the feature. Now that the
CGG in Equation 10 can be very different from I and non-
invertible, it is necessary to introduce regularization to make it
invertible. Tikhonov regularization (Tikhonov, 1943; Tikhonov
et al., 1995) is a general solution with a regularization matrix
3 ∈ Rpd × pd:

ŵ
∗

(3) =
(
GTG + 3

)−1
GTy (10)

where3 = 0T0 when the loss function to minimize is defined
with the L2 norm penalty as:

L
(
w; y,0

)
= ‖ y−Gw ‖2

2 + ‖ 0w ‖
2
2

Ridge regression is a special case of Tikhonov regularization
where 3 = λI and λ is a regularization scalar (Hoerl and
Kennard, 1970):

ŵ
∗

(λ) =
(
GTG + λI

)−1
GTy = (CGG + λI)−1cGy

(11)

Note that the ridge solution (and its prediction
performance) is a function of the regularization. The
regularization controls the flexibility of the model, which
impacts the bias (i.e., the expected distance between “true”
parameters and estimates across multiple experiments)
and variance (i.e., the spread of estimates across multiple
experiments) of the solutions in opposite ways. For example,
estimates from an extremely rigid model, such as the 0-
th order model that always returns a constant, will be
highly biased but have no variance. In other words, it will
be wrong but in a very consistent fashion. On the other
extreme, a flexible model will be minimally biased (i.e.,
accurate on average), but largely varied. That is, it can be
sometimes very accurate, but it can also be very wrong,
depending on the realization of random noise. The “best”
regularization depends on the “true” structure of the system
(Ljung et al., 2020), which is unknown. Therefore, in practice,
the regularization is “optimized” to balance the tradeoff
between bias and variance for specific datasets. Several
optimization methods have been used for fMRI and M/EEG
data acquired while listening to natural speech and music:
e.g., ridge tracing (Santoro et al., 2014; Moerel et al., 2018),
bootstrapping (Huth et al., 2016), and nested cross-validation
(Daube et al., 2019).
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From a Bayesian perspective, the Tikhonov regularization
can be seen as multivariate normal priors on the “distribution
of weights” (Nunez-Elizalde et al., 2019) as:

w∼Npd
(
0, λ−26

)
(12)

where Npd is a pd-dimensional multivariate normal distribution
and 6 ∈ Rpd × pd is the positive definite prior covariance
matrix, and λ is a scalar regularization parameter. The ridge
regularization can be seen as a special case of spherical priors
(i.e., 6 = I) whereas other forms of regularization can be
seen as non-spherical priors (Nunez-Elizalde et al., 2019). The
maximum likelihood solution of the problem can be found in a
closed form as a Tikhonov solution (Nunez-Elizalde et al., 2019):

ŵT (λ,0) =
(
XTX + λ20T0

)−1
XTy

where 6−1
= 00T. This is equal to a ridge solution when

0 = I (thus, 0T0 = I = 6). The Tikhonov solution can
be simplified (Nunez-Elizalde et al., 2019) by a linear transform
such that:

A = X 0−1

Then, a ridge solution with A is given as:

ŵA (λ) =
(
ATA + λ2I

)−1
ATy

The estimates can be projected back into the original space,
which finally gives us the Tikhonov solution:

ŵT (λ,0) = 0−1ŵA(λ)

Now, the prior matrix6 (or the inverse transform matrix0)
can be based on stimulus models (e.g., a semantic embedding),
physiological models (e.g., hemodynamic response function
[HRF]), or appreciation of different scales of features, i.e.,
independently regularizing features or feature spaces, because
the globally optimal regularization could be suboptimal for
individual features (i.e., “banded ridge”; Nunez-Elizalde et al.,
2019). In fact, the last usage is widely known as “multi-penalty
ridge.” It was first proposed in the original publication of ridge
regression (Hoerl and Kennard, 1970) in sections 5 (p. 63) and
7 (p. 65), where a regularization parameter (“ki”) is found for
each column of the orthogonalized design matrix (i.e., canonical
variates). The multi-penalty ridge can be seen as a general case of
ridge where the Tikhonov regularization matrix (Equation 10) is
given as:

3 =


λ1I1 · · · 0k
...

. . .
...

01 · · · λ1Ik


where λi is a scalar hyperparameter for the i-th feature space,
Ii ∈ Rpid×pid is an identity matrix for the i-th feature space

with pi as the number of columns of the i-th feature space, and
0i ∈ Rpid×pid is a zero square matrix. Recent studies optimized
a regularization parameter for each feature space to perform
model comparisons without over-regularization, i.e., suboptimal
regularization for specific features; see, e.g., Daube et al. (2019)
and Sohoglu and Davis (2020).

However, the optimization of p hyperparameter (i.e.,
determination of regularization parameters) via grid-search
would have a complexity that is proportional to jk for j
grid points and k hyperparameters, which rapidly makes the
optimization intractable. There are fast algorithms for multi-
penalty ridge problems that are inspired by the original
formulation (Hoerl and Kennard, 1970) and where the design
matrix is first orthogonalized to reduce the number of necessary
hyperparameters [see, e.g., van de Wiel et al. (2021) for
applications on the “large p, small n” genomic data].

Besides the ridge penalty, other types of penalty terms
are also commonly used such as lasso (i.e., L1 norm penalty;
Tibshirani, 1996), which has been used for naturalistic speech
MEG data (Brodbeck et al., 2018a,b), and elastic net (i.e., both of
L1 and L2 penalties; Zou and Hastie, 2005).

Non-linear kernel methods

So far, we have discussed linear methods. However, there
are various methods for handling non-linearity, even in the
field of traditional machine learning and statistical learning.
Kernel-based machine learning methods, such as the support
vector machine (SVM; Boser et al., 1992) can be seen as a
linearization of features in the sense that it provides non-linear
transformation of original predictors into a high-dimensional
feature space where a linear fit can be useful (Bishop and
Nasrabadi, 2006). The idea is that some non-linear-looking
problems can be seen as linear in a higher-dimensional space.
Let such a mapping from a lower-dimensional original predictor
space to a higher-dimensional feature space (i.e., features space
mapping) be φ : Rp

→ Rq where p < q. Equation 6 then can be
defined in the feature space:

y =
[

φ
(
g1
)T

φ
(
g2
)T

. . . φ
(
gn
)T
]T

w+ ε (13)

where g i is the i-th row vector in the matrix G ∈ Rn×pd

from Equation 7.
Now the problem becomes how we can find the feature

space mapping in unknown high (theoretically infinite)
dimensions. Fortunately, instead of explicitly finding this
mapping to unknown dimensions, it has been shown that
the prediction can nonetheless be made without knowing
the mapping itself, but rather with a kernel function
k, which is an inner product of transformed features:
k
(
g1, g2

)
= 〈φ

(
g1
)
,φ
(
g2
)
〉 (Bishop and Nasrabadi,

2006). A prediction on the new datapoint gx with a
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regularization λ can be given without explicitly knowing
the mapping φ(·) as:

ŷ
(
gx
)
= φ

(
gx
)
ŵ = k

(
gx
)
(Kt + λIn)

−1 yt (14)

where the Gram matrix [Kt]i,j = k(g i, g j) is defined
over all n datapoints in the training set, In ∈ Rn×n,

yt =
[

y1 y2 · · · yn

]T
. This substitution (also known as

kernel trick) of the unknown mapping with the Gram matrix
that is defined between datapoints makes the problem
tractable. The kernel function can be constructed with non-
linear basis functions such as the p-th order polynomial
with a constant term c: k

(
xi, xj

)
=
(
xT

i xj + c
)p, Gaussian

basis function: k
(
xi, xj

)
= exp

(
− ‖ xi − xj ‖

2 /2σ2), or
the radial basis function: k

(
xi, xj

)
= exp(−γ ‖ xi − xj ‖

2)

(Bishop and Nasrabadi, 2006). The hyperparameters of
the kernels can be validated through cross-validation in
practice (Chu et al., 2011). Kernel regression (alibeit with
linear kernels) has also been used for auditory encoding
models (De Angelis et al., 2018; Erb et al., 2019; Rutten et al.,
2019).

Related to the kernel trick, representational similarity
analysis (RSA) compares a kernel of the brain with a kernel
of a reference model (Kriegeskorte et al., 2008). RSA does
not attempt to explicitly identify the transfer functions of a
system (i.e., the first-order isomorphism between the physical
properties and representations in the brain), but it can query
whether systems share similar non-linear mappings of the
identical set of stimuli (i.e., the second-order isomorphism
between representations in different systems), which establishes
important foundations for understanding the human brain as a
non-linear system.

Neural network methods

Recently, with increased computational capacity under
Moore’s law and large-scale (i.e., petabytes) data (Sun et al.,
2017), modern artificial neural network (ANN) models
have outperformed traditional models (including traditional
ANNs) and are reaching human-level performances in many
tasks such as semantic visual recognition (Donahue et al.,
2014), language generation (Floridi and Chiriatti, 2020), and
even a specific scientific discovery activity (Jumper et al.,
2021). In general, modern ANN models, also known as
deep neural networks (DNNs), have multiple (“deep”) layers
of units (e.g., perceptrons) and include iterative adaptive
processes, which allow a model to update (or “learn”) its
parameters (or weights) based on the binary labels (or
continuous values) given by humans (supervised learning)
or real data (unsupervised learning). A perceptron can be

seen as a linear binary classifier (Bishop and Nasrabadi,
2006) as:

f (xi) = sign(xiw) (15)

where sign (a) =

{
+1 , a ≥ 0
−1 , a < 0

, xi is a 1× p vector of features

of the i-th instance (e.g., a stimulus), w is a p× 1 vector
of weights. As seen earlier (Equation 13), a non-linear
transformation φ(·) can be introduced:

f (xi) = sign(φ(xi)w) (16)

By combining such simple units, a network can be very
flexible. For example, a prediction from a two-layer network can
be expressed (Bishop and Nasrabadi, 2006) as:

ŷ (xi,ω) = σ
(

h
(
xiw(1)

)
w(2)

)
(17)

where σ(·) is a sigmoid function, h(·) is a hyperbolic tangent
function, w(i) is a vector of weights at the i-th layer, and

ω =

[
w(1)

w(2)

]
is a vector of all weights. (i.e., a set of all weight

vectors). The loss function of this network can be defined as a
sum-of-squares error function:

L (ω;M) =
∑
xi∈M

‖ ŷ (xi,ω)− yi ‖2 (18)

where M = {x1, x2, . . . , xn} is a training set and yi is the
true response (or label) of xi. Given the non-linearity, the
loss function cannot be analytically minimized. However, the
loss function can still guide the model to adjust weights to
reduce errors for the next example. This process is called
backpropagation (Amari, 1967; Werbos, 1974, 1994). One of the
widely used approaches is called gradient descent optimization
(Bishop and Nasrabadi, 2006). The idea is that, even without
knowing the loss function analytically, one can still empirically
minimize it by perturbating each weight and figuring out which
direction in the weight space would decrease, or at least not
increase, the loss function. More formally, one can compute
partial derivative with respect to changes of individual weight
for the i-th data point: ∂L(ω;xi)

∂w(i)j
where w(i)j is the j-th weight

in the i-th layer. A vector of partial derivatives is called a
gradient. For a function f that maps a n-dimensional real vector
x =

[
x1 x2 · · · xn

]
to a real scalar (i.e., f : Rn

→ R), the

gradient of f is defined as:∇f (x) :=
[

∂f
∂x1

∂f
∂x2
· · ·

∂f
∂xn

]
. Thus,

a gradient is a “direction” vector (in the weight space) that
maximizes a given function. Therefore, we would like to update
our weight by subtracting the gradient but by a small magnitude.
That is, given the i-th training data point, the next weight can be
expressed as:

ωi+1 = ωi − γ∇L (ωi; xi) (19)
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where ωi+1 is the weights learned from the i-th data point, γ is a
control parameter called a learning rate.

DNN models learn weights in various forms of architectures
consisting of multiple well-known structures with several
practical modifications. For example, a convolutional neural
network (CNN; LeCun et al., 1989) is a multilayer architecture
that includes convolutions in the input space (e.g., with
respect to horizontal and vertical axes in 2-D images; with
respect to time dimension in the audio waveform) to exploit a
topographical organization (i.e., local dependency) of the data.
This can be seen as a strong prior (i.e., “geometric knowledge
about the task”; LeCun et al., 1989, p. 550) that completely
disconnects some connections (Goodfellow et al., 2016).

Another fundamental architecture known as a recurrent
neural network (RNN) (Rumelhart et al., 1986) was developed
to learn structures in sequential data such as language (e.g., word
sequences). In this network, a node gets inputs from a node at a
previous time point as well as the current stimulus at the current
time point, returns outputs for the current time point, and feeds
an input to a node at the next time point.

Recently, DNN models have been widely used in finding a
non-linear relationship in human neuroimaging data. However,
an improvement by using non-linear models over linear models
requires a high SNR and/or a very large sample size as
Gaussian noise can linearize the decision boundary (Schulz
et al., 2020). Except for a few consortia (e.g., UK Biobank,
Human Connectome Project), large-scale functional data,
especially with naturalistic stimuli, are scarce in comparison to
behavioral data (e.g., crowdsourced tagging data for millions
of songs). Therefore, in many applications for naturalistic
stimuli, DNN models are trained to replicate large-scale human
behavioral data, then models’ representations (i.e., linearized
features) are related to smaller-scale human neural data via
regularized linear models (Agrawal et al., 2014; Güçlü and
van Gerven, 2015; Güçlü et al., 2016; Caucheteux and King,
2022) or representational similarity analysis (Khaligh-Razavi
and Kriegeskorte, 2014; Kell et al., 2018). In particular, CNN
models mimicked human auditory behaviors (e.g., pitch [F0]
perception, word recognition, musical genre recognition) and
neural responses (Kell et al., 2018; Schulz et al., 2020),
arguing for a representational gradient across the superior
temporal gyrus/sulcus (Güçlü et al., 2016). While the CNN
is considered to be one of the greatest achievements of
neuromorphic engineering (i.e., a system that is inspired by
the hierarchical structure of the sensory system of brains,
performing perceptual tasks at a near-human-level) and has
shown a partial convergence with neural representations in
various sensory modalities (Agrawal et al., 2014; Cadieu et al.,
2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014; Güçlü and van Gerven, 2015; Kell et al., 2018), their
implication (i.e., whether they can be accepted as evidence for
a mechanical model of a human sensory system) is still under
debate (see Section “Challenges and perspectives”).

Music modeling: From stimuli to
features

This section discusses recent endeavors in modeling the
structure of music. From the perspective of encoding models,
a computational music model can be seen as a hypothesized
linearization and an inference on the model performance
(and additional contributions of individual sets of features)
would be equivalent to effect testing in controlled experiments.
Models at various levels and their applications to natural music
will be reviewed.

Auditory models

Models based on psychophysics and electrophysiology
have been developed to simulate the neural activity of
the auditory pathway (Chi et al., 1999; Klein et al., 2000).
Among various formulations, a MATLAB implementation,
namely Neural Systems Laboratory (NSL) tools4 (Chi et al.,
2005) was created based on electrophysiological findings.
In the first stage, the auditory spectrogram is computed,
which is a time-frequency representation of given sound
signals. The basilar membrane filter bank is modeled
by bandpass filters. The outputs are further processed
accounting for various non-linear transforms through the
auditory nerves. Then a lateral inhibition in the cochlear
nucleus is simulated by the first-order derivative across
frequency channels. This cascade model can be described as
follows:

(1) cochlear filter bank:

yc
(
t, f
)
= s (t)∗ h

(
t; f
)

where yc
(
t, f
)

is a cochlear output at time t and frequency
channel f (often referred to as [simulated] cochleogram), s (t) is
a signal at time t, ∗ is a convolution operator in the temporal
domain, h

(
t; f
)

is a response function of the f -th frequency
channel (i.e., a membrane filter),

(2) auditory nerve:

ya
(
t, f
)
= g

(
∂tyc

(
t, f
))∗ w (t) ,

where ya(t, f ) is an auditory-nerve output, g (·) is a non-linear
compression (i.e., gain), ∂t denotes partial differential with
respect to time as a high-pass filter, w (t) is a low-pass filter that
mimics the decrease of phase-locking above 2 kHz,

(3) cochlear nucleus:

yl
(
t, f
)
= max

(
∂f ya

(
t, f
)
, 0
)

where yl(t, f ) is a cochlear-nucleus output, ∂f denotes partial
differential with respect to frequency to mimic the lateral

4 http://nsl.isr.umd.edu/downloads.html

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.928841
http://nsl.isr.umd.edu/downloads.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-928841 September 16, 2022 Time: 10:58 # 10

Kim 10.3389/fnins.2022.928841

inhibition in the cochlear nucleus, max (·, 0) is a half-wave
positive rectifier,

(4) and, finally, midbrain:

ym
(
t, f
)
= yl

(
t, f
)∗
µ(t; τ) (20)

where ym
(
t, f
)

is the midbrain (final) output, and µ(t; τ) is a
short-time (τ = 8 ms) integration window (for further loss of
phase-locking in the midbrain).

Then, in the second stage, the cortical representation
is computed by a 2-D convolution of an spectrotemporal
respective field (STRF) filter bank and the auditory spectrogram.
For a specific “cell” that is sensitive to a specific combination of
spectral and temporal modulations (i.e., “spatial” components
in the spectrogram) and a direction (downward or upward), the
cortical representation z is given as:

zc⇓(⇑)
(
t, f ;ωc, �c, θc, φc

)
= ym

(
t, f
)
⊗ STRFc⇓(⇑) (21)

where c ⇓ (⇑) denotes a downward (or upward) cell c, ωc

is the temporal modulation rate (i.e., ripple velocity; in Hz)
of the cell c, �c is the spectral modulation scale (i.e., ripple
density; in cycles/octave), θc is the rate phase, φc is the scale
phase, and ⊗ denotes 2-D convolution. STRFc⇓(⇑) is defined
as the real part of the product of two complex functions
describing temporal modulations (ripples along the time axis
in the auditory spectrogram) and spectral modulations (ripples
along the frequency axis) as:

STRFc⇓(⇑) = R
{

h(
∗)

IRT (t;ωc, θc) · hIRS (t;�c, φc)
}

where R {·} denotes the real part, hIRS and hIRT denotes
complex impulse response functions for temporal modulation
and spectral modulation, respectively, and the superscripted ∗
denotes the complex conjugate, which allows for differentiation
of downward and upward tone sweeps. Because the third and
fourth quadrants can be constructed using complex conjugates
of the STRFs in the first two quadrants, we only consider those
two quadrants (1st: positive rate, positive scale, downward; 2nd:
negative rate, positive scale, upward). Further details can be
found in Chi et al. (2005).

While this model has been widely used for various short
(1–2 s) naturalistic audio clips and speech (Moerel et al., 2013;
Santoro et al., 2014; Khalighinejad et al., 2019; Sohoglu and
Davis, 2020), applications to naturalistic music remain relatively
sparse: ECoG data over the left frontotemporal areas while a
highly trained pianist playing 2-min classical pieces with and
without auditory feedback (Martin et al., 2017), ECoG data over
bilateral frontotemporal regions from 29 patients while listening
to a 3-min song with vocals (Bellier et al., 2022), and whole-
brain fMRI data while listening to five-hundred-forty 15-s
excerpts from the GTZAN (G. Tzanetakis and P. Cook) Musical
Genre Dataset (Nakai et al., 2021). These studies consistently
demonstrated that the auditory models (the auditory and
cortical representations) successfully predicted neural responses

to natural music in the primary and non-primary auditory
cortices. A preliminary report suggested redundant information
is encoded in non-auditory regions such as sensory-motor
cortices and the inferior frontal gyrus (Bellier et al., 2022).

Music information retrieval models

Music information retrieval (MIR) is an interdisciplinary
field that has emerged with the arrival of the electronic
music distribution systems (e.g., Napster in 1999, iTunes in
2001, and Spotify in 2006) (Aucouturier and Bigand, 2012).
Therefore, its main focus is to develop technologies that
are useful for such services including searching, organizing,
accessing, and processing digitized music signals and related
data. Compared to music psychology, which focuses more on
processes via simplistic examples, the MIR focuses more on
the “end-to-end” results (i.e., linking physical characterizations
of music signals and population behaviors, possibly in the
music market) (Aucouturier and Bigand, 2012). Nonetheless,
the MIR field has discovered multiple acoustic features
that are predictive of “perceived emotions” in music (Yang
and Chen, 2011), which are not necessarily experienced
by listeners, but are recognizable. These findings motivated
psychologists and neuroscientists to investigate whether this
functional (end-to-end) relationship implies anything for
the internal processes in listeners, even at a population
level, because this may have relevance to “experienced
emotions.”

Traditional MIR models, as opposed to recent ANNs, tend
to have a couple hundred (counting all subcomponents) “hand-
crafted” features. Some of the features in MIRtoolbox (Lartillot
and Toiviainen, 2007) are briefly explained here for a discrete
signed signal s(x) of t timepoints:

- Root-mean-square (RMS) envelope: E =
√

1
t
∑t

x=1 s (x)2

for global energy, E(w) =
√

1
n
∑n

x=1 w (x)2 with a windowed
signal w(x) of n (< t) timepoints for local energy.

- Zero-crossing rate: z = 1
t−1

∑t−1
x=1 J (s (x) s (x− 1)) where

J
(
y
)
=

{
1, y < 0
0, y ≥ 0

, which can also be locally calculated for

a given windowed signal. In a simplistic case (e.g., a sine
wave), this can be used to estimate the fundamental frequency.
However, more generally, it describes some aspects of timbral
quality rather than pitch.

- Spectrogram: S
(
w, f

)
= f

(
k
)

H(k; f ) with f (k)
the magnitude of a discrete Fourier transform (i.e.,
fast Fourier transform) of a given windowed signal
f
(
k
)
=

∣∣∣∑n−1
m=0 w (x) exp(−2πikm/n)

∣∣∣ , k = 0, .., n/2 and
H(k; f ) is a transfer function of a given filter bank for a
characteristic frequency in a linear scale (Hz). Various filter
banks based on behavioral psychophysical experiments have
been used: e.g., Mel-scale and Bark-scale. The logarithm of
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magnitude is more often used. This describes acoustic energy
decomposed in frequency bands.

- Cepstral coefficient: C
(
w, k

)
=
∑p−1

f=0 S
(
w, f

)
cos[

π
n
(
f + 1

2
)

k
]
, k = 0, . . . , p− 1 for a spectrogram defined

over p frequency bands. Because in most of natural stimuli,
spectrograms have high spectral dependency (magnitudes in
adjacent channels are similar), discrete cosine transform is used
to further compress and orthogonalize the spectrogram.

- Spectral flux: L (wi,wi−1; S) = ‖S(wi)− S(wi−1)‖2 with
S(wi) a spectrum (or a cepstrum) for the i-th window. It could be
more sensitive to frequency-specific energy changes compared
to the RMS. Given that natural musical pieces could have widely
various spectra (i.e., unnormalized), in some cases, this metric
could mainly reflect the spectral density.

- Spectral centroid: N (w; S) =
∑F−1

f=0 K(f )S(w, f )/∑
f = 0F−1S(w, f ) for a given filter bank S that constructs

the spectrogram S(w, f ) over p frequency bins with
characteristic frequencies K(f ). That is, a weighted average
of characteristic frequencies K(f ) of where the weights are
normalized magnitudes.

- Key clarity: K (S) = maxi∈K corr (ψi, θ(S)) where K is a
set of all 12 major and 12 minor keys, ψi is the tonal stability
profile of the i-th key (Krumhansl and Shepard, 1979), and θ (·)

is a chromagram of a given spectrogram (a power spectrum
for 12 pitch classes based on the standard 440-Hz tuning). The
key similarity (i.e., corr (ψi, θ(S)) ) can be used to find a most
possible key. The maximal correlation with any key is used as a
measure of the key clarity.

- Pulse clarity: P (E) = maxl∈L
∑n−1

x=0 E(x)E(x− l) where L
is a set of lags. That is, maximal autocorrelation of the envelope
at any lag is used as a measure of pulse clarity.

It should be noted once again that the primary goal of
the MIR features is to describe audio contents at a low
computational cost (e.g., real-time computation for automatic
music identification services such as Shazam), rather than
to describe psychological correlates of acoustic properties
(Aucouturier and Bigand, 2012). Therefore, the names of the
MIR features are only to serve practical purposes (i.e., they
make it easier for human users to remember than numerical
indices) and are at best suggestive, but do not necessarily allow
for psychological interpretations. One example could be “key
clarity.” Because it is a maximal correlation with any possible
key, it rather describes how clear a key is to an algorithm
based on Krumhansl’s profiles and cross-correlation than how
it sounds to general human listeners. This discrepancy may
be negligible when estimating a key based on a chromagram
averaged across a whole excerpt as done in the original algorithm
(Gómez, 2006). However, when the metric is calculated for
short (1–3 s) frames, the discrepancy can be non-trivial. In
principle, any clearly presented triad can have a high “key
clarity” value even if the chord is distant from the dominant
key along the circle of fifths. That is, even if a chord is tonally
unstable, disturbing the overall tonality (e.g., Db major triad

in C major key; i.e., the famous Neapolitan chord), its “key
clarity” could be as high as C major triad in C major key (i.e.,
tonic). A similar discrepancy could exist for other metrics, such
as “pulse clarity,” when they are computed for short frames.
Thus, readers who wish to better understand the nature of
MIR features are strongly encouraged to study the documents
provided by the developers of respective implementations.
Only for intuitive illustrations, readers can find exemplary
audio clips with minimal or maximal values of the listed
MIRtoolbox features from 985 intact songs (Sturm, 2013) in
GTZAN Musical Genre Dataset (Tzanetakis and Cook, 2002)5

in Supplementary Files 1, 2.
One of the most exciting characteristics of the MIR

models lies in the open-source principle: many well-maintained
packages are freely available online: e.g., librosa (McFee et al.,
2015)6, MIRtoolbox (Lartillot and Toiviainen, 2007)7, Essentia
(Bogdanov et al., 2013)8, and more9. This has allowed for
a rapid adaptation of MIR features in predicting neural
responses to natural music in EEG data (Cong et al., 2012,
2013; Sturm et al., 2015, 2017; Stober, 2017; Kaneshiro et al.,
2020; Wang et al., 2020; Leahy et al., 2021), intracranial
EEG data (Sturm et al., 2014; Omigie et al., 2020), and
fMRI data (Alluri et al., 2012, 2013; Toiviainen et al., 2014;
Casey, 2017; Hoefle et al., 2018). These studies consistently
revealed that the MIR features extract relevant information
that is predictive of ongoing neural activity during naturalistic
music listening. Some features seem to be more reliable than
others in predicting fMRI signals. In particular, when a lasso
regression with a fixed canonical hemodynamic function was
used as a predictive model (Alluri et al., 2012; Burunat
et al., 2016), short-term features that are based on a 25-
ms window (mostly describing spectral contents and their
short-term dynamics) showed greater reliability than long-
term features that are based on 3-s window (“key clarity”
and “pulse clarity”) (Burunat et al., 2016). The “long-term”
measures attempted to capture higher-level perceptions, such
as tonal center or meter recognition. While the long-term
features could still be useful for differentiating musical pieces
(thereby decoding perceived emotions and musical genres from
music signals), the studies show that localizing the neural
correlates of musical percepts in time can be difficult. In a
recent study (Leahy et al., 2021), differential encoding of meters
and beats (e.g., for a 4/4 time signature, strong-weak-middle-
weak vs. four beats without accents) was detected in human
EEG data using an automated beat-tracking algorithm (McFee

5 https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-
music-genre-classification

6 https://librosa.org

7 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/
mirtoolbox

8 http://essentia.upf.edu/

9 https://www.ismir.net/resources/software-tools/
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et al., 2015). This suggests that an improvement of linearization
may lead to applications of encoding models beyond low-level
sensory processing.

It would also be worth mentioning, although it slightly
deviates from the main focus of the current review, that
the MIR models can be used to objectively describe acoustic
features of natural musical stimuli in controlled experiments
(see, e.g., Whitehead and Armony, 2018). Given that the
MIR features would be more sensitive than traditionally
used aggregated metrics such as overall RMS, loudness, and
spectra, the MIR models can be used as tools to control or
match nuisance variability in stimuli. Alternatively, biological
models, more explicit modeling of the neural activation
throughout the auditory pathway, can also be used to
match global statistics (e.g., the first four moments [mean,
variance, skewness, and kurtosis] of the cortical representations)
(Norman-Haignere and McDermott, 2018).

Another usage of the MIR model is an automatic annotation
of musical events to perform analyses comparing neural
responses among different events or correlating an aggregated
metric of neural responses with the extracted features: e.g.,
event-related potential in EEG data (Poikonen et al., 2016a,b),
dynamic functional connectivity analysis in fMRI data (Singer
et al., 2016; Toiviainen et al., 2020), and inter-subject
synchronization in fMRI data (Trost et al., 2015; Sachs et al.,
2020). However, while traditional methods are computationally
efficient and readily available, their performance needs to
be taken with caution. In a recent EEG study (Haumann
et al., 2021), the MIRtoolbox missed 41.6–45.0% (based on
either RMS or spectral flux) of perceivable onsets that were
manually detected by an expert rater (i.e., a musicologist),
which deteriorated the following EEG analyses based on the
automatically extracted onsets. Recent models based on neural
networks such as Madmom (Eyben et al., 2010)10 are known
to outperform traditional onset extraction models (∼7% error
rate when tested on datasets including music with percussive
sessions), which encourages researchers not to be restricted by
the traditional models.

More recently, pretrained DNN models have been used to
extract their embeddings in new MIR research (Lee and Nam,
2017; Grekow, 2021; Grollmisch et al., 2021). In particular,
VGGish [Visual Geometry Group-ish] (Hershey et al., 2017)
and Open-L3 [Look, Listen, and Learn more] (Cramer et al.,
2019) are CNNs that were developed to generate text labels
for given short (∼1 s) audio signals. Both models are pre-
trained on large-scale video data (i.e., 60 million AudioSet clips
and 8 million YouTube clips) exploiting the correspondence
between image and audio data in video sources. In a sense,
the networks effectively learn the second-order isomorphism
between the image frames and the audio spectrograms. The

10 https://madmom.readthedocs.io/

possibility of a transfer learning of these networks to MIR
tasks has been investigated. Koh and Dubnov (2021) extracted
audio embeddings using the VGGish and Open-L3 models,
then created shallow classifiers (e.g., SVM, Naïve Bayes,
and Random Forest) to decode emotional classes (e.g., four
quadrants on the Arousal-Valence space or six emotional
categories). The CNN embeddings outperformed (32–88% in
decoding accuracy) the conventional MIR descriptor (e.g.,
Mel-Frequency Cepstral Coefficient [MFCC] as a baseline;
31–46%), demonstrating their relevance to music emotion
recognition at the excerpt level. In visual domain, the CNN
embeddings of images have been found to be related to affective
ratings and fMRI responses in univariate and multivariate
fashions (Kragel et al., 2019; Horikawa et al., 2020; Koide-
Majima et al., 2020), suggesting distributed representations of
emotion-specific features (i.e., high-order statistical descriptors
of physical properties that are differentially associated with
diverse emotions) in the human cortical networks (Sievers et al.,
2021). Taken together, DNN embeddings of music are expected
to serve as effective predictors for the MIR tasks and the neural
encoding analysis.

Computational musicological models

In computational musicology, music is often modeled as
a sequence of symbols (e.g., a sequence of notes forms a
melody of one part, a sequence of chords forms harmonic
progressions and tonality). While this approach ignores multiple
“unscored” variability in music signals including timbre,
dynamics, and tempo, which are known to be very relevant
to emotional responses and associated neural activity (Chapin
et al., 2010; Bresin and Friberg, 2011; Trochidis and Bigand,
2013), this approach enables scalable analyses on musical
structures (Rohrmeier and Cross, 2008; Moss et al., 2019;
Rohrmeier, 2020; Hentschel et al., 2021). That is, once
symbolic representations are collected, an analysis can be
scaled up to a large volume of corpora using computers, a
task that would take decades or more for human experts
(musicologists) to complete. Moreover, neuroscientific studies
based on this approach have investigated how the musical
structures form anticipations in spectral and temporal domains
in listeners’ minds and how they evoke emotional responses
via suspended fulfilment or betrayal of such anticipations
(for a review of the “predictive coding of music” model, see
Vuust et al., 2022).

One successful model, called Information Dynamics Of
Music (IDyOM; Pearce, 2005), is a variant of the n-gram model
(Shannon, 1948) based on a combinatory n-gram model called
Prediction by Partial Match (PPM; Cleary and Witten, 1984).
For a given sequence with k events s = {e1, e2, . . . , ek} where
ei denotes the i-th event in the sequence and all discrete events
are from a finite set (ei ∈M) and a sub-sequence from the i-th
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event to the j-th event is denoted as sj
i =

{
ei, ei+1, . . . , ej

}
, the

conditional probability to observe an event ei after observing a
preceding sequence si−1

1 can be approximated by the (n-1)-th
order Markov (i.e., n-gram) model, whose maximum likelihood
(ML) estimate is given as:

Pr
(

ei|si−1
1

)
≈ P̂rn

(
ei|si−1

1

)

=


1/ |M| , c

(
ei|si−1

(i−n)+1

)
= 0

c
(

ei|si−1
(i−n)+1

)
∑

d∈M c
(

d|si−1
(i−n)+1

) , otherwise

(22)

where |·| denotes the number of elements of a set (i.e.,
cardinality); c (e|s) is the number of counts (in the training
sets or corpora) of an event e after a sequence s from
a given training set; and d is any event from the finite
set M. When the transition appears for the first time, a
fixed probability based on the size of the set M can be
defined (Pearce, 2005). Put differently, the model estimates
the probability by counting transitions in the training set.
To allow the model to flexibly learn musical styles across
compositions and the local context within each composition,
long-term models (counting transitions only across corpora)
and short-term models (counting transitions only within the
current composition) were combined (Pearce, 2005; Harrison
and Pearce, 2018) as in the PPM model (Cleary and Witten,
1984). A Common LISP implementation of the model is
available online11. This particular model has been developed to
predict the pitch and duration of coming notes in monopoly
melodies. This allows us to compute the uncertainty of the
context (i.e., entropy) and the negative log likelihood of a certain
event (i.e., the change of entropy, also known as information
content or surprisal) and has successfully predicted neural data
(EEG and ECoG from different participants) while listening
to MIDI-generated piano melodies extracted from J. S. Bach’s
Chorales via encoding models (Di Liberto et al., 2020) in line
with a previously reported association between conditional
probability and evoked neural responses demonstrated with
brief orthogonalized stimuli (Koelsch and Jentschke, 2010;
Kim et al., 2011). A behavioral study using MIDI-generated
flute melodies from classical compositions revealed that the
information content had an inverted U-shaped effect (i.e.,
the “Wundt” effect; Wundt, 1874) on mean liking (i.e., an
intermediate level of surprisal was preferred over extreme
levels), and this effect was modulated by the uncertainty
of contexts (Gold et al., 2019). Using a more generalized
variant of PPM with memory decay over time, a similar
antisymmetric pattern of behavioral responses (preferences

11 http://mtpearce.github.io/idyom/

for low-uncertainty/high-surprisal or for high-uncertainty/low-
surprisal pairs) was reported in an fMRI experiment using chord
sequences extracted from McGill Billboard corpus (Cheung
et al., 2019), where the interaction between the uncertainty
and information content was parametrically localized in
clusters over the amygdala/hippocampal complex and medial
auditory cortices.

A more commonly used model in symbolic analyses
(Mor et al., 2020) is a hidden Markov model (HMM;
Baum and Petrie, 1966). The HMM models conditional
probabilities between latent (non-observable) states rather than
between surface (observable) states, which allows for non-
local dependencies and underlying (non-observable) structures
in musical compositions to be explicitly expressed (Pearce
and Rohrmeier, 2018). Various kinds of HMM models have
been used to model different musical structures including
melody, rhythm, and harmony (Raphael and Stoddard,
2004; Mavromatis, 2009). The HMM models showed greater
prediction performance than n-gram models for certain musical
structures (e.g., chord progressions in a jazz corpus; Rohrmeier
and Graepel, 2012). However, the application of the HMM
in related studies has been done mainly as a classifier that
decodes entire musical pieces or genres from EEG signals (Kaur
et al., 2017; Ntalampiras and Potamitis, 2019) rather than as a
predictive model of musical structures.

Generative neural network models

It has been argued that a prominent method for
understanding the statistical structures of natural data is
to create a system that can synthesize data de novo (Odena
et al., 2017). Even if Richard Feynman’s famous dictum
(“What I cannot create, I do not understand”) is true, only its
contrapositive (“What I understand, I can create”) is also true,
not its inversion (“What I can create, I understand”). That is,
creating synthetic data would be necessary, but not sufficient,
for understanding data. Having said that, various DNN models
for music generation have been developed both in the audio and
symbolic domains demonstrating the improvements in building
such a synthetic system. While the successful performance of
such models (e.g., synthetic speech and music that are physically
and perceptually similar to real data) does not entail that the
model “understands” the natural structures, it has drawn great
attention in various fields (see Section “Interpretations of
high-dimensional models”).

As an example of a symbolic CNN model, MidiNet is
a modified deep convolutional generative adversarial network
(Yang et al., 2017), where a generator network G generates
artificial data to “fool” a discriminator network D, which
distinguishes real data from generated data. For a given t × p
binary matrix X that encodes onsets of notes over p pitch classes
and t time steps (quantized beats) and a random noise vector
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z, the objective function of the generative adversarial networks
(GANs) is given as:

min
G

max
D

V (D,G) = EX∼pdata(X) log D (X)

+Ez∼pz(z)log (1− D (G (z))) (23)

where X ∼ pdata(X) denotes the sampling from real data and
z ∼ pz(z) denotes the sampling from a random distribution.
The output of the generator G (·) = X̂ is a generated “score”
with a random input, and the output of the discriminator D (·)
is in [0, 1] such that 1 for real data and 0 for generated data.
Over iterations, the G learns weights that minimize this function
(e.g., D(G (z)) ≈ 1) while the D learns weights that maximizes it
(e.g., D(G (z)) ≈ 0). Further details including stabilization and
conditioning can be found in the publication (Yang et al., 2017).

Amongst symbolic RNN models, Melody RNN by Google
Magenta12 and Folk-RNN13 are well known. Both use long short-
term memory (LSTM) units (Hochreiter and Schmidhuber,
1997) to model non-local dependencies. In particular, Folk-
RNN is an RNN with three LSTM layers of 512 units (Sturm
et al., 2016a), of which a vast number of parameters (over 5.5
million) were trained over 23,000 transcriptions of traditional
tunes from Ireland and the UK (with over 4 million tokens
[discrete classes of music notation including meter, mode,
pitch, and duration]).

In the audio domain, WaveNet14 by DeepMind is a CNN
model that operates on individual audio samples (i.e., amplitude
at each time-point) at 16 kHz (Oord et al., 2016). Unlike image-
CNN models, all connections between layers were causal (i.e.,
only nodes that process previous and current, but not following,
time steps are connected to a node in a higher layer), so that the
temporal order of the underlying structures in the audio data
can be preserved.

Another well-known architecture for generative models is
a variational autoencoder (VAE; Kingma and Welling, 2013),
which introduced a variational Bayesian approach to “non-
linear principal component analysis” (Kramer, 1991). The
VAE models comprise an encoder, which finds efficient latent
representations that are continuous (i.e., being able to be
interpolated) and interpretable (i.e., the Euclidian distance
between two classes in the latent space reflects “semantic”
distance between two classes), and a decoder that generates
new data from samples in the latent space. MusicVAE by
Google Magenta is a symbolic model (Roberts et al., 2018) and
Jukebox15 by OpenAI is an audio model (Dhariwal et al., 2020).

12 https://github.com/magenta/magenta/tree/main/magenta/
models/melody_rnn

13 https://github.com/IraKorshunova/folk-rnn

14 https://www.deepmind.com/blog/wavenet-a-generative-model-
for-raw-audio

15 https://openai.com/blog/jukebox/

In general, multiple time scales or hierarchical structures are
used to capture non-local dependency in musical structures. In
particular, Jukebox first learns latent representations of audio
samples at three temporal scales (i.e., a sequence of 8, 32,
128 audio samples at 44,100 Hz) using VAE, then quantizes
learned patterns into discrete tokens. Then, a transformer is
trained on the tokens with a context covering ∼23 s at the
longest temporal scale. In a recent study (Castellon et al., 2021),
the middle layer of the transformer (4,800 features), which
describes the 23-s audio patterns, showed a better performance
in predicting arousal and valence ratings (66.9%) as compared
to other models including a MFCC model (37.2%) and a
CNN model (58.5%).

Recently, VAE models were shown to decode highly realistic
face images from fMRI data (VanRullen and Reddy, 2019;
Dado et al., 2022). In those studies, latent representations of
face images (i.e., a high-dimensional vector representing an
image) were extracted using the encoders of the VAE models,
then these were used as predictors for fMRI responses (as a
weighted linear sum of the vectors) to the corresponding face
images. Using this linear model, latent representations were
predicted for unseen images using fMRI responses. Finally,
using the decoders of the VAE models, face images were
reconstructed from the estimated latent representations. These
experiments suggest a high similarity in information structures
that the generative models and the brain extract from natural
images. However, whether this can be generalized to the music
domain, in particular in relation to musical emotion, remains to
be investigated.

Challenges and perspectives

Stimuli for predictive modeling

So far, we have discussed why naturalistic stimuli are
needed. To summarize, (1) the non-linearity of the neural
system renders responses to controlled stimuli weak, (2)
the external validity of a controlled experiment can be
highly limited when applied to a non-linear system, and (3)
recent developments of computational models of natural data
provide testable models of non-linear transforms. However,
there are also clear disadvantages of natural stimuli for
experiments, which keep researchers inclined to orthogonalized
stimuli (Hamilton and Huth, 2020): (1) multicollinearity,
(2) over/under-representation, and (3) domain-specificity. As
shown in Equation 9, the estimate of an encoding model reflects
the serial-correlation of features and the multicollinearity
among features, which would be minimized when white noise
is used as a stimulus. In natural music, similarly to many other
natural stimuli, various properties are often highly correlated
(e.g., the strong correlation between pitch and onset density
in a Western corpus; Broze and Huron, 2013); many features
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follow the power-law distributions (e.g., pitch, chord transition,
and timbre in classical corpora, contemporary Western popular
music, and cross-cultural corpora of folk songs; Serrà et al.,
2012; Mehr et al., 2019; Moss et al., 2019); and the patterns
of multicollinearity are variable across musical styles, cultures,
and time (Broze and Huron, 2013; White, 2014; Pearce,
2018). Furthermore, a small (n = 10–20) set of exemplary
stimuli typically used in neuroimaging experiments could over-
represent certain covariance patterns that are different from the
population of natural stimuli.

A brute-force approach to mitigating this problem would
be to sample a massive set of stimuli. For example, the Natural
Scenes Dataset (Allen et al., 2022) comprises ∼38 h/subject
of 7-T fMRI data collected over ∼40 sessions watching
10,000 pictures of natural scenes with three repetitions,
resulting in a total of 70,566 unique pictures from 8 subjects.
Interestingly, but unsurprisingly, the DNN models predicted
brain responses worse than did a traditional model (i.e., Gabor
wavelet) with small samples (e.g., when trained on < 1,000
pictures with three repetitions) in some subjects, but were far
better with more samples (e.g., > 3,000 pictures with three
repetitions). If such massive-stimulus (i.e., “deeply-sampled”)
high-quality datasets with naturalistic music are shared as open-
source resources, it would foster rapid advances in the field
(Poldrack and Gorgolewski, 2014).

While the large-scale stimuli data are necessary to
investigate how the biases and variance in small sets impact
estimates, there can be specific cases where only limited stimuli
can be used (e.g., pediatric or elderly populations, epileptic
patients undergoing neurosurgery). In such cases, a stimuli
selection can be made in order to reduce multicollinearity and
alleviate over/under-representation. Insofar as such a selection
could degrade the ecological validity of the experiment to some
extent, an optimal tradeoff should be carefully determined.

Neural measurements

Encoding and decoding models can suffer from excessive
noise in data, which is typically very high in most of the
non-invasive measurements of neural signals. For instance,
the fractional signal change induced by neuronal activity is
estimated to be 1–2% at 3 T (Uludağ et al., 2009) and a
simulation study found the SNR of M/EEG signals between –
30 and –20 dB (Goldenholz et al., 2009). Especially for long,
complex naturalistic stimuli, it can be difficult (or could violate
assumptions such as non-familiarity of presented stimuli) to
repeat the identical stimuli many times, which is a commonly
used denoising technique (e.g., event-related potentials),
whereby many trials with identical stimuli are averaged to
cancel out non-stimulus-locked activities. Alternatively, there

are denoising techniques that have been used for resting-
state fMRI data, which is also, in a sense, single-trial data.
The methods for suppressing non-physiological noise (e.g.,
spin-history artifacts due to head motions) and non-neural
noise (e.g., fluctuations due to cardiac pulses and respirations)
in fMRI data (see Caballero-Gaudes and Reynolds, 2017 for
a review) include: RETROICOR (image-based retrospective
correction; Hu et al., 1995), CompCor (component based noise
correction; Behzadi et al., 2007), and ICA-AROMA (ICA-
based automatic removal of motion artifacts; Pruim et al.,
2015); these methods have been widely used for resting-
state data and are applicable for naturalistic experiments as
well. Task-based denoising techniques, such as GLMdenoise
(Kay et al., 2013) and GLMsingle (Prince et al., 2021),
that extract principal components that are not related to
the experiment design has been used for encoding models
with naturalistic stimuli and found to be beneficial for
multivariate pattern analysis (Charest et al., 2018). Recently,
a DNN-based interpolation method that reconstructs fMRI
volumes while removing independent noise has been developed
(Lecoq et al., 2021).

Multi-echo fMRI sequence (Posse et al., 1999) with
a dedicated denoising technique (i.e., ME-ICA, multi-echo
imaging with spatial independent component analysis; Kundu
et al., 2013) has been suggested to separate BOLD signals
(i.e., physiological) from other signals (e.g., non-physiological
artifacts such as head motion, thermal noise from subjects
and electronics, device imperfection) by exploiting a linear
dependency of the BOLD effect on echo times. Although multi-
echo fMRI requires a larger voxel and/or a longer time of
repetition (TR) than the standard fMRI sequence for multiple
readouts [e.g., ∼4-mm iso-voxel and TR of 2 s in multi-echo
fMRI (Kundu et al., 2013) as compared to 2-mm iso-voxel and
TR of 2 s in conventional single-echo fMRI, i.e.,∼8 times larger
in volume], simultaneous multi-slice (also known as multi-
band) acceleration techniques are expected to make the spatial
and temporal resolutions of the multi-echo fMRI comparable to
single-echo fMRI (Kundu et al., 2017).

Besides the lab-based neural measurements that require
gigantic machines such as fMRI and MEG, wearable and
portable EEG systems have been developed and already used
in various naturalistic paradigms. For instance, wireless EEGs
were used for hyper-scanning two pianists performing a
piano duet (Zamm et al., 2020); and wireless systems were
used to simultaneously collect physiological activity (e.g.,
electrocardiogram, facial muscle electromyogram, respiration,
heart rates) from whole audiences (∼40 participants per
concert) attending live string quintet performances (Czepiel
et al., 2021; Merrill et al., 2021; Tschacher et al., 2021). In
particular, the feasibility of a wireless in-ear EEG system has
drawn considerable attention (Looney et al., 2014; Bleichner
and Emkes, 2020; Nithya and Ramesh, 2020). A built-in EEG
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system in everyday devices (e.g., wireless in-ear headphones)
might open a new possibility of collecting neural data from
millions of people while they listen to their favorite music in
their day-to-day lives.

Interpretations of high-dimensional
models

It may be broadly accepted that DNN models can serve,
with caution, as functional models of some aspects of human
cognition (notions such as ‘a DNN model processes similar
information as humans do for certain tasks for some aspects’).
But whether they can serve as a mechanistic model, even
for a particular domain, (ideas such as ‘weights of a certain
layer in a DNN model correspond to effective connectivity
between neurons in a human brain’) remains under debate
(Kay, 2018). In fact, this point has created heated discussions
in the field of cognitive neurosciences (Kriegeskorte, 2015;
Kay, 2018; Cichy and Kaiser, 2019; Kell and McDermott, 2019;
Kriegeskorte and Golan, 2019; Lindsay, 2021; Pulvermüller et al.,
2021). In particular, it has been pointed out that evidence and
counterevidence should be examined in an unbiased fashion
(Guest and Martin, 2021).

A promising approach has been suggested that involves
investigating, instead of the first-order isomorphism between
the physical properties of an object and its representation in a
system, the second-order isomorphism between representations
of multiple objects in multiple systems (Kriegeskorte et al.,
2008). Investigating the representations in systems is consistent
with efforts to “understand” (or interpret) the high-dimensional
models. Various techniques for the interpretation of the DNN
models have also been vigorously discussed and developed
(Sturm et al., 2016b; Montavon et al., 2018; Sturm, 2018;
Keshishian et al., 2020). In particular, Kay (2018) summarized
three practical approaches for deepening our understanding
of high-dimensional models: (1) we can observe the model’s
behaviors to stimuli (i.e., mapping to the lower, intuitive
space), (2) we can manipulate the models (i.e., perturbing
parameters and observing performance chances), and (3) we can
model a model (i.e., creating a simpler form that approximates
the model’s simulated behaviors). Efforts to understand how
models process musical information would be critical to
deepening our intuitions as to how the human brain processes
musical information.

Conclusion

The current review discussed predictive models used for
encoding and decoding analyses and music models that capture
acoustics and underlying structures. In particular, predictive
models have introduced a reproducible form of cognitive

neuroscience and computational models have provided us
with quantitative metrics that can be compared with neural
representations of natural music. Novel data with large-scale
stimuli and high-dimensional models are expected to allow us
to better handle the non-linearity of the musical brain.
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