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Purpose: Many epidemiological studies suggest that lower education levels

and vascular risk factors increase the likelihood of developing Alzheimer’s

disease dementia (ADD) and subcortical vascular dementia (SVaD). However,

whether the brain-battering hypothesis can explain the relationship between

education levels and the clinical diagnosis of dementia remains controversial.

The objective of this study was to investigate whether vascular risk factors

mediate the association between education level and the diagnosis of amyloid-

beta positive (Aβ+) ADD and amyloid-beta negative (Aβ-) SVaD.

Methods: We analyzed 376 participants with Aβ normal cognition (Aβ- NC),

481 with Aβ+ ADD, and 102 with Aβ- SVaD. To investigate the association of

education level and vascular risk factors with these diagnoses, multivariable

logistic regression analysis was used, with age, sex, and APOE ε4 carrier status

used as covariates. Path analysis was performed to investigate the mediation

e�ects of hypertension on the diagnosis of Aβ- SVaD.

Results: The Aβ- SVaD group (7.9± 5.1 years) had lower education levels than

did the Aβ- NC (11.8 ± 4.8 years) and Aβ+ ADD (11.2 ± 4.9 years) groups.

The frequencies of hypertension and diabetes mellitus were higher in the Aβ-

SVaD group (78.4 and 32.4%, respectively) than in the Aβ- NC (44.4 and 20.8%)

and Aβ+ ADD (41.8 and 15.8%, respectively) groups. Increased education level

was associated with a lower risk of Aβ- SVaD [odds ratio (OR) 0.866, 95%

confidence interval (CI), 0.824–0.911], but not Aβ+ ADD (OR 0.971, 95% CI

0.940–1.003). The frequency of hypertension was associated with a higher risk

of developing Aβ- SVaD (OR 3.373, 95%CI, 1.908–5.961), but not Aβ+ ADD (OR

0.884, 95% CI, 0.653–1.196). In the path analysis, the presence of hypertension
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partially mediated the association between education level and the diagnosis

of Aβ- SVaD.

Conclusion: Our findings revealed that education level might influence

the development of Aβ- SVaD through the brain-battering hypothesis.

Furthermore, our findings suggest that suitable strategies, such as educational

attainment and prevention of hypertension, are needed for the prevention of

Aβ- SVaD.
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Introduction

Alzheimer’s disease dementia (ADD), characterized by

amyloid-beta (Aβ), and subcortical vascular dementia (SVaD),

indicated by extensive white matter hyperintensities (WMH),

are the two most common causes of dementia. Low educational

attainment has been regarded as a risk factor for these two types

of dementia (Katzman, 1993; Caamaño-Isorna et al., 2006; Sharp

and Gatz, 2011). As one of the supporting hypotheses, the brain-

battering hypothesis was suggested (Del Ser et al., 1999). This

theory postulates that individuals with lower education are likely

to have lower socioeconomic status (SES) that is subsequently

related to lower health consciousness, bad habits, exposure

to various toxins, and uncontrolled vascular risk factors than

those with higher education and associated higher SES. Thus,

individuals with lower education and more vascular risk factors

are likely to develop brain pathologic burdens, which result in

the development of dementia (Del Ser et al., 1999; Meng and

D’Arcy, 2012). This brain-battering hypothesis is in comparison

with the cognitive reserve (CR) theory which explains that lower

educated individuals cannot cope with pathological changes in

the brain and consequently are more likely to develop dementia.

Thus, we consider that the CR theory explains the difference in

clinical manifestation according to education when pathologic

burdens are equal, while the brain-battering hypothesis may

explain the difference in the probability of pathologic burden

development according to education levels. Compared to the CR

theory, the brain-battering hypothesis has been scarcely studied,

especially in terms of its relation to two major pathologies

of dementia.

To understand how a brain-battering hypothesis works in

each phenotype, it is necessary to entangle the association

between education, related risk factors, and each type of

dementia. In fact, a previous study investigated this relationship,

demonstrating that the association between education and risk

of dementia was independent of SES, vascular or lifestyle

characteristics (Ngandu et al., 2007). However, this study did not

discriminate against dementia subtypes, which limits a separate

interpretation in ADD and SVaD.

Considering that the brain-battering hypothesis is closely

related to vascular risk factors, in this study, we aimed

to examine the brain-battering hypothesis in two dementia

subtypes by investigating whether two well-known vascular risk

factors—hypertension and diabetes mellitus (DM)—mediate

the association between education levels and the development

of ADD and SVaD. Here, we used Aβ positron emission

tomography (PET) imaging to discriminate a pure form of ADD

(Aβ+ ADD) and SVaD (Aβ- SVaD) from patients with mixed

or other possible pathologies. Many studies have suggested that

vascular risk factors increase the development of dementia,

especially SVaD (Launer et al., 2000; Kivipelto et al., 2005;

Duron and Hanon, 2008; Rönnemaa et al., 2011; Caruso

et al., 2019; Moretti and Caruso, 2020; Malik et al., 2021).

However, it is controversial that vascular risk factors are directly

associated with AD pathology (Chui et al., 2011). Therefore, we

hypothesized that the brain-battering hypothesis would explain

the relationship between education levels and the development

of dementia in patients with Aβ- SVaD, rather than in patients

with Aβ+ ADD (Scarmeas et al., 2003).

Materials and methods

Participants

We consecutively recruited 2,274 participants from the

memory clinic in the Department of Neurology at the Samsung

Medical Center (SMC) in Seoul, Korea, between 2008 and

2020. All participants underwent brain magnetic resonance

imaging (MRI) and Aβ PET, including 11C-PiB PET, 18F-

florbetaben PET, and 18F-flutemetamol PET. Among them,

464 were normal cognition [NC], 589 were ADD, and

177 were SVaD. Participants with ADD met the National

Institute on Aging-Alzheimer’s Association diagnostic criteria

(McKhann et al., 2011). Participants with SVaD met the

criteria described in the Diagnostic and Statistical Manual of

Mental Disorders–Fourth Edition (Bell, 1994) and had severe

WMHs on fluid-attenuated inversion recovery (FLAIR) images
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(Kalaria and Erkinjuntti, 2006), which satisfied the following

criteria: (1) WMH ≥10mm in the periventricular white matter

(caps or rim); and (2) WMH ≥25mm (maximum diameter) in

the deep white matter, consistent with extensive white matter

lesions or diffusely confluent lesions. We excluded participants

who met any of the following conditions: (1) WMH due to

etiologies other than vascular pathology, such as radiation

injury, multiple sclerosis, leukodystrophy, or metabolic/toxic

disorders; and (2) the presence of cerebral infarction, including

large territory infarction and small cortical infarction, brain

tumor, or vascular malformation on MRI. Participants with

NC comprised healthy controls who visited the memory

clinic for early prevention of dementia, healthy volunteers

for comprehensive dementia evaluation, and participants with

subjective cognitive complaints. All participants with NC met

the following criteria: (1) no medical history that is likely to

affect cognitive function based on Christensen’s health screening

criteria (Christensen et al., 1991), (2) no objective cognitive

impairment from a comprehensive neuropsychological test

battery on any cognitive domains (at least –1.0 SD above age-

adjusted norms on any cognitive tests); (3) independence in

activities of daily living; and (4) no structural lesions or severe

WMH on brain MRI.

All participants were assessed through clinical interviews

and neurological examinations, and clinical diagnoses were

established by consensus among a multidisciplinary team. Blood

tests included complete blood count, blood chemistry, vitamin

B12/folate measurement, syphilis serology, thyroid function test,

and APOE genotyping. Participants were excluded if they had

territorial infarctions, cortical strokes, brain tumors, or vascular

malformations on MRI.

Standard protocol approvals,
registrations, and participant consent

Written informed consent was obtained from all

participants. This study was approved by the Institutional

Review Board of the SMC. All procedures were performed in

accordance with the approved guidelines.

Acquisition of amyloid PET and data
analysis

All participants underwent Aβ PET: 11C-PiB PET scans

were conducted in 117 participants, 18F-florbetaben PET scans

in 521 participants, and 18F-flutemetamol PET scans in 592

participants at the SMC using a Discovery STE PET/computed

tomography scanner (GE Medical Systems, Milwaukee, WI,

United States). For 11C-PiB PET, a 30-min static emission PET

scan was performed 60min after a bolus injection of amean dose

of 420 MBq. For 18F-florbetaben PET and 18F-flutemetamol

PET, a 20-min emission PET scan in dynamic mode (consisting

of 4× 5min frames) was performed 90min after an injection of

a mean dose of 311.5 MBq and 197.7 MBq for 18F-florbetaben

and 18F-flutemetamol, respectively.
11C-PiB PET was regarded as positive if the global PiB

uptake value was >1.5 (Lee et al., 2011). Florbetaben PET

was classified as positive if the amyloid-plaque load on the

florbetaben PET scan was visually rated as 2 or 3 on the brain

amyloid-plaque load scoring system, and flutemetamol PET

was classified as positive when one of the five brain regions

(frontal, parietal, posterior cingulate/precuneus, striatum, and

lateral temporal lobes) systematically reviewed for flutemetamol

PET was positive in either hemisphere (Kim et al., 2018). To

include participants with relatively pure pathology, we excluded

108 (18.3%) participants with Aβ- ADD, 75 (42.4%) participants

with Aβ+ SVaD, and 88 (19.0%) participants with Aβ+ NC.

Brain MRI scans

T2, T1, FLAIR, and T2∗-weighted GRE MRI images were

acquired from all participants at the SMC using the same 3.0-

Tesla MRI scanner (Philips, Best, the Netherlands). An Achieva

3.0-Tesla MRI scanner (Philips) was used to acquire three-

dimensional T1 turbo field echo MRI data from all study

participants, with the following imaging parameters: sagittal

slice thickness, 1.0mm with 50% overlap; no gap; repetition

time, 9.9ms; echo time, 4.6ms; flip angle, 8◦; and matrix size,

240× 240 pixels reconstructed to 480× 480 over a field view of

240 mm.

Neuropsychological tests

All participants underwent neuropsychological testing

using the Seoul Neuropsychological Screening Battery 2nd

edition for diagnostic purposes (Kang, and Na, 2012; Kang

et al., 2019). The battery comprised tests for attention,

language, calculation, praxis, visuospatial/constructive function,

verbal/visual memory, and frontal executive function, as

previously described (Seo et al., 2007).

Measurement variables

Medical assessments were conducted by medically trained

health professionals based on standard protocols. To evaluate

the level of education, we inquired about participants’ formal

education in detail, including whether they had completed

each educational level and the total duration of educational

attainment. We identified the cardiometabolic risk factors as

follows: hypertension (defined as the past medical history of

hypertension or the participant taking any antihypertensive

drugs at present), and diabetes mellitus (DM), defined as a
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previous history of DM or the participant currently taking

insulin or oral anti-diabetic medications].

Statistical analysis

The demographic and clinical differences between Aβ- NC

and Aβ+ ADD, or between Aβ- NC and Aβ- SVaD, were

analyzed using the Student’s t-test and chi-square test. To

investigate the relationship between the measurement variables

and dementia status, we performed multivariable logistic

regression analysis including age, sex, hypertension status, DM

status, APOE ε4 carrier status, and education level as covariates.

Path analysis was performed using the Mplus software

(version 8.0) to investigate whether vascular risk factors mediate

the effect of education on the development of dementia. Since

our model had binary dependent variables and mediators, we

used the weighted least squares method, which is widely used

in the analysis of categorical variables (Muthén and Muthén,

1998; MacKinnon et al., 2007). Indirect, direct, and total

effects were calculated to examine the effect of vascular risk

factors on the relationship between education level and the

development of dementia. First, we fitted a saturated model with

all associations. Subsequently, we considered years of education

as the predictor, vascular risk factors as the mediators, and

dementia as the binary outcome variable, after controlling for

age and sex.

Results

Demographics and clinical characteristics

The flowchart for the selection of study participants is shown

in Figure 1. A total of 376 Aβ- NC, 481 Aβ+ ADD, and 102 Aβ-

SVaD patients were finally included in the study. The clinical

characteristics of the study participants are shown in Table 1.

Aβ- SVaD (75.5 ± 7.1 years) was significantly older than Aβ-

NC (70.1 ± 7.1 years) and Aβ+ ADD (70.0 ± 8.8 years) (p <

0.05). Aβ- SVaD had lower education (7.9 ± 5.1 years) than did

Aβ- NC (11.8± 4.8 years) and Aβ+ADD (11.2± 4.9 years) (p<

0.05). The prevalence of APOE4 carriers was higher in the Aβ+

ADD group (54.9%) than in the Aβ- SVaD (21.6%) and Aβ- NC

(19.1%) groups. The frequencies of hypertension and DM were

higher in the Aβ- SVaD group (78.4 and 32.4%, respectively)

than in the Aβ+ ADD (41.8 and 15.8%, respectively) and Aβ-

NC (44.4 and 20.8%, respectively) groups.

FIGURE 1

Flowchart for subjects selection. PET, positron emission tomography; SMC, Samsung medical center; WMH, white matter hyperintensities; MCI,

mild cognitive impairment; VNCI, vascular no cognitive impairment; svMCI, subcortical vascular MCI; NC, normal cognition; ADD, Alzheimer’s

disease dementia; SVaD, subcortical vascular dementia.
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TABLE 1 Demographics and clinical characteristics.

Characteristics at the initial visit Aβ- NC (n= 376) Aβ+ ADD (n= 481) Aβ- SVaD (n= 102)

Age, y 70.1± 7.1 (55–87) 70.0± 8.8 (55–97) 75.5± 7.1 (55–92)a,b

Sex, female 241 (64.1) 292 (60.7) 70 (68.6)

Education years 11.8± 4.8 (0–21) 11.2± 4.9 (0–21) 7.9± 5.1 (0–18)a,b

Hypertension 167 (44.4) 201 (41.8) 80 (78.4)a,b

Diabetes mellitus 77 (20.5) 76 (15.8) 33 (32.4)a,b

APOE ε4 carriers 72 (19.1) 264 (54.9)a 22 (21.6)b

ap < 0.05 compared to NC.
bp < 0.05 compared to ADD.

NC, normal cognition; ADD, Alzheimer’s disease dementia; SVaD, subcortical vascular dementia.

Values are expressed as means± standard deviations (range) or numbers (%).

TABLE 2 Odds ratios of risk factors for ADD and SVaD.

Risk factor Aβ- NC vs. Aβ+ ADD Aβ- NC vs. Aβ- SVaD

Odds ratio (95% CI) Odds ratio (95% CI)

Sex, female 0.702 (0.507–0.971) 0.879 (0.501–1.542)

Age, y 0.997 (0.979–1.015) 1.100 (1.059–1.143)

Education, y 0.971 (0.940–1.003) 0.866 (0.824–0.911)

Hypertension 0.884 (0.653–1.196) 3.373 (1.908–5.961)

Diabetes mellitus 0.677 (0.462–0.991) 1.628 (0.926–2.862)

APOE ε4 carriers 5.158 (3.760–7.075) 1.046 (0.556–1.967)

NC, normal cognition; ADD, Alzheimer’s disease dementia; SVaD, subcortical vascular

dementia; CI, confidence interval.

Relationships between education and
dementia

Table 2 shows the results of multivariable logistic regression

analysis for the clinical predictors of the Aβ+ ADD and Aβ-

SVaD groups. An increased age independently predicted Aβ-

SVaD [odds ratio (OR) 1.100, 95% confidence interval (CI),

1.059–1.143], but not Aβ+ ADD (OR 0.997, 95% CI, 0.979–

1.015). An increase in the number of years of education was

independently associated with Aβ- SVaD (OR: 0.866, 95% CI:

0.824–0.911) but not with Aβ+ ADD (OR 0.971, 95% CI 0.940–

1.003). The presence of APOE4 carriers predicted Aβ+ ADD

(OR 5.158, 95% CI, 3.760–7.075), but not Aβ- SVaD (OR

1.046, 95% CI, 0.556–1.967). The frequency of hypertension

was independently associated with Aβ- SVaD (OR 3.373, 95%

CI, 1.908–5.961), but not with Aβ+ ADD (OR 0.884, 95% CI,

0.653–1.196).

Results of path analysis

To verify whether hypertension and DM act as mediators in

the relationship between educational level and Aβ- SVaD, the

dementia type which low education was only associated with,

we analyzed a mediated model, as shown in Figure 1. In the

relationship between education and Aβ- SVaD, lower education

was associated with a higher risk of Aβ- SVaD [total effect, β =

0.090, standard error (SE)= 0.016, p < 0.001]. In a mediation

analysis between education, hypertension, and Aβ- SVaD, lower

education was associated with a higher risk of hypertension (p=

0.004), which was further associated with a higher risk of SVaD

(p = 0.001) [indirect effect, β = −0.015; SE = 0.007; p = 0.037;

Bootstrap 95% confidence interval (CI) −0.033, −0.004]. In

addition, lower education was directly associated with a higher

risk of SVaD, even without the mediation of hypertension (direct

effect, β = −0.084; SE = 0.016; p < 0.001). In terms of the

relationship between education, DM, and Aβ- SVaD, education

was not associated with DM (p = 0.556), and DM was not

associated with a risk of Aβ- SVaD (p= 0.480), which supported

that DMdid notmediate the relationship between education and

Aβ- SVaD (indirect effect, β = −0.001; SE = 0.002; p = 0.759;

Bootstrap 95% CI −0.007, 0.003). The chi-square test of model

fit for the baseline model showed a value of 173.230 with p-value

< 0.001 (Figure 2; Table 3).

Discussion

In this study, we investigated the effects of vascular risk

factors on the association between educational level and the

risk of developing Aβ+ ADD or Aβ- SVaD. The major findings

of our study are as follows. First, lower education levels were

associated with a higher risk of Aβ- SVaD. Second, the presence

of vascular risk factors, particularly hypertension, was also

related to a higher risk of Aβ- SVaD, but not Aβ+ ADD.

Finally, path analysis showed that the presence of hypertension,

but not DM, partially mediated the relationship between

education level and diagnosis of Aβ- SVaD. Considered together,

our findings suggest that education level might influence

the development of Aβ- SVaD through the brain-battering

hypothesis, which particularly involves deleterious effects of

hypertension. Furthermore, our findings suggest that suitable
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FIGURE 2

Path analysis of education levels and vascular risk factors for dementia. DM, diabetes mellitus, SVaD, subcortical vascular dementia; β,

unstandardized beta; SE, standard error. **p-value < 0.005, ***p-value < 0.001.

TABLE 3 Relationship between education, vascular risk factors, and

SVaD.

β SE p-value

Education—SVaD

Direct effects

Education→ SVaD −0.084 0.016 <0.001

Education—Hypertension—SVaD

Direct effects

Education→ hypertension −0.035 0.012 0.004

Hypertension→ SVaD 0.436 0.137 0.001

Indirect effects

Education→ hypertension→ SVaD −0.015 0.007 0.037

Education—DM—SVaD

Direct effects

Education→ DM −0.008 0.013 0.556

DM→ SVaD 0.094 0.133 0.480

Indirect effects

Education→ DM→ SVaD −0.001 0.002 0.759

Covariates: age, sex.

SVaD, subcortical vascular dementia; DM, diabetes mellitus; SE, standardized error.

strategies, such as education and the prevention of hypertension,

are needed to prevent Aβ- SVaD.

Our first major finding was that lower education level was

associated with Aβ- SVaD, which is consistent with the results of

previous studies. One previous study revealed that cerebral small

vessel disease (CSVD), such as subcortical lacunar infarcts, white

matter lesions, and macroscopic infarcts, was more frequent

in individuals with lower education levels (64% incidence in

individuals with a below high school education level vs. 37%

incidence in individuals who had graduated high school) (Del

Ser et al., 1999). These results suggest that lower education

levels were correlated with increased risk for SVaD, as SVaD

is characterized by extensive CSVD (Erkinjuntti et al., 2000).

Another Aβ PET-based study also found that participants with

Aβ- SVaD (8.1 years) have lower levels of education than

did the participants with Aβ+ ADD (10.5 years) or Aβ- NC

(13.9 years) (Yoon et al., 2013). Although lower educational

attainment has been generally regarded as a risk factor for the

clinical diagnosis of ADD, in this study, there was no significant

correlation between lower levels of education and the diagnosis

of Aβ+ ADD (Katzman, 1993; Munoz et al., 2000; Caamaño-

Isorna et al., 2006; Sharp and Gatz, 2011). This contradicting

result might be related to the different study populations, such

as the inclusion of Aβ+ ADD in this study in comparison

to a clinical diagnosis of ADD in previous studies (Alexander

et al., 1997; Scarmeas et al., 2003; Kemppainen et al., 2008;

Meng and D’Arcy, 2012). Our findings were also supported by

previous studies revealing no significant association between

lower education levels and amyloid pathology (Jansen et al.,

2015; Gottesman et al., 2016; Insel et al., 2016; Landau et al.,

2016). Therefore, we consider that high education is not a

protective factor for AD pathology, alternatively, it might be due

to selection bias which excludes low-educated individuals with

AD pathology who do not visit a clinic.
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In this study, as expected, we observed a positive association

between hypertension and Aβ- SVaD. The mechanism and

effects of hypertension on the risk of development of SVD and

subsequent SVaD have been well-elaborated in previous studies

(Caruso et al., 2019; Moretti and Caruso, 2020). One of the main

pathomechanisms underlying SVD is arteriolosclerosis caused

by hypertension and subsequent hypoperfusion. However, in

terms of dementia progression in individuals with SVD, it is

also argued that hypotension rather than hypertension is more

important (Moretti et al., 2008; Caruso et al., 2019; Moretti

and Caruso, 2020). In this study, we simply used the presence

of hypertension as a predictor, instead of many hypertension-

related risk factors such as pulse pressure, hypotension, or

interaction with age, which should be investigated further to help

in the interpretation of underlyingmechanisms leading to SVaD.

In terms of the relationship between hypertension and ADD, we

did not find any relationship between hypertension and Aβ+

ADD, although previous studies have shown that hypertension

increases the risk of the development of ADD (Kivipelto et al.,

2002; Qiu et al., 2003; Skoog and Gustafson, 2006; Purnell

et al., 2009). This inconsistency may have come from a lack of

biomarker information in the previous ADD population. In fact,

our findings were supported by previous studies that indicated

that there was no significant association between hypertension

and amyloid pathology (Gottesman et al., 2017). Unexpectedly,

DM was not associated with the risk of Aβ- SVaD (Abner et al.,

2015); rather, DM was negatively associated with Aβ+ ADD.

Our findings might be related to previous studies showing a

negative association between amyloid pathology and DM (Beeri

et al., 2005; Nelson et al., 2009; Sonnen et al., 2009; Ahtiluoto

et al., 2010; Kang et al., 2021). Therefore, it is possible that DM

affects cognitive decline through non-amyloid pathology.

Our final major finding was that the presence of

hypertension (but not DM) partially mediated the association

between lower educational levels and the diagnosis of Aβ-

SVaD. Our findings are consistent with the brain-battering

hypothesis. That is, a lower level of education might be related

to a lower socioeconomic status (SES), which might be related

to higher exposure to toxins, and less healthy lifestyles, such as

irregular or unhealthy diet, smoking and alcohol consumption,

and poor access to medical care (Del Ser et al., 1999; Yoon

et al., 2013). Furthermore, the development of hypertension

and poorly-controlled hypertension induced by lower SES

might eventually result in the development of Aβ- SVaD.

Interestingly, another pathway was observed between lower

levels of education and Aβ- SVaD, without the mediation of

hypertension. This pathway might be related to the effects of

lower educational attainment on the development of Aβ- SVaD

through other unmeasured risk factors or imaging markers for

detecting changes in brain structure and function, which we did

not investigate. Additionally, the above mediation effects did

not correspond to the relation between education, DM, and Aβ-

SVaD. This might suggest that the presence of DM itself is not

mainly affected by low education or related low SES, and it is

not associated with Aβ- SVaD. We should look into the relation

between DM and dementia more closely, by investigating

whether unmeasured DM-related risk factors such as glycemic

variability or hypoglycemia have a role in the development of

different types of dementia.

The strength of our study lies in its well-characterized and

large cohort of patients who underwent Aβ PET and structural

MRI according to standardized protocols. However, our study

had several limitations that should be addressed. First, because of

the cross-sectional study design, the causal relationship between

education level, vascular risk factors, and the development of

ADD or SVaD remains unclear. Therefore, future longitudinal

studies are required to determine temporal relationships.

Second, because we intentionally excluded subjects with mixed

dementia (Aβ+ SVaD) to clarify and separately investigate the

relation between education, vascular risk factors, and either of

two major pathologies, this study cannot be generalizable to

mixed dementia cases which are common in old age. In contrast,

we used Aβ PET and MRI for severe WMH to diagnose pure

ADD and pure SVaD—the possibility of other mixed pathologies

could not be ruled out, owing to the lack of histopathological

confirmation. Third, we could not directly measure and consider

SES in the model, which might partially explain the association

between education and the risk of developing SVaD. Finally,

we could not consider other newly-acknowledged vascular risk

factors (such as homocysteine, folate, or vitamin deficiency)

or the downstream imaging markers of brain pathological

changes (such as the volume of WMH, number of lacunes, and

cortical thickness), but instead used hypertension or DM as an

independent variable and each specific dementia subtype (ADD

and SVaD) as the dependent variable. Therefore, further research

on path analysis, including these various variables as mediators,

is needed to understand the association between education,

vascular risk factors, and each pathological marker. However,

our study is noteworthy because we included biomarker-

guided diagnoses of ADD and SVaD and used a simple study

design to demonstrate the association between education level,

hypertension, and SVaD.
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